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(introduction) 

the optimist B E Li eve s that this is the best of all possible worlds, 

and the pessimist fears that this might be the case. Life is not always kind 

to humans, and from the earliest times on, they have wondered why, and 

turned to priests or philosophers for an answer. There was, however, a 

window of two centuries, between 1600 and 1800, during which some 

scientists felt that they could contribute to the answer. Chief among 

them was Maupertuis, a French polymath who was at once an explorer, a 

scientist, a philosopher, and a courtier. He discovered that all the laws of 

physics were mathematical consequences of a single idea, which he called 

the least action principle: everything happened as if a certain quantity, 

called the action, was to be made as small as possible. If one accepted 

that idea, then all the laws of physics could be derived by mathematical 

techniques. He then crossed the bridge between science and metaphys¬ 

ics by stating that similar principles were at work in all of creation, so 

that, for instance, God ordained the course of history so that the total 

amount of suffering incurred by humankind should be minimal. This 

started a huge controversy, and Maupertuis was ridiculed by Voltaire in 

his famous novel Candide, later a musical by Leonard Bernstein, as the 

philosopher Pangloss, who walks through an ever-worsening succession 

of disasters while blindly claiming that all is well that ends well in the 

best of all possible worlds. 

Maupertuis deserves a better fate. Scientifically speaking, his least 

action principle is basically sound. It has been taken over, transformed 

(perhaps beyond recognition), and improved upon continuously, and 

recently it has led to a series of breakthroughs in mathematics. I have 

had the privilege of being involved in this research, which is all the more 

fascinating since it has its roots so far back in history, and I want to 

share some of my experience and enthusiasm with others. In addition, 

Maupertuis may have been the first person to understand how important 
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the idea of optimizing—of devising systems which would function in 

the best possible way according to some criterion—would become in the 

modern world. I have tried to follow this idea as it moved from phys¬ 

ics into biology, and then into the social sciences. This itinerary more or 

less coincides with my personal history. I have moved from mathematics 

to mechanics, and then to economics, always following the trail of opti¬ 

mization from one field of knowledge to the other. During this journey, 

my scientific interests have shifted accordingly, and I now find myself 

studying human behavior. The more important questions appear later in 

my scientific career, as if I needed the accumulated knowledge and expe¬ 

rience to finally find out what the right questions are. 

What are humans? What are we trying to do to ourselves and to the 

environment? This is no longer a philosophical question. The way we are 

using up the resources of the planet, and fighting among ourselves in 

the process, is now turning it into an immediate and practical issue. This 

book tries to show how this question slowly emerged from the progress 

of science, and points in some directions for the future. 
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(chapter i) Keeping the Beat 

“before we proceed, we must be aware that every pendulum keeps 

its beat so well defined and fixed that it is not possible to have it move 

according to any other period than the only natural one.” Thus speaks 

Galileo in his Discourses and Mathematical Proofs Concerning Two 

New Sciences, the last book he ever published (1638). He died four 

years later, leaving a rich scientific legacy, of which this simple state¬ 

ment may be the most important part: as a fact, it quickly turned out to 

be false, but it changed our ideas about physical motion, and inspired 

a new technology to measure time. 

A pendulum is simply a small load suspended to a string or to a rod 

fixed at one end. If left alone it ends up hanging vertically, and if we push it 

away from the vertical, it starts beating. Galileo found that all beats last the 

same time, called the period, which depends on the length of the pendu¬ 

lum, but not on the amplitude of the beats or on the weight of the load. It 

also states that the period varies as the square root of the length: to double 

its period, one should make the pendulum four times as long. Making it 

heavier, or pushing it farther away from the vertical, has no effect. This 

property is known as isochrony, and it is the main reason why we are able 

to measure time with accuracy. 

It has been said that Galileo discovered that law during a service in the 

Pisa cathedral, by comparing the oscillations of the great lantern hang¬ 

ing in the nave to the beats of his own pulse. What a beautiful symbol! 

The great cosmic cycles, the succession of night and day, the phases of 

the moon, the coming of the tide, the return of the seasons, have always 

been the background against which history is staged. But there is also for 

each of us a smaller companion, which measures not cosmic, but biologi¬ 

cal, even personal, time: our own pulse is a natural wristwatch. Comparing 

the rhythm of nature to that of our blood gives us the idea of a standard 

time, which should be both universal, valid for everyone at once, like the 
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oscillations of the lantern, and homogeneous, reproducing itself regu¬ 

larly, like the beats of our heart. It is a truly revolutionary idea, contrary to 

all the experience which humankind has gathered since the earliest 

times: all natural rhythms are variable and irregular. The pulse beat is not 

the same across individuals, and it is affected by emotional or physical 

strains. Daylight varies according to the latitude and the season, the 

lunar month changes as well, and defining correctly the year is a major 

astronomical problem. Coordinating all these rhythms, to keep Christ¬ 

mas in midwinter for instance, required the invention of the Gregorian 

calendar with its complicated rules about leap years. It still is not good 

enough, because these rhythms change: the rotation of the Earth is slow¬ 

ing down, so that the day lengthens slightly, and once in a while the 

atomic clocks that keep standard time have to be pushed forward one 

second. 

Today hours are constant: an hour is an hour, anywhere in the world, 

at any time, just as a meter is a meter and a pound is a pound. But this is 

quite a modern idea: for our ancestors, hours were uneven. In classical 

antiquity, there were twelve hours between sunrise and sunset, and 

twelve hours between sunset and sunrise. So day hours and night hours 

(aka vigils) had different durations, except at the spring and fall 

equinoxes. Coming to work in the fields at the eleventh hour meant that 

most of the day had gone by; little wonder that those who had been 

around since dawn found it unfair to be paid no more than the late¬ 

comer, as in the evangelical parable. The duration of hours varied with 

season and location: summer hours were different from winter hours, 

Florence hours were different from Rome hours (not that there was any 

direct way to compare them in those times). 

