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Electromagnetism from Potentials 
Dave Peterson, 10/3/24- 11/7/24 

Abstract: Maxwell’s equations unify electromagnetism {“EM”} as a great milestone of theoretical 

physics.  For the last 150 years, they have enabled practical EM calculations for science and 

engineering.  But, in formulations of quantum mechanics and quantum field theory, it is 

electromagnetic potentials that are fundamental.  “Force is not a primary concept (and so by 

extension, neither are E and B)” [Zee] .  So, one ponders if even classical electromagnetism might be 

“conceptually easier” if one begins with potentials first. That’s the usual approach for finite element 

analysis (FEA) of electromagnetic systems: find the magnetic vector potential first as primary and later 

calculate E and B if needed. The primacy of potentials is of course against the long traditions of 

Heaviside classical force field electrodynamics in which electromagnetic potentials are considered to 

be “fictitious” mathematical quantities.  But the Aharonov-Bohm phase shifting effect {“AB”} forced a 

reconsideration of this for quantum systems.  

It is suggested here that “canonical momentum,” Pc = mv + qA, and its conservation over 

some particle trajectories is a good starting point for a primacy of potentials perspective. For quantum 

mechanics, the wave operator is Pc→ P̂c = -iℏ∇.   But, kinetic momentum and “electrodynamic” 

momentum also determine wavelengths such as h/λ = ℏk = mv = |Pc – qA| .  And the AB-effect is due 

to the difference in λ’s for different contributing qA momenta (see Figure below).  The awareness of 

many mathematically possible “gauge fixes” for the A vector potential may not be an argument against 

its physical reality. If the vector A-field follows current flow according to the A⃗  = (μo/4π )qv⃗ /R  “drag 

equation,”  then the Lorenz gauge condition is merely true and is not an imposed constraint.   

 

Introduction:  

As a primary foundation for classical electromagnetism, one may begin with the basic Coulomb 

potential field ϕ(r) = q/4πϵor for a point charge, q, at static rest. The electric potential field exists, it is 

long range and falls off with 1/r distance.  
Or,   from Maxwell’s  Gauss’s Law, ∇⋅D = ρ where D = ϵoE and E = -∇ϕ (scalar potential). 

 From the divergence theorem, ∫v ∇⋅E dV = ∫s (E⋅n̂ )dS = 4πr2E = ∫ ρdV/ϵo = q/ϵo.   

So, E = q/4πϵor2 = -r∂̂ϕ/∂r.   And, then ϕ = +Q/4πϵo r.  

 

Let this potential ϕ be part of a 4-vector Aμ = (ϕ/c, A⃗o) starting with a rest case of no A⃗  field {i.e., 

an Ao=0 background}. Then Lorentz transform this to a moving frame: LT of A is     A’ = γ(Ao –vϕ/c2).   

For slow speeds, we have then derived |A’| ≃  μo qv/4πr  (MKSA=SI units with μoϵo = 1/c2)  --electromagnetic 

space-time drag A⃗  is the dragging of the Coulomb field, ϕ  {In texts, this formula instead derives from a 

wave equation for A assuming the appropriate gauge fixing}.  

    When there is a distribution of charges, write A⃗(r,t) = (μo/4π)∫[J ⃗ (r’,t’)/R]d3r’,   “Drag Equation”    

where R = |r- r’|, current density J⃗  = ρv⃗ , and charge density ρ = dq/d3r’.  Consider this as fundamental 

(that is not usually done).  An A⃗ (r,t) field is dragged along with electrical current flow, J⃗ (r’,t’).  And the 

existence of any background A ⃗  fields is due to the presence of other background currents.  

In general relativity, a similar concept is the “Lense-Thirring effect” where moving mass drags 

inertial frames {“gravito-magnetic field”}. In that case, the “mass current” is J = ρmass v⃗  and local inertial 
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frames separate from that of distant stars  (Lense-Thirring rotational drag is similar to a Coriolis effect 

from being in the “wrong” frame of reference).  

 

 QED and electrodynamics use what is called a generalized “conjugate” momentum given by  

Pc = pk + qA      where pk = mv =mẋ   is the usual “kinetic” momentum.  It is best to keep the subscript c 

for canonical or conjugate momentum to avoid confusions because these symbols are highly variable in 

literature (e.g., P for mv, p for Pc, π for pk, …).  A Lagrangian for classical E&M is L = KE-PE = pk
2/2m -U 

where U = q(ϕ- A⋅ v) – a velocity dependent potential capable of giving a “Lorentz Force” F⃗ =qv⃗ ×B⃗ .   The 

conjugate momentum is defined as Pc ≡  ∂L/∂ẋ = ∂L/∂v  = mv + qA.  The Hamiltonian H ≡  pẋ- L = mv2/2 + 

U =  p2/2m + qϕ -qA⋅v. For just the kinetic energy part, H = L = pk
2/2m = (Pc  - qA)2/2m .  

  

Cases in which canonical momentum is conserved:   
“In electromagnetism, "canonical momentum conservation" refers to the principle that the total 

momentum of a system, including both the momentum of charged particles and the "momentum" 

carried by the electromagnetic field itself (described by the Poynting vector, pem=ϵo∫E×B d3r ), is 

conserved..” [Griffiths].  That is, “the total momentum of the system remains constant over time, even 

when electromagnetic fields are interacting with charged particles, as long as no external forces are 

applied.” 

An “equation of motion” for electrodynamics results from applying the usual “Euler-Lagrange” 

equations {∼ 1750} to the Lagrangian: [   ∂L/∂x – (d/dt)∂L/∂ẋ = 0 ].   

But ∂L/∂ẋ ≡  Pc , so dPc /dt =Ṗc = -q∇(ϕ -v⋅A)  .  That is, Pc =mv+qA is conserved when the gradient of ϕ-v⋅A 

is zero {cases where potentials are uniform}.  The presence of a uniform magnetic field is one of those 

cases that preserves Pc. The most important case considered here is the Aharonov-Bohm {“AB”} double-

slit interference experiment where a long solenoid is placed just after the slits and results in an 

observable phase shift.  There is no external B field outside the solenoid and no applied E field.  

Preservation of values for Pc are a key to understanding what takes place (discussed below).  

 

So, as a second starting point for primacy of potentials, let conjugate or canonical momentum  
Pc = p+qA for an electron in an electromagnetic field and consider cases where this quantity is 

conserved throughout the charged particle's trajectory  { an implication is that Maxwell’s “qA” is indeed similar to 

an electromagnetic momentum --  that some form of “qA” possesses a sort of  “inertia” and “reality”}.  p⃗ = mv is sometimes 

given the label “π” in the equation P = π + qA.        

Then, ∂P/∂t = ∂p/∂t + e ∂A/∂t = 0 ⟹ ṗ = Fem = -e∂A/∂t = +eE          {-- i.e., a force field with the 

usual label E⃗  = -∂A⃗ /∂t}.     

 {For vector problems in 3d, it is better to use “total {or “material or convective”} derivatives”  

Fem = -edA⃗ /dt =-e[∂A⃗ /∂t + (v⋅∇ )A⃗  ] – for example the “Lorentz Force” shown below}.  

 

The charge “e” of a particle is a coupling constant to the A field which allows the quantity “eA” to 

becomes an effective momentum granted to e by coupling it to the A-field.  Classically, we may think of π 

+ eA as being momenta of localized point particles.   

Remember that forces take time to really act. So, even though a change ∂A/∂t occurs and causes 

a backwards electric field force, E; having this occur rapidly would have little effect on trajectories. Look 

at the case of current flow through a long straight copper wire. Before it happens, there is no 

neighboring B nor A field. After flow, there is a circumferential B field and an A field that is dragged along 
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with the current in the same direction as current flow. If this happens quickly, then a particle almost 

stays at the same position.   

Δ(mv) = ∫q(E=-dA/dt )dt = -q∫dA = -qΔA, so Δ(mv+qA) = ΔPc = 0 says that Pc = constant [StackEx]. 

 

Induction:   Two Charges:          a⃗1    ← O1  ---r ------- ⟹  O2 → a⃗ 2 . 

 

As a particular example, and picture of induction, consider two charged particles, q1 and q2, 

separated by a distance r and then accelerate the first charge by acceleration a1:  then ∂A/∂t = 

∂([μo/4π]q1v/r)/∂t = [μo/4π]ea⃗1 /r --   induces an E⃗  field at particle 2: a2 = -q2E(r2-r1)/m2 in a direction 

opposing a1.  If acceleration of particle 1 is to the left, then induced acceleration on particle 2 is to the 

right. This point-particles case is the most elementary example of electromagnetic induction.  

 

As usual, we may introduce the conventional label, B = ∇×A to allow for the case of rotating 

currents.  Then ∇⋅B = ∇⋅∇×A = 0 (i.e., div curl ≡ 0, “no-poles” equation).  Create a special operator 

D=∇×(∂/∂t)_ = (∂/∂t)∇×_ (the ordering of space versus time differentiation makes no difference).  

Then DA⃗  = DA⃗  = (∂/∂t)∇×A = ∇×(∂A/∂t), or ∂B/∂t =∇×(-E).   

So, ∇×E = -∂B /∂t  – “Faraday’s Law of Induction” (with Lenz “-” sign as in ℰ = -dΦ/dt – “Flux has an 

electromagnetic inertia”—and that says something about the nature of the electromagnetic field of the 

Vacuum {Faraday discovered induced current in 1831, and Faraday’s law is the consequence of the equality of both orderings – 

space and time). Lenz law expresses a mechanism of EM inertia – an attempt at preserving magnetic fields.  