Not so with the pendulum beat. The great lantern of the Pisa cathe¬ 

dral beats for all to see, and each and every one of its oscillations has the 

same duration. They slowly dampen, and eventually the pendulum will 

stop, but a whiff of air or a pull on the ropes will start it again, always 

with the same period, measuring out equal intervals of time. Bring it to 

Rome, and it will keep the same beat as in Pisa, by day as by night, in 

summer as in winter. This is Galileos great discovery: the pendulum pro¬ 

vides us with a natural way to measure time in a universal and homoge¬ 

neous way. It divides time into intervals of constant duration, unlike the 

day, the month, or the year, which are difficult to carry around and vary 

according to place and date. 

Between the fourth century BC, and the fourth century AD, over a 

period stretching eight hundred years, there flourished in Alexandria an 

extraordinary school of Greek mathematicians, starting with Euclid, the 
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legendary founder of geometry, and ending with Hypatia, probably the 

first woman to leave a name in mathematics. Their work was familiar to 

Galileo and to all the scientists of his time: they had explored essentially 

all the possibilities offered by the ruler and the compass, and no better 

instruments were available. The basic shapes of geometry still were those 

which could be constructed using only ruler and compass: lines and cir¬ 

cles, of course, but also the three conics, ellipse, parabola, and hyperbola, 

on which no progress had been made since the comprehensive treatise of 

Apollonius, written in Alexandria in the course of the third century BC. 

At about the same time, another great scientist, Archimedes, showed 

how to compute the areas of these curves, and also the volume of the 

bodies they generate by rotating around an axis. The technology in 

Alexandria was impressive as well, probably better than that which was 

available to Galileo. Many treatises on architecture and engineering have 

survived, and the renown of some of their realizations have crossed the 

bridge of centuries. The war machines Archimedes built kept at bay for 

three years the Roman army besieging Syracuse; the great beacon of 

Alexandria harbor could be seen from thirty miles at sea. 

Galileo does to time what the great geometers of antiquity did to 

space: he turns it into a homogeneous and measurable quantity. 

Whereas the Greeks had a well-established theory of space, which 

remained fruitful and essentially unchanged until the non-Euclidian 

geometries were discovered in the nineteenth century, they did not have 

a corresponding theory for time. They had a grasp of statics, not of 

dynamics. Every kind of motion, be it of an arrow flying toward its aim, 

a runner catching up with a tortoise, or a stone thrown in the air, was a 

problem for them. What force is driving the stone, once it has left the 

thrower s hand? How can the runner catch up with the tortoise? Mark 

the position of the tortoise and wait till the runner has reached it; but the 

tortoise has progressed in the meantime, so there is a new position to 

be marked, and an additional time to wait before the runner reaches it; 

but the tortoise has moved again, so that it will always be slightly 

ahead, and the runner should never catch up. This is Zeno's paradox, 

clearly a question posed by someone who has a better grasp of space 

than of time. 

Unlike geometers, the Greek physicists did not worry about the possi¬ 

bility of motion—they just took it as a fact—but they looked for its 

causes. The most influential work on the subject was the Physics of Aristotle, 

written in the fourth century BC. This was the main influence that 

Galileo would have to fight to establish the “new science,” as he called it. 

Aristotle’s physics is plain good sense: whenever something moves, 
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something else must be driving it, and whenever the driving force stops, 

the driven object must stop. It is not without its problems: how come the 

stone I throw does not fall directly to the ground as it leaves my hand? 

Why does it rise first, and then fall back? It is quite interesting to see tra¬ 

jectories of projectiles drawn in Galileos times: the projectile is shown to 

rise in an arc, and then to fall steeply, almost vertically, as if it had been 

dropped from the high point of the trajectory. This is in accordance with 

Aristotle's teaching, but it is not what actually happens: the second part 

of the trajectory is an arc, symmetric to the first one. It was clear enough 

why the stone would eventually fall, but much ingenuity was spent in 

explaining why it would have to rise first, and the air was suspected to 

play a role in carrying it. In short, the Greeks did not develop a theory of 

time and motion analogous to the theory they developed for space and 

shape. 

No wonder: in Greek philosophy, motion is synonymous with 

change, and hence with imperfection. Something truly perfect would not 

change, it would neither grow nor decay, it would be unalterable and 

eternal. In Platonic philosophy, perfect objects do exist; they constitute 

the only true reality: what we see during our lives are only poor reflections 

of these ideal objects, mere shadows on a wall. After our death, however, 

we will be allowed to contemplate the originals, to see good everlasting, 

truth everlasting, beauty everlasting, and we will carry some memory of 

them in our later lives. We do not discover mathematical truths; we 

remember them from our passages through this world outside our own. 

There is a famous scene in the dialogue Aleno, where Socrates leads an 

uneducated slave into “remembering" that the diagonal c of a rectangle is 

related to its sides a and b by the famous theorem of Pythagoras: the 

square of c is equal to the sum of the squares of a and b. It is well worth 

reading, and is an example of good teaching. Socrates never tells the 

slave anything; he simply asks him the right questions, in the right order, 

and lets him grope around until he suddenly sees the theorem, sees it as 

truly and self-evidently as if he had always known it. In fact, says Plato, 

Meno knew that theorem because he had already seen it, in the world of 

eternal truths which his soul had visited before it was sent back to Earth 

in the body of a slave. Socrates was wont to say that he held the same pro¬ 

fession as his mother, a midwife, because he delivered souls of the burdens 

they did not know they carried, just as she delivered pregnant women of 

their unseen progeny. 

In the Platonic tradition, truth is never discovered; it is remembered. 