Revisit Einstein’s 1905 problem of a bar magnet traveling through a wire hoop versus the picture 

of a wire hoop moving about the bar magnet. Consider their A⃗ -fields in these two different frame 

perspectives.  The bar magnet is equivalent to a solenoid – a cylindrical coil of current that drags an A field 

around it circumferentially. For the magnet approaching the wire, the mobile electrons in the wire see an 

increasing amplitude of A field which then induces an opposing force in the wire which tries to nullify the 

field changes between the magnet and wire loop. The view using “B-fields” is that increasing flux induces 

a back emf ℰ in the loop which produces its own opposing B field. But an “A-field” view suffices by itself, 

and it is only relative motion that counts.  

{Einstein, 1905}:  “But if the magnet is stationary and the conductor in motion, no electric field 

arises in the neighbourhood of the magnet. In the conductor, however, we find an electromotive force, to 

which in itself there is no corresponding energy, but which gives rise—assuming equality of relative motion 

in the two cases discussed—to electric currents of the same path and intensity as those produced by the 

electric forces in the former case.”  

    Note that ∇× E = -∂B/∂t = -∂[∇×A]/∂t or  ∇× [E + ∂A/∂t] = 0 ⟹ E⃗ = -∂A⃗/∂t (electric field E⃗  

from a vector potential, A⃗ ).   And, of course, when there is also a scalar potential field present, we can 

also obtain a contribution from E = -∇ϕ   

 

A remaining “Ampere's law” of Maxwell’s equations is ∇×B = μoJ+ μoϵo ∂E/∂t.  In classical 

electrodynamics, this can largely be obtained from the Biot-Savart law which in turn is derived from the 

curl of the vector potential. In integral form, BS is ∮c B⋅dℓ = μoI , or using Stokes Theorem = ∫sur (∇×B)⋅dS, 

where B = ∇×A (and then some math processing).    



4 
 

For the field around a long straight wire, B=μoI/2πr   where I=dq/dt is current flow.  This result 

(and other cases like it) may also be calculated directly using the “drag equation” but involving more 

calculus and algebra steps. The result is Az = -μoI ℓn|r|/2π  + uniform background field (an infinitely long 

wire has infinite but unreal effect ).  In some cases, using E ⃗  and B⃗  fields in Maxwell equations simplifies 

 calculations – but that convenience is separate from declaring these fields to be “real.” 

 

In terms of both potentials: the summary electric field is E = -∇ϕ - ∂A/∂t. Then Ampere’s Law is 

expanded by vector identities as:  

∇× (∇×A ) = ∇(∇⋅A) - ∇2A = μoJ + μoϵo ∂(-∇ϕ)/∂t + μoϵo (∂2A/∂t2), or  

      □ A⃗  =∇2A⃗ - (1/c2) ∂2A/∂t2  = - μo J⃗  + ∇ [∇⋅A+ ∂ϕ/(c2∂t)]  -- 

which can also be a nice wave equation if the term in brackets vanishes  {i.e., when the Lorenz gauge  

∂μAμ =0  is applied}.  

 Also, ∇⋅ E⃗  = -∇⋅∇ϕ - ∇⋅(∂A/∂t) = ρ/ϵo,  or  ∇2ϕ + ∂(∇⋅A)/∂t = -ρ/ϵo.  So, if we chose a 

“Coulomb” gauge ∇⋅A = 0, we would have a nice Poisson equation for electrostatics.  But our focus here 

is the physical use of the magnetic vector potential field, A ⃗ (x,t).  

 

 Gauge Choices:  There are a variety of mathematical forms that overly flexible potentials can 

take while still yielding the same classical force fields, E and B, which can be laboratory observables. This 

mathematical variability might be much broader than a set of “realistic” physical potential variabilities.  

Mathematical calculations are usually aided by choosing appropriate forms and restrictions on potentials 

for a given problem; and this “electromagnetic gauge fixing” has a convoluted 150 year history.  Maxwell 

himself preferred a “Coulomb gauge,”  ∇⋅A = 0.  This choice is common for problems in solid-state 

physics, antenna theory, magnetostatics, and electrostatic problems based on Poisson’s equation ∇2ϕ = -

4πρ {instantaneous propagation}.  Relativistic electrodynamics usually prefers the “Lorenz gauge.” 

 We could have supplemented A⃗  with a curl of another vector field (“f”, physically unlikely) so 

that Coulomb Gauge ∇⋅A = ∇⋅∇×f⃗ =0. We could have added on a gradient of a scalar “sub-potential” ∇χ   

to “A” – but such “gradient fields” seem awfully unphysical (i.e., “silly”) and only useful in the strange 

mathematical game called “Gauge Theory:”    

This game includes steps of altering quantum phases at will locally, stating that this is due to 

modifying potential A⃗  by adding a local scalar field gradient, ∇χ ,  A → A + ∇χ  -- and requiring a 

compensation for scalar potential ϕ → ϕ - ∂χ/∂t as well.  And then, one also modifies the derivative in 

the Schrodinger equation from ∇ → D = ∇ -ieA/ℏ where A is a “compensating field.”  All of these 

modifications are consistently choreographed together.  Although ∇χ modifies phases, it is really the 

vector gauge field A that modifies quantum phase in a physically meaningful way (such as in the 

Aharonov-Bohm phase-shifting effect).  

 

The Lorenz Gauge ∂μAμ =0 is used in the “Liénard–Wiechert” derivation of a common form of the 

vector potential starting from wave equations and yielding a more detailed retarded form of  

|A’| = μo ev/4πR  }. For all practical purposes (FAPP), thinking of A as the dragged electric field of a 

moving charge is physical and intuitive.  But, to be cautious and mathematically proper, physicists avoid 

giving local meaning to A in the canonical summed momentum P=p+eA and instead integrate in closed 

loops to avoid gauge problems with interpretation (as in the important Aharonov-Bohm effect).  
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{More discussion in the Appendix at end}. 

 

Lorenz Gauge {1867, and often mis-spelled or mis-attributed as “Lorentz gauge”}  is:     

 ∂μ Aμ =0 = ∇⋅A⃗  + (1/c2) ∂ϕ/∂t = 0    

 Consider the simple x-axis case example with a charge, Q, at beginning at t=0,x=0 and moving as x⃗  = v⃗ t.   

Examine ϕ and A at a chosen distance R from origin x=0.    ϕ changes in time due to charge 

motion near x = 0 that shortens the distance to a point R.   ϕ(R,t) = Q/[4πϵo(R-vt)], dϕ/dt =  

(-Q)(-v)/[4πϵo(R-vt)]|t=0 =  +Qv/4πϵoR2.  

Compare this quantity against the divergence ∇⋅A using local variable r = R+x. ∇⋅A ≃ ∂A/∂x = 

(∂/∂x)μoQv/4πr = -μoQv/r2|r=R = -μoQv/R2 with sign opposite to that of dϕ/dt and ratio |dϕ/dt| / |dA/dx| 

= 1/μoϵo = c2.  

   

The Lorenz Gauge is then not mysterious but is just a statement of fact if A⃗  is defined as = 

μoQv⃗/4πR -- and this is obviously incompatible with a Coulomb gauge, ∇⋅A = dA⃗ /dx = 0  {one has an 

exclusive choice of gauge}. This gauge choice allows for compatible wave equations: □A = -μoJ and □ ϕ = 

-ρ/ϵo.  

For extended sources and finite propagation rate c, one can calculate the fields at distant 

position vector r and time t from sources at r’ and t’ at an earlier time = “retarded time” calculated as R 

= |r-r’| and t’ = t -R/c.  

 

The formula for charge conservation is   ∂ρ/∂t +∇⋅J = 0 = ∂μ jμ     (conservation of 4-current), and 

the charge density at a point can change only if current of charge flows into or out of the point. Then the 

form    -∂/∂t ∫ρ/R  dvol ≃  ∇⋅ ∫ J ⃗ /R dvol which can be restated as ∂(4πϵo ϕ )/∂t ≃ ∇⋅ [(4π/μo ) A⃗ ],  or  

∇⋅A⃗  ≃ -(1/c2)∂ϕ/∂t.   

This “Lorenz condition is fulfilled if and only if charge is conserved. It is a consequence of a 

property of matter and in no way an intrinsic restriction of the degrees of freedom of Aµ. Also note that 

“the Lorenz gauge condition is, importantly, a Lorentz invariant gauge condition since we're contracting 

the 4-indices of Aμ and ∂μ.”    

 

 

The Lorentz Force [1895]:   has a variety of expressions such as: 

 

F = Iℓ × B,   f⃗  = ρE⃗  + J⃗ ×B⃗ ,  F ⃗  = q(E⃗ + v⃗ ×B⃗ ) = q[-∇ϕ - ∂A/∂t + v×(∇ ×A)] = q[-∇(ϕ -v⋅A) – dA/dt],  

 

where “total derivative” dA⃗ /dt = ∂A/∂t + (v⋅∇ )A⃗  {i.e., over space-time, A(t,x,y,z) is a function of several 

variables rather than just one}. The Lagrangian form for this case is again:  

L = ½  mṙ⋅ṙ + qA⋅ṙ -qϕ  -- which has a “velocity dependent potential.”  Processing this via the usual 

“Euler-Lagrange equations” {∼ 1750}  yields the standard F⃗  = qv⃗ ×B⃗  force form {for math see 

https://en.wikipedia.org/wiki/Lorentz_force  -- the energy qv⋅A →ℰℒ → qv× B force }.  At first, this 

equation appears strange because a velocity in one direction crossed into a B field in another direction 

results in a force perpendicular to both. What kind of physics is that?  But then note that this force is 

similar in form to the “Coriolis force” F⃗  = 2mv⃗  ×ω⃗  which is usually labeled as an “apparent force” or 

https://en.wikipedia.org/wiki/Lorentz_force
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fictitious force in a rotating reference frame. This similarity is called “just an analogy” since the Lorentz 

frame is not rotating.     