Between two successive lives, the soul journeys through the realm of the 

dead and the unborn, to contemplate one more time the Ideas, perfect, 
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immutable, and eternal, which are the blueprints of everything it will 

meet during its travels on Earth. Even the word "theory” is a witness to 

that conception of knowledge: in Greek, theorem means "to see,” and 

theorem means “the things which have been seen.” Anything transient, 

such as physical motion, has no place among the Ideas; we can have no 

"theory” for it because we cannot have seen it before our lifetime. Only 

immobility can carry some kinship with the perfection of Ideas, and 

there is indeed in Greek physics a well-developed theory of rest, or equi¬ 

librium, in more scientific terms: the most famous instance is the theory 

of equilibrium of fluids, which allegedly sent Archimedes running naked 

through the streets of Syracuse in the first joy of discovery. 

If an object is left at equilibrium, on its own, it will stay there forever. 

To drive it away from equilibrium, we must exert some force on it, prefer¬ 

ably by direct contact; this force is the cause of the motion, and as soon as 

the cause disappears, the motion should stop. That is the intellectual 

framework in which Aristotle and his successors try to understand the 

various kinds of motions that surround us in the real world. This is not 

without difficulties; to explain the motion of the stars, for instance, 

which they imagine as luminous dots pinned on a gigantic sphere sur¬ 

rounding us and on which the Sun travels daily, they have to call in 

legions of angels or demons which push the exterior of the heavenly 

sphere to make it rotate. During antiquity and the Middle Ages, the 

world is seen as full of a bewildering variety of motions, of objects scram¬ 

bling back to equilibrium. There is no general theory; for each motion, 

some reason must be found why that particular object should have fallen 

out of equilibrium at that particular time, and how it will proceed to 

reach anew a state of rest. This is not an easy task, and some answers had 

evaded scientists for centuries. 

For instance, since Roman times it had been noticed that water could 

be pumped no more than ten meters high at one time; if higher reaches 

were sought, more pumps were needed, each one pumping water into a 

basin for the next one to pump from, but each pump could do no better 

than ten meters. The explanation given was that nature had some kind of 

distaste for vacuum, and would therefore tend to fill every empty space in 

the universe before reaching an equilibrium. Why this particular distaste 

would stop at ten meters, or why the universe would be content with 

filling the pumps up to ten meters' height, was beyond the reach of the 

most imaginative explanations. In short, until Galileo, physical motions 

are seen as perturbing the fundamental order of the universe, which is 

mirrored by classical geometry. Motion is disorder. The natural state of a 

physical object is to be immobile. 
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That day in the Pisa Duomo, Galileo sees the opposite: back and forth 

swings the great lantern, back and forth. It goes through the vertical 

position, runs up the other side, hesitates a moment, and then swings 

back. Eventually it will slow down; its swing will gradually wind down, 

keeping the same beat, until it finally hangs motionless, the smoke from 

the candles rising vertically to the gilded ceiling. Why should this posi¬ 

tion be more natural than this symmetric motion, back and forth, back 

and forth, with a majestic regularity? What is there to prevent it going on 

forever? Is it slowing down of itself, or are we witnessing the effect of fric¬ 

tion, exerted by the surrounding air and the suspending ropes? Would 

these not count as imperfections, against the perfection of an oscillatory 

motion, indefinitely going through the same positions at regular inter¬ 

vals? Certainly the air does not sustain the motion, as we can see from 

the trailing smoke of the candles: it must be that the motion sustains 

itself, and it is slowed down by its surroundings. If these could be cor¬ 

rected, the pendulum would beat forever, like the pulse of this great 

cathedral. And it would spin out, forever and ever, intervals of equal 

duration, which could thenceforth be used to measure time, just like fold¬ 

ing rules are used to measure lengths. 

Galileos theory of the pendulum—and we may use that word as the 

ancient Greeks did, equating theory to vision, because Galileo actually 

saw it that day in the cathedral, and all his subsequent work was to 

remember and understand what he had seen—consists first in the basic 

intuition that motion need not be from one equilibrium to another, that 

a pendulum will swing forever, pausing briefly twice a beat as it reaches 

the top of its trajectory before falling back again. If it eventually slows 

down and stops, it is because of various imperfections which have to be 

taken into account, the correction of which will lead, if not to perpetual 

motion, at least to prolonged life. The second great idea was that all oscil¬ 

lations of the same pendulum, large or small, have the same duration, 

depending only on its length (this is isochrony, as I mentioned earlier). 

For the first time in history, humankind had found a chronometer, an 

instrument which measured time with accuracy and was easy to carry 

about. Two pendulums of equal length, one in Paris and one in Rome, 

would have the same beat, regardless of the amplitude of their swing. A 

piece of string ten inches long is a simple chronometer. Just attach a 

weight to one end and let it swing from the other. One full beat lasts 

almost one second; there are sixty beats to the minute, and, if you are 

patient enough, 3,600 to the hour. A pendulum which is four times as 

long will be twice as slow: a string of one meter will have a half beat of 

one second. 
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This was a remarkable connection between geometry and dynamics. 

Shortly after, mathematicians would conquer time as they had already 

conquered space. The isochrony of the pendulum is not factually true; it 

is an idealization, as the straight lines and the circles we learn about in 

geometry are idealizations of what we actually draw on sand or on paper. 

An actual pendulum will beat more slowly as its swings become wider, as 

we can convince ourselves by setting two pendulums of equal length 

side by side and starting them from different positions. The duration of 

the beat—the period—increases with the amplitude; small oscillations, 

the ones which remain close to the vertical, have smaller periods than 

large ones. However, the discrepancy is very small as long as the oscilla¬ 

tions are kept small. The influence of the amplitude on the period starts 

making itself felt only for large deviations from the vertical. Of course, 

discrepancies which are very small in themselves add up in the course of 

a day or a week, and the only safe solution is to keep the pendulum 

swinging with exactly the same width, which is precisely what the mech¬ 

anism of grandfather clocks is designed to do, and why they have to be 

wound up in the first place. But Galileos idea is right, just as the idea that 

a straight line is infinite in both directions and has zero thickness is 

right. We all know that we cannot draw the line farther than the page 

allows, and we do not need a magnifying glass to know that it is as thick 

as the lead of the pencil we have drawn it with. But we understand the 

idea, and it is useful to us in building bridges and roads, and in drawing 

boundaries. Similarly, it is only for small amplitudes that pendulums 

behave according to Galileos prescription, but it is a good starting point 

for us to understand more general oscillations and to build timepieces. 

This is the true Galilean revolution. It is told that, after kneeling 

down in front of the tribunal to forswear the Copernican view that the 

Earth moves around the Sun, Galileo touched the ground while stand¬ 

ing up and said, “And yet, it moves!” He was speaking of the Earth, of 

course, but it may be said as fittingly of the pendulum, a humble object 

which his genius had turned into a mathematical idea, as sharp and 

fruitful as the idea of a circle. The idea of periodic motion was the miss¬ 

ing link between space and time. No longer could it be said that motion 

is ephemeral and transitory, a simple shift from one equilibrium to 

another: Galileos pendulum moves unchanging. There is no cause to its 

motion; it has no beginning and no end. Actual time, as we experience 

it, is bounded at both ends, by our birth and our death, or, if we probe 

deeper, by the birth and death of the universe. Not so, Galilean time, 

since his ideal pendulums keep beating forever. In this respect time is 

very similar to geometrical space, as defined by the great Alexandrines 
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since Euclid: they understood it as unbounded, although physical space 

certainly is bounded, either by the limits of the Earth, or by the heavenly 

sphere which surrounds it. Put in the middle of this unbounded space a 

Galilean pendulum, beating time like the lantern in the Pisa cathedral, 

and you have the modern universe, the framework of science to this day. 

Galileos idea also provides us with a natural unit to measure time by. 

As we saw, neither the year nor the day is satisfactory, for they vary with 

the position and the date; besides, these are large intervals of time, and it 

is not obvious how to measure smaller ones. But choose a particular pen¬ 

dulum, a pendulum ten inches long, for instance, and define the second 

to be its period, that is, the duration of one full beat. Defining the stan¬ 

dard unit of time in this manner is very similar to the way we used to 

define units of length; during the French Revolution, for instance, one 

meter was defined to be the distance between two notches on a certain 

rod made of an alloy of platinum and iridium. This precious rod was 

solemnly buried, together with two copies, on September 28,1889, in a 

vault at the Breteuil Observatory near Paris, together with the standard 

kilogram and six copies. More copies were carefully made, checked 

against the original, and sent to other places to make more copies, right 

down to schoolchildrens rulers. We could imagine the standard unit of 

time being defined in a similar way, as the half period of a pendulum one 

meter long for instance, which would be buried along with the standard 

units of length and weight, and somehow kept moving. This is not a 

practical definition, for in fact the period of a pendulum depends on the 

strength of the gravitational pull, and that changes with the geographical 

position, because the Earth is not a perfect sphere. Perfect copies of the 

standard pendulum would have different periods in different places. But 

let us pursue Galileos dream a little bit further. 

The problem of measurement is not completely solved by defining a 

unit. We must also show how to divide it into subunits. For units of 

length, this problem is solved by one of the earliest results of Greek 

geometry, a theorem attributed to Thales from Miletus, who is said to 

have predicted an eclipse of the Sun which occurred in 585 BC. It may 

well be that Thales benefited from the results of Babylonian and Egypt¬ 

ian science, and indeed this theorem is so fundamental to measurement 

that it must have been known much earlier. Essentially, it says that if you 

are able to multiply your unit by ten (that is, to replicate it ten times and 

place the resulting copies end to end on a straight line), then you are also 

able to divide it by ten. Of course, there is nothing special about the 

number ten in this result, and the same holds for other numbers, if you 

do not fancy the metric system. But for units of time, there is no theorem 
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of this kind: an hour is sixty minutes, to be sure, and if you can count 

minutes you can count sixty of them to make an hour, but this will not 

help you toward timing events that last less than one minute, like a 

hundred-meter dash. Measuring time with a pendulum provides an easy 

answer: if you want your pendulum to beat ten times faster, make it hun¬ 

dred times shorter. If a pendulum of one meter has a half beat of one sec¬ 

ond, a pendulum of one centimeter will have a half beat of one-tenth of a 

second. Such a pendulum may be hard to build, and harder to keep beat¬ 

ing, but this is the right idea; send scientists and watchmakers to work 

on it, and in a couple of centuries you will end up with the ultraprecise 

timepieces which adorn our wrists. 

Precision was something new to timekeeping. In geometry, it came as a 

matter of course. Archimedes, for instance, had written an essay Measur¬ 

ing the Circle, devoted to finding the exact value of the ratio P/D, where P 

denotes the circumference of the circle and D its diameter. This is the 

famous number TT; Archimedes proves that it lies somewhere between 

223/71 and 221/70, and gives a numerical procedure to compute it to any 

desired accuracy. Archimedes' procedure was perfected through the 

years, and in 1593 the French geometer Viete knew the first seven decimals 

7T = 3.1415926. Today better procedures and automated computations 

have yielded billions of digits of TT; in fact, we can now compute directly 

any given digit without bothering with the intervening ones. My point 

here is that our knowledge of IT is so precise that it has long since ceased to 

have any physical relevance. Already in Galileos time, to tell the difference 

between 3,1415926 and 3,1415927 would require that one have instru¬ 

ments to build circles and measure lengths within an accuracy of one part 

in one billion, way beyond the technical capacities of that time. There is no 

hope of ever checking experimentally the digits of TT beyond the first ten 

or so. The number TT itself, however, exists for mathematical, not physical, 

reasons, and has infinitely many digits, of which we know only the first 

fifty billion or so: there is no limit to precision in mathematics. After 

Galileo, the same principle will apply to chronometry. There is no more 

problem in describing very small durations, one thousandth of a second, 

say: it is simply the half beat of a pendulum one thousandth of a millime¬ 

ter long. Such a pendulum may be difficult to build, and even more to 

observe, but it raises no theoretical difficulty; it is an ideal object, as real as 

the thousandth digit of IT. Henceforth, in dynamics as in geometry, preci¬ 

sion is mathematical, that is to say infinite, and we will be able to carry 

computations as far as we wish. 