Or is it?    An electron possesses both mass and charge and hence sees both the inertial world 

and electromagnetic space while it moves in a rotating A⃗  vector background.  

 A velocity field (like a spinning Earth or rotating record) has |v⃗ ϕ | = rω. In cylindrical coordinates, 

a curl of this field is  ∇×v⃗  = (ẑ/r)(∂/∂r)(rvϕ) = ẑ (vϕ/r + ∂vϕ/∂r) = 2ω⃗    – the analog of B= ∇×Aϕ . So, the 

Coriolis force is F⃗  = mv⃗ × 2ω⃗  = mv⃗  × (∇× v⃗ ϕ of rotation).  

 

A semi-uniform B field can be produced in a laboratory in the middle of Helmholtz coils (two 

wide co-axial coils of radius R separated height h=R). A more ideal example is the interior of a long wire-

wrapped solenoid where Ain = μoInρ/2 = (Bo/2)ρ ∼ ρ ωB   {ρ is radial coordinate ⊥ ẑ and n is number of 

coil turns}. Both of these are cases where canonical momentum is preserved.  

 

So, consider the simple example Case of a charged particle: e   ο -- → coordinate ρ = v⃗ t in field A⃗ =⊗.  

That is, let a charged particle move radially from the origin (center of solenoid) at speed v so ρ(t) 

= vt. As noted before, conservation of P = p+ qA means dP/dt = 0 = dp/dt +q dA/dt so that an electrical 

field is effectively produced, qE = ṗ = F em = -qdA/dt.  And, A(t) = (Bo/2)ρ(t) in the circumferential or 

“+phi” direction.      

 [as a check, ∇cyl×A⃗ϕ  = (ẑ /ρ)(∂/∂ρ)(ρA) = ẑ[A/ρ ∂A/ρ∂ρ] = ẑ [2(Bo/2)ρ/ρ] = ẑBo. ].  

   So, dp/dt = p⃗̇  = Fϕ = -qdAϕ /dt = -q[∂A/∂t + (v⋅∇)A] = -q(Bo/2)[v + (∂ρ/∂t)⋅(∂/∂ρ)(ρ)] =  -q(Bo/2)[v + v] = 

 -qvBo in the -ϕ circumferential direction. That is, F⃗ ϕ = +qv⃗ ρ × Boẑ .   [Lorentz Force law]  Since a 

force is produced, the kinetic momentum p = mv is not conserved.  

 No explicit Maxwell force-field equations are required.  
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[Figure from [Kasunic] for λ changes in A fields].  

 

Use in electrodynamics in Quantum Mechanics: 
 

The canonical momentum is promoted to an operator Pc→ p̂c = -iℏ∇ .  But the kinetic and 

electromagnetic momentum also determine wavelengths like h/λ = ℏk = mv = |Pc – qA| .   

A foundation for quantum waves begins with the fact that each particle mass has an associated 

frequency fo=moc2/h and that the de Broglie relation p = mv = h/λ results from a Lorentz transformation 

of this non-propagating rest vibration for a relatively moving frame of reference. These represent space-

time inertia of mass.  

 

So, how does one account for the Aharonov-Bohm effect {“AB”} in which the vector potential 

does alter wavelengths (see Figure [Kasunic] ).  An electron wave passes through two slits into two rays (#1 

and #2) and then around a tiny solenoid which has a rotating A field but no external B field. The rotating 

A field is with the momentum of one ray but against the momentum of the other leading to a differential 

phase shift and a change in peak locations on a detector screen.  

In free space, the electron has momentum mvo with wavelength λo. In the neighborhood of the 

solenoid, we have a different momentum, mv = h/ λ(A). This is due to conservation of the canonical 

momentum so that Pc = mvo + qAo → mvA + qA is preserved (and Ao far away is zero).  

Hence mvA = mvo – qA.  Then,  

 λo/λA = (mvo-qA)/mvo = n(A) as an effective index of refraction near field A.  
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Let Δn = n2-n1, ΔA = A2-A1 = 2|A|,  Δϕ = phase difference between the two rays, and L = effective length 

across the A field of the solenoid (actually dA/dx varies smoothly rather than as a step in a rectangular 

region).  The combination of length for the two paths is L1+L2 = 2L.  

 Δn = (mvo – eA2)/mvo – (mvo – eA1)/mvo = qΔA/mvo = qλoΔA/h.  

 Then     ΔϕAB = koΔx = (2π/λo)LΔn = 2π qLΔA/h = qLA/ℏ ∼  (q/ℏ)∫ A⋅ dℓ  .  

 

The AB phase difference for a “non-integrable” phase (i.e., depending on the particular paths chosen 

which are not allowed to enter inside the hard central solenoid).  The AB phase results from preservation 

of the canonical momentum through the system of slits, solenoid, and screen.  

 The  usual AB derivation starting with the EM Schrodinger-equation gives an e iΔϕ factor without 

mentioning λ. But ∫qA⋅ dℓ /ℏ is like a “pdq” action with 2π dℓ/λ wave phase. So, an inference is λ’ = h/qA 

which is neither the λo=h/mv nor λA= h/(mvo-qA).  Rather 1/λ’= 1/λo – 1/λA . However, the AB phase shift 

is consistent with momentum qA having its own contribution of wavelength (or additive wave-number, 

k=2π/λ ). That implies that a simplest derivation of the AB phase ΔϕAB could just begin with the 

assumption that momentum qA has its own effective wavelength. 

 

Simplistically, a particle with wavelength λ encounters an increasing valued A⃗ field. Intuition says 

that this is like a new stream current and should widen λ  (but not quite the right physics).  That may 

happen but with longer reason: P should be constant throughout a free trajectory, so increasing qA 

should decrease p = mv momentum (as if a backward emf were generated against p). Then λ = h/p says 

that λ is indeed longer because p is smaller. So the particle has not sped up in a streamline, but λ is 

indeed longer [as in the Figure]. 

Again, the standard text book approach for AB involves the time-dependent Schrodinger equation for an 

electron in a vector potential {in S.I. units}:     i∂ψ/∂t = (1/2m)(-iℏ∇ -qA)2ψ + Vψ  = (T̂ +V)ψ      by 

assuming ψ=ψoe iϕ with phase shift ϕ = (q/ℏ)∫ A⋅dℓ   without mentioning canonical or mechanical 

momentum or even wavelengths themselves.  
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Appendix:   
 

Gauge, In More detail:  

 
The Lorenz gauge is expressed as ∂μAμ = 0 and is Lorentz invariant.  The Coulomb gauge is ∂iAi = 0 

which goes along with ϕ = 0 which is suitable for radiation problems (no nearby or distant charge 
sources).  This is also called the transverse gauge or radiation gauge where photons are purely transverse 

radiation; i.e.,  ∇⋅A⃗ = 0 agrees with k⃗ ⋅A⃗  = 0  in Fourier space. The Coulomb gauge separates scalar and 
vector potentials for individual use which simplifies calculations. It gives coupled equations ∇2ϕc = -ρ/ϵo . 

and □Ac = -μoJ + ∇(∂ϕc/c2∂t) – where the latter term makes calculations for A more difficult using this 

gauge. The Poisson equation implies instantaneous ϕc but allows for properly retarded A.  In the Lorenz 
gauge, we have ∂μ∂νAν = μojν  which lacks that extraneous term so that calculations are more 
straightforward.  ‘The scalar potential propagates at infinite speed, while the vector potential propagates 
at speed c in free space.”    

 
The Coulomb Gauge “poses challenges due to the loss of Lorentz invariance and is not optimal for 

problems involving relativistic particles or fields propagating at near light speed.” Using ϕc and Ac do give 
the proper retarded electric and magnetic fields” since E and B don’t depend on choices of potential 
gauges. It is a convention to specify causal retardation as brackets such as [J]ret/R where J(x’,t’) uses t’ = t- 
R/c and R = |r – r’| with primes for local source parameters.  The Coulomb gauge “is also limiting in that 
although, only transverse polarizations are physical; longitudinal and scalar polarizations participate as 
virtual particles in interactions”. “Calculating QED interactions in the Lorenz gauge is most general and 
should reduce to the results obtained in the Coulomb gauge after selecting a particular reference frame.” 

https://arxiv.org/pdf/2410.11921
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=61950ed92272c1f9de650c817c6873dfd8ee0b2c
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=61950ed92272c1f9de650c817c6873dfd8ee0b2c
https://www.jocet.org/papers/151-L020.pdf
https://www.physicsforums.com/threads/canonical-momentum-pi-rho-of-the-electromagnetic-field.979063/
https://www.physicsforums.com/threads/canonical-momentum-pi-rho-of-the-electromagnetic-field.979063/
https://physics.stackexchange.com/questions/98583/is-the-canonical-momentum-conserved-when-a-particle-moves-in-magnetic-field#:~:text=%E2%86%92P%E2%89%A1%E2%86%92p,%E2%8B%85%E2%86%92A%20is%20zero
https://physics.stackexchange.com/questions/98583/is-the-canonical-momentum-conserved-when-a-particle-moves-in-magnetic-field#:~:text=%E2%86%92P%E2%89%A1%E2%86%92p,%E2%8B%85%E2%86%92A%20is%20zero
https://physics.stackexchange.com/questions/98583/is-the-canonical-momentum-conserved-when-a-particle-moves-in-magnetic-field#:~:text=%E2%86%92P%E2%89%A1%E2%86%92p,%E2%8B%85%E2%86%92A%20is%20zero
https://www.reed.edu/physics/faculty/griffiths/EMMomentum.pdf
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One article added, “We suggest that the Lorenz-gauge potentials may be interpreted as physical 
quantities.” 