With this new degree of precision in measurement, new problems can 

be raised. To measure a length, one basically has to establish a coincidence, 
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that is, to bring two objects to the same location: both endpoints of the 

length to be measured must coincide with some graduation on a ruler. To 

measure a duration, one must establish a simultaneity, that is, to have two 

events occur at the same instant: the runner starts just as the pendulum is 

at the top of its swing, and crosses the end line just as it is at the top of 

another swing. But what does it mean that two events occur “at the same 

instant”? If both occur at the same place, or close by each other, the mean¬ 

ing is clear enough, but what if they happen far apart? So far apart, for 

instance, that they cannot be observed together? Galileo, kneeling in the 

Pisa cathedral, may well count the oscillations of the great lantern against 

the beat of his own pulse. But does it make sense to ask what is happening 

in China at the same time? Does simultaneity bear traveling? Can one 

imagine a slice of time through the universe, the lantern in Pisa frozen in its 

swing, the emperor in midstep, the planets in their orbits, the galaxies in 

their swirl, all caught at the very same instant? The whole history of the uni¬ 

verse would then be but a succession of such slices, as a motion picture is a 

succession of photographs. 

There would be no problem if, for instance, light propagated instanta¬ 

neously: then events observed from afar would occur at the very moment 

they are seen, and simultaneity would be easy to establish. But this is not 

the case, and then one needs to take into account the distance from the 

observer, the path of light and the speed of propagation. In other words, 

simultaneity cannot be established directly, like coincidence: a full- 

fledged theory of light is needed just to state that two events occurred at 

the same time (unless they occurred at the same place). For instance, if 

the universe is imbedded in the three-dimensional infinite space of 

Greek geometry, and if light propagates at a constant speed along 

straight lines, 300,000 km/s, say, then any event I observe now from a 

distance of 300,000 kilometers must have occurred one second ago. 

This is the kind of theory Galileo had in mind, the consequence of which 

is that, indeed, there is a global and universal meaning to simultaneity. 

An observer from Sirius, if he had a telescope sharp enough to see 

through interstellar space, the Earths atmosphere, and the dome of the 

Pisa cathedral, could watch the oscillations of the great lantern; they 

would have precisely the same duration for him as for the congregation, 

so that, for instance, they could serve to define a common unit of time on 

Sirius and on Earth. He would know also that the oscillations he was wit¬ 

nessing had taken place on Earth about 8.6 years before, and were there¬ 

fore simultaneous with certain events in Sirius he could name. Piecing 

together such observations, spread over a long period of time, one could 

arrive at a picture of a portion of the universe as it was one thousand 
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years ago, or one million years ago—the longer the delay, the larger the 

region covered. 

So the idea of the whole universe at a given instant does make sense, 

and it certainly was in Galileos mind, as it is in ours. One can imagine, 

for instance, every astronaut in every galaxy carrying a clock, and each 

clock showing the same date and time—UST, Universe Standard Time. 

Whenever two astronauts meet, and wherever they come from, their 

watches would show the same UST. A traveler leaving Earth in a space¬ 

ship will find on his return that he has aged precisely as much as those 

who have stayed home, and the watch he is carrying would show exactly 

the same time as the one he has left behind. 

This, of course, is in sharp contrast with the modern theory of light, 

due to Albert Einstein, called special relativity: the space traveler will 

find on his return that the watch he is carrying is slow with respect to 

the watch he has left, and that more time has elapsed for the people on 

Earth than for him. Clearly, one cannot define any UST in this theory, 

and neither can one decide whether two events which happened at 

different places are simultaneous or not. How could the space traveler 

reconcile his calendar with the one on Earth? He left two years ago (his 

time), or twenty years ago (Earth time); so far, so good. The traveler and 

the people who stayed can agree on that, because they were together as 

the trip began, and as it ends, they can simply compare their watches. 

But suppose the traveler is told his mother died three years ago; does it 

make sense for him to be asking himself, “What was I doing when it 

happened?” In fact, within the theory of relativity, it does not make 

sense: simultaneity can be established only for events which occur at the 

same location. There is no way to carry time from one place to another. 

Suppose I set my watch to some clock, which is supposed to deliver 

UST, and then travel to another place where I set a second clock to my 

watch. If I then go back to the first clock, I will find it no longer agrees 

with my watch! Can I claim that the second clock still shows UST? The 

discrepancy is extremely small (in fact, cannot be detected) as long as 

the various velocities involved stay safely away from the speed of light. 

But it becomes significant (and has to be taken into account) as soon as 

this speed is approached, which happens quite often at the subatomic 

level. 

Galileos theory and Einsteins hold true at different scales. Certainly, 

science did not require anything beyond Galileos theory of space and 

time until it started investigating electromagnetic waves, including light, 

toward the end of the nineteenth century. Until then, the idea of some 

Universe Standard Time was a perfectly sound one, and it is still good 
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enough for most of today s science, as long as one keeps away from very 

large scales (cosmology) or very small ones (subatomic particles). 

Constructing a timepiece that would keep Paris (or Greenwich) time 

while being carried around the world, sometimes in less than comfort¬ 

able conditions, very quickly became a major technical challenge. It was 

not a question of putting Galileos ideas to the test, but of determining 

the position of ships at sea. Two numbers were needed, latitude and lon¬ 

gitude. The former was determined by measuring the maximum height of 

a star, or of the Sun, above the horizon, and comparing it with astronom¬ 

ical tables which give this height as a function of the latitude and the 

date. It was not an easy matter, it required precise sighting instruments 

and reliable numerical tables, but the appropriate techniques had been 

inherited from classical antiquity and developed by the Arabs. Determin¬ 

ing the longitude, on the other hand, was an unsolved problem. Theoret¬ 

ically, it was easy enough: just clock the precise time when the Sun 

reaches it peak. This is noon, at the spot where you are; if you happen to 

know the time it is in Paris (or Greenwich) at that time, then the difference 

will tell you precisely how far away you are from the Paris (or Greenwich) 

meridian; that is, you will have the longitude. 

Before radio was invented, the only way to know Paris time was to 

carry it around with you, in the hope that your watch was neither fast 

nor slow. In July 1714, the British Parliament offered a prize of £20,000 

for a method of determining longitude to an accuracy of half a degree— 

sixty nautical miles. This amounted to building a chronometer which 

would not lose or gain more than two minutes. The prize was finally 

won by John Harrison, whose marine chronometer H4 crossed the 

Atlantic in 1762, having lost less then five seconds in eighty-one days at 

sea. Just imagine the conditions on board a ship in those times, the per¬ 

petual rocking motion, the violent shock when a wave broke against the 

hull or when a gale filled the sails, the changes in temperature, humid¬ 

ity, and pressure between the Thames and the American coast. Harrisons 

chronometer was a miracle of precision: keeping time within five seconds 

meant measuring longitudes within 1.15 nautical mile. It meant being able 

to draw accurate charts of the world, to locate precisely dangerous 

coasts and isolated islands, and it was well worth the prize, which was 

finally, and not without trouble, awarded to Harrison. But it was also a 

confirmation of Galileos theory of universal, or absolute, time: if you 

carry a perfect watch around the world, it will still be on time when it 

gets back. 

Let us now investigate how Galileos theory of the pendulum was used 

to devise accurate watches, as we know them today. This will help us gain 

M 



a better understanding of Aristotelian physics, and of the revolution 

Galileo brought about. 

The earliest timepieces, of course, were the various kinds of sundials 

that projected the trajectory of the Sun during the day: the position of 

the shadow gave the hour, and its length gave the date. They were 

unsuitable for measuring anything smaller than a quarter of an hour, 

and in addition they did not work if the Sun was hidden. So, during 

antiquity and the Middle Ages, other instruments were developed, 

based on the idea of measuring the length of time which elapses as 

some system goes from one state to another, just as Aristotelian physics 

would suggest. It could be sand, or water, flowing from an upper cham¬ 

ber to another: this gives an hourglass, or a clepsydra. It could also be a 

set of weights falling down: this is the principle of weight-driven clocks. 

All these timepieces made use of transitory motions, which have a 

beginning and an end, and which have to be restarted by human inter¬ 

vention when they have stopped: the clepsydra must be refilled, the 

hourglass must be turned over, the weights must be drawn up. This is 

not to say that these were rudimentary instruments: on the contrary, 

they were often built with great ingenuity, and many technological 

problems had to be solved along the way. In a clepsydra, for instance, 

the level of water in the upper chamber must not be allowed to drop; 

otherwise the downward flow would slow down, and the clepsydra 

would keep uneven time. As these timepieces were perfected, more and 

more was required of them, and toward the end of the Middle Ages, 

clocks were built which showed the date, the phases of the Moon, and 

the position of the Sun in the constellations. 

However, all these instruments remained imprecise. Flowing water or 

falling weights will not divide time in perfectly equal intervals. If you 

have a pendulum, it is easy to measure out equal time intervals: just count 

the beats. But if you have a clepsydra, or an hourglass, performing the 

same task becomes much more difficult: you would have to ascertain that 

the same amount of water has flowed down, or that the weights have 

fallen an equal height. This is the kind of problem that Galileo met when 

he performed his famous experiments on falling bodies. He used a clep¬ 

sydra, and since it was impossible to measure small intervals of time, he 

slowed down the falling motion by the simple device of having spherical 

balls roll down a gentle slope instead of dropping them from a height. In 

his own words, “As for measuring time, we did it with a large bucket of 

water, which we hung up at a certain height, and from which a trickle of 

water flowed by a small tube welded to the bottom into a small glass, all 

the time the ball was moving. The quantities of water were then weighed 
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on very precise scales, and the differences and proportions of weights 

yielded the differences and proportions of times.”1 

One can easily imagine the precision of such measurements, espe¬ 

cially since the motions, even after being so ingeniously slowed down, 

lasted no more than a few seconds. In fact, in Galileos work, the new laws 

of physics are supported more often by mathematical or philosophical 

arguments than by experiments, the latter being so imprecise that they 

are either inconclusive or in contradiction with the theory. For instance, 

in a letter dated March 13,1641, Vincenzo Renieri informs Galileo that he 

has climbed the famous leaning tower in Pisa, that he dropped from the 

top two balls of the same size, one in wood and the other in lead, and that 

the second one fell faster: upon its arrival, the wooden ball was still 

almost three yards from the ground. Between 1640 and 1650, Giambat¬ 

tista Riccioli performed in Bologna a series of experiments, and found 

that two clay balls with the same size, one weighing ten ounces and the 

other twenty, dropped from 312 feet, did not reach the ground at the 

same time: there was a fifteen-foot difference between them. All this, of 

course, was in seeming contradiction with Galileos laws, which asserted 

(among other properties) that, in a vacuum, all heavy bodies fall with the 

same speed. The differences pointed out by Renieri or Riccioli were due 

to air friction, and would certainly have seemed quite troubling at a time 

when the existence of air as an independent medium was far from 

obvious. 