 
There is a slow change in teaching methods for electrical engineering towards the primacy and 

ease of potentials instead of E and B fields [e.g., Carpenter]. “The underlying assumption is that ϕ  and A 

are defined in accordance with the Lorenz gauge so that they can be treated as if propagating 

independently of each other in empty space.” Another author agrees and adds, “The uniqueness of the 

solutions of the Maxwell equations is provided if it is accepted that the only gauge that can be used in 

electrodynamic calculations is the Lorenz gauge” [Onoochin, 2024]. Antenna theory can also be simplified 

[jocet].  

 

 Quantum mechanics usually avoids force equations, and Maxwell’s equations essentially provide 

an “averaging over” the more detailed but intricate quantum phenomena.  The potential, ϕ , may be 

physically interpreted as the potential energy per unit charge, and  A⃗ as the potential energy per unit of 

current – and energy is the “king of concepts in physics.”  But, electromagnetic potentials are not 

physical observable – they provide another example of things that may be “real” without being directly 

“observable.”  That presents a challenge to the dependence on the scientific method that depends on 

experimental observations.  Is it possible to reliably go one step beyond tangible observations – perhaps 

by a consensus deduction?  Historically, it is often difficult to form a consensus on theories even using 

reliable experimental data.   Feynman had a definition: “A real field is a mathematical function we use for 

avoiding the idea of action at a distance.”  [https://www.feynmanlectures.caltech.edu/II_15.html ]. That 

is, “A real field is then a set of numbers we specify in such a way that what happens at a point depends 

only on the numbers at that point.”  The Aharonov-Bohm effect was a big surprise to some people in 

demonstrating an observable shift in interference peaks from the presence of an A ⃗ field.  

  
Can we dispense with B and E force fields and stay with just potentials? Maybe, but our history 

and literature have highly valued these derivative fields. I’ve always puzzled about E an B fields being 
real. We say they are because energy is real, and E2 or B2 represents energy.  But basic reality may be just 

A-field dragging from moving charges. So, are hidden mechanisms in spacetime performing ∇× A⃗ and -
∂A/∂t operations by itself all the time – or only when interacting with other charges? It’s not 
clear.  Voltage kicks from inductor discharge of stored energy suggest B field reality by itself (no 
interactions with external charges required). Maybe spacetime itself notices A field stresses from space 
or time “curvature of A(x,t)” and recognizes that as energy density. The “Vacuum” itself does contain an 
understanding of EM fields (that we label by Aμ ). So  mathematical processing by spacetime isn’t 
inconceivable. 

Appendix Note on Four Vectors: P = moU = (E/c,p), A = (ϕ/c, a), K = (ω/c,k⃗ ), X = (ct, x⃗ ), ∂ = (∂t /c, ∇). 

A scalar or inner product of two four-vectors A⋅B = AμBμ  is invariant 
under any smooth coordinate transformation. A relevant example is phase: 

  K⋅X = ±(ωt-kx) for metric signature (+ - - - ) or signature (- +++).  [or goo = ηoo = +1 or -1].  

The complex exponential plane wave is ψ(x,t) = exp[i(kx-ωt)]= exp[i K⋅X] 

For the direction of wave motion, signature doesn’t matter: that is, if we look at any 
particular wave peak (fix the phase), then ±(kx-ωt)= 0 ⟹ x = ωt/k = vphase t  (in the positive 
right direction).  

https://www.feynmanlectures.caltech.edu/II_15.html
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The de Broglie relation p = h/λ = ℏk, and E = ℏω  has P = ℏK as 4-vectors. 

with ψ = Ae +iφ  ,  the standard form φ = (kx-ωt) = ([px-Et]/ℏ ) .  If we have an operator p̂ = -
iℏ∂/∂x, then p̂ψ = -iℏ (ip/ℏ )ψ = pψ , eigenvalue equation {and ∂/∂x = +ip̂/ℏ }. But with the 
other  -iφ form, we would need p̂ = +iℏ∂x . Standard QM uses the operator p̂ = -iℏ∂/∂x or -iℏ∇ 
= -iℏ∇i with phase = kx-ωt (and we could say goo=-1 convention). 

 

SI Electromagnetic UNITS [  ] 

[μo] = 4π x10 -7 H/m = 1.257 x 10-6 N/A2 = vacuum permeability 

[ϵo] = permittivity = 1/μoc2  Farads/m = C2s2/kg m3 = 8.854 x 10-12, so 

1/4πϵo = 9 x 109 Nm2/C2 (or 8.9877)x109 kg m3/C2s2. 