Galileo got in trouble with the pendulum as well. Today, it is clear that 

his assertion that all beats should have the same duration, regardless of 

their amplitude, is just wrong. In fact, the duration of the beats increases 

with the amplitude, and it is quite easy to check. Take a rod, suspend it 

from one end, and you have yourself quite a decent pendulum. Now push 

the other end farther and farther away from the vertical, even above the 

horizontal, giving the pendulum greater and greater amplitude; the dura¬ 

tion of the beats will noticeably increase. In fact, for the greatest possible 

amplitude, when the rod is upside down, the rod will be in equilibrium, so 

that the pendulum does not beat at all; a mathematician will see it as a 

beat with infinite duration. This equilibrium is unstable: touch the rod 

ever so slightly and it will start falling, slowly at the start, then faster and 

faster; by arranging the initial fall to be very slow, we can get as slow a beat 

as we wish. So the truth of the matter is that the period of the pendulum, 

that is the duration of the beats, increases to infinity as the initial position 

approaches the upright one. Already in 1644 Mersenne had pointed out 

i. Discorsi (Leyden: Elsevier, 1638), second day. 
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that the period increases with the amplitude. He had done it by the simple 

device of constructing two identical pendulums and starting them simul¬ 

taneously from different angles: it was immediately apparent that the 

wider angle gave a slower beat. The difference, which is trifling as long as 

both amplitudes are small, becomes significant when they are large. How¬ 

ever, Mersenne also checked that the period did not depend on the mate¬ 

rial or the weight of the pendulum, and that it was proportional to the 

square root of its length, in accordance with Galileos laws. 

And yet, Galileo clung to the isochrony as if it were an experimental 

truth. He saw it as a confirmation of the laws he had discovered for the 

motion of falling bodies. In the Discourses, he explains how two balls 

suspended from two threads of equal length will keep the same beat, 

although one of the balls is in lead and the other in cork, and the first 

one will keep beating much longer than the second. He assures us that 

he has started the pendulums from a great variety of positions, up to 

almost horizontal ones, and that he has observed small and large ampli¬ 

tudes without detecting substantial changes, and he provides this as 

evidence that all bodies will fall at the same speed, whatever their 

weight, correction being made for air friction, which stops the light ball 

faster than the heavy one. For Galileo, the real impact of pendulum 

isochrony was to support his theory of motion, and this was much too 

important a conclusion to let mere facts get in the way; this probably 

explains his relative blindness to experimental results when they did 

not fit the theory. Galileo was neither the first nor the last to have let 

theory take precedence over experiments. The relation between theo¬ 

rists and experimenters in science has always been an uneasy one. 

Einstein himself, when presented with experimental results which 

seemed to contradict the theory of relativity, quipped famously, “The 

theory is good.” Galileo also had a theory, and pendulum isochrony 

happened to be an essential part of it; even if the experimental results 

were not so hot, he had found a mathematical proof to reassure himself 

and convince skeptics. 

Unfortunately, Galileos proof is wrong. He first raises an interesting 

geometrical question. Suppose I want to build the fastest possible slide 

connecting a point A above the ground to a point B on the ground: what 

would its shape be? In other words, I let a weight slide from A without 

initial impulse all the way down to B, pulled by its own weight; clearly, if 

frictions are neglected, the time fromA to B depends only on the shape of 

the slide, and I want the shape to be optimal in the sense that I want this 

time to be the smallest possible. I can guess what this optimal shape will 

look like: the slope should be steeper near A, so that the weight picks up 
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speed at the beginning, and it should end up horizontally at B. Galileo 

went one step further, and asserted that the optimal shape is an arc of a 

circle joinings! and B, which is wrong; from there he went on to prove 

that the pendulum is isochronous, which is wrong also. 

As is often the case in mathematics, the mistake finally turned out to 

be fruitful, for it showed that the questions Galileo had tackled were 

more delicate than could have been assumed at first glance. Some of the 

greatest scientists of the time tried their hand at them. Does there exist 

a truly isochronous pendulum, the period of which would really be 

independent of the amplitude? What is the optimal shape for a slide 

between two given points A and B? These can be stated as two different 

problems in geometry. The first one consists of finding a curve such 

that the time it takes a point sliding on the curve (or a ball rolling on it) 

to reach the low point does not depend on the starting point. The sec¬ 

ond one consists in finding a curve between A and B such that a point 

sliding down from A will reach B in the smallest possible time. In fact, 

Galileo was right in thinking that both curves are the same, not circular 

arcs, as he believed, but arcs of a different curve, one of the most inter¬ 

esting discoveries of the seventeenth century, the roulette, as its inven¬ 

tors called it, or cycloid, as it is called nowadays. Pascal describes it like 

this: “The roulette is such a common curve that, after the straight line 

and the circle, none occurs as frequently; and it is so frequently under 

the eyes of everyone that one wonders why ancient writers have not 

considered it, since nothing about it can be found in their works: for it 

is nothing else but the path which a nail in a wheel travels in the air as 

the wheel rolls on the ground, taken from the moment the nail starts 

rising from the ground until the motion has brought it back down, the 

wheel having turned one full circle: assuming that the wheel is a perfect 

circle, the nail a point on its circumference, and the ground perfectly 

level."2 

As Pascal points out, the ancient Greeks did not have the mathemati¬ 

cal means of studying this curve; it cannot be constructed using only 

compass and ruler, and it cannot be described by an algebraic equation. 

To study the roulette, one had to wait for the new methods of calculus 

which were developed during the seventeenth century, and which culmi¬ 

nated in the work of Gottfried Leibniz and Isaac Newton. The first 

important result is probably due to Roberval, who proved in 1638 that 

the area beneath one arc of the roulette is three times the area of the gen¬ 

erating wheel. Galileo himself did not have the mathematical means to 

2. History of the Roulette (1658). 
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i. th e roulette This is a wooden roulette, built in the eighteenth century, and 

now in Florence, in the Museum ofthe History of Science. It serves to dem¬ 

onstrate the two main mathematical properties of the roulette. The first one is 

isochrony. A ball let loose on the railings will oscillate, by rolling down to the 

bottom, climbing up the opposite side, and falling back again to the bottom and 

up to its starting point. It behaves like a pendulum, but the period of its oscil¬ 

lations is independent of their amplitude. This is demonstrated by dropping 

simultaneously two balls on opposite sides from different heights and checking 

that they meet precisely at the bottom (the lowest point, in the middle). The 

second property is brachistochrony: rolling down the roulette is the fastest way 

to reach the bottom. This is demonstrated by dropping two balls simultane¬ 

ously from the top right, one on the roulette and the other on the straight ledger: 

the one on the roulette reaches the bottom first. 