Potential ϕ = V (volts) = (1/4πϵ)Q/r  kg m2/Cs2, E=-∇ϕ , [volt] = W/A = kg m2/A s3 = joule/As . 

Vector Potential [A⃗ ] = [p]/Coulomb, so [eA] = [p] = [kg m/s],  A⃗ = μo Qv/4πr  

[A] = volt sec/meter = joules sec/Coulomb⋅ m.  |A⃗|/ϕ = v/c2 for the same r and Q.  

In electromagnetism, current density is the amount of charge per unit time that flows through a 

unit area of a chosen cross section. [J] amps/m2 = C/sm2   dq = ρvdtdA, j = ρvm , ∇⋅J = -∂ ρ/∂t. 

 

 

P = π + qA:  More on foundational conjugate momentum where usual p̂ = -iℏ∂/∂x → P̂c = -iℏ∂/∂x.  

 
In electrodynamics, we introduce the conjugate or generalized momentum P = ∂L/∂v using the 

Lagrangian L = ½ mv2-q(ϕ-v⋅A) with velocity dependent potential; so P ≡ pc = mv+qA = π +qA. Then, 
kinetic mv momentum is π = pc-qA. The Hamiltonian in an external potential is then just H = π⋅π /2m + 
qϕ .  As operator, π̂ = -iℏ ∇ +qA, or  

∇cov = (i/ℏ) (π̂ -qA) which is also called a “covariant derivative” Di {as the spatial part of  
Dμ = (Dt/c,∇cov ) = (∂o/c +iqϕ, ∂μ -ieAμ /ℏ) }.   D includes kinematic and electromagnetic momentum.  

The Hamiltonian is H = (1/2m) (P-eA)2 = (1/2m)π 2 where P̂ =p̂c = -iℏ∇ , so π̂ = -iℏ(∇ -ieA/ℏ) .  Note 
two things:  energy still goes with ordinary mv momentum, and it is P that becomes a derivative 
operator, P̂ . That is, qA is included in general wave properties (emphasized by Mike Jones, Vol. 1 p 108).  
 
Potential dragging from currents is similar to “Gravitational Frame Dragging.” 
  
     The magnetic potential A field is a result of a Lorentz transformation of a Coulomb field.  If we did the 
same thing to the Newtonian Gravitation potential Φ  = MG/r, we would get the result Ag = γvΦ/c2 = 
γvMG/c2R as a weak field falling off as 1/R.  But, this isn’t quite right.  Gravitation is not a vector field but 
a tensor distortion of the fabric of space-time. Although both space and time are warped by nearby 
masses, Newtonian gravitation is due solely to just the distortion of time, dt/dτ . For weak fields from 
moving masses and non-relativistic speeds, one needs the weak metric hμν with non-zero off-diagonal 
elements hio which yields a frame-dragging result Ag = -4GMv/c2R.  Sciama’s 1953 discussion of the Origin 
of Inertia ignores this new factor of 4  -- which is OK since he is just demonstrating a plausible analogy.  
He also uses an old cosmological approximation Gρτ2 ∼ 1 where tau ∼ R universe/c.  Sciama’s paper was 
highly stimulating – but not quite right.  
   

Einstein mentioned the inertial dragging “Lense-Thirring” effect as implying an increase in 
effective inertial mass due to neighboring “ponderable masses,” M, using an “Einstein-Sciama” inertial 

force equation, F⃗  = 4GMma⃗ /c2r. This is also “not quite right,” since Brans showed that this cannot be a 
real effect because all local gravitational fields can be transformed away with appropriate accelerated 
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frames of observation (the “Principle of Equivalence”).    Electromagnetic induction uses a dragging of 

“electromagnetic space” vector potential A ⃗ ∼ μoQv⃗ /4πR whose rate of change produces a counter 
electric field, E = -∂A/∂t, that can act on nearby charges to accelerate them in an opposite direction 
resulting in an attempt to preserve the summed values of the A field (Lenz’s Law).  Einstein induction 
would be an opposite of this.  Accelerating a local mass should induce a local force field that might 
accelerate other local masses in the same direction.  Presumably, this doesn’t happen in the linear case – 
but it might apply to rotating Kerr black holes. And, when a mass current exists, space oriented with 
respect to distant stars feels as if it were undergoing a rotation in the direct of dragged Ag. This can 
effectively result in Coriolis type forces from “being in the wrong frame of reference” {“gravito-
magnetism”}.  

 
Modern physics grants a higher level of “reality” to concepts that are Lorentz invariant. 

Momentum and kinetic energy are relative, but E2 – (pc)2 = (mc2)2 is invariant. However, observed 
phenomenon are usually relative and still real to us. Particle wavelengths don’t exist unless particles are 
moving relative to us. Vector potentials require relative motion or current flows, and induction requires 
changes in current flows.  Should we dismiss phenomena because they can be transformed away using 
special moving observers?  The term “real” is not well defined.    

 
 

 

 

 

 