There is a third mathematical property which can be used to construct rou¬ 

lettes. Mark a point M on a circle (for instance, put a spot ofwhite paint on a 

bicycle tire), and roll the circle on level ground (ride the bicycle); the point M (the 

spot of paint) will delineate a roulette in the air. This roulette will be belly up 

instead of belly down (this is considered the right way to look at roulettes, so the 

wooden one in Florence is an inverted roulette); its top (highest point on the 

arch) is where the point M is on the top ofthe wheel, while its base is where the 

point M hits the ground. 

identify the roulette as the true solution to the problems he had raised, 

although he was acquainted with it. That honor fell to Christiaan Huygens, 

and the Bernoulli brothers, Jacob and Johann, who showed that the 

inverted roulette (with the belly down) was the solution to both prob¬ 

lems. Huygens showed in 1659 that the roulette-shaped pendulum 

would be truly isochronous (for a physical realization, let such a ball 
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oscillate back and forth on an inverted roulette), and the Bernoullis 

showed in 1697 that a slide shaped like an inverted roulette would be the 

fastest route between two given points. Their proofs are landmarks in the 

history of the calculus of variations, a new mathematical discipline 

which we will describe at greater length in the forthcoming chapters, and 

which turned out to be an essential tool for the development of classical 

mechanics according to Galileos ideas. 

These theoretical advances would also lead to technological progress, 

with the result that, for the first time in history, scientists could look for¬ 

ward to new and accurate ways of measuring time. In 1637, in a letter to a 

Dutch correspondent, Galileo describes a clock, built on the pendulum 

principle, “so accurate that it is able to count time intervals, however 

small, without any error, in any place and any season.” As usual, these 

2. design for a pendulum clock Drawing by Vincenzo Galilei and Vincenzo 

Viviani (1659), now at the Museum ofthe History of Science in Florence. 
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3. huycens’s design for a clock based on the isochrony of the roulette. 

From his book Horologium Oscillatorium (Paris, 1673). 

claims were somewhat premature; Galileo had no further interest in 

chronometry, and it is not known whether he ever had a pendulum clock 

built. There are some drawings for a pendulum clock by his son Vincenzo 

and his collaborator Vincenzo Viviani, but the instrument is quite rudi¬ 

mentary. It is Huygens who realized Galileos dream and invented the 

modern mechanical clock. 

Huygens devoted a large part of his life to the theoretical and practical 

problems connected with building pendulum clocks, and in 1673 he pub¬ 

lished a beautiful book on the subject called Horologium oscillatorium, 

that is, On pendulum clocks. With Huygens, theory and practice walked 

hand in hand; it was not enough for him to solve a problem mathemati¬ 

cally, he also wanted to implement the solution with existing technology. 

For instance, as we have just seen, he had discovered that a roulette¬ 

shaped pendulum would be truly isochronous, that, is, that the period 

of its oscillations would not depend on their amplitude. A desirable 

property indeed, and one which the circular pendulum does not possess— 

but how could one build such a pendulum? A circular pendulum is sim¬ 

ple enough: you just hang a weight from a string. But how does one 

impose a roulette-shaped trajectory to the weight? Huygens came up 

with a truly remarkable solution. He showed that, instead of letting the 

string dangle freely, it is enough to hang it between two curved blades, 

around which the string will partly wrap itself, thereby shortening its 

length. If the blades are appropriately shaped, the free end of the string 
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will move along a roulette. Finding the appropriate shape for the blades 

is another mathematical problem which Huygens solved brilliantly, com¬ 

ing up, of all curves, with another roulette. 

In 1657 Huygens was among the first to build a pendulum clock. In 

1659 he built another clock, where the oscillator was no longer a pendu¬ 

lum, but a balance wheel, called back to its equilibrium position by a hair¬ 

spring. But one has to keep the oscillations going; for that purpose 

Huygens invented a mechanical device called the escapement, which 

gives the balance wheel a small kick as it goes through equilibrium, but is 

not in contact with it at other times. The balance wheel and the escape¬ 

ment are standard features on all mechanical watches to this day. Despite 

his best efforts, however, which included investing a lot of his own 

money, Huygens could not realize his own ambition, namely to build a 

marine chronometer able to withstand the conditions at sea and keep 

time accurately enough to measure longitudes. Of course, there were 

major difficulties to overcome: the desired timepiece would have to be 

insensitive to changes in temperature (whereas a plain pendulum with a 

steel rod slows down by half a second per day when the temperature rises 

by one degree) and to changes in gravity across the Earth (whereas the 

same pendulum, brought from the pole to the equator, ceteris paribus, 

will slow down by 226 seconds per day). As we have seen, this objective 

would not be reached until half a century later, by John Harrison. But 

Huygens remains the founder of modern chronometry, one of the few 

examples in history of a major technological advance proceeding from 

scientists and theoreticians instead of practitioners and professionals. 

To appreciate Huygens’s contributions, it may be worthwhile to back¬ 

track a few years, and to witness the efforts of Galileos contemporaries to 

find a pendulum with a one-second beat. Indeed, when scientists around 

Europe decided to check Galileos laws of motion for falling bodies, and 

to measure the associated physical constants, the need arose immedi¬ 

ately for an accurate timepiece. The whole question boils down to finding 

the distance that a falling body drops during the first second after it is 

released. But how does one measure out one second, knowing that it is 

the 1/86400 part of a day? After Galileo, but before Huygens, the best 

answer consisted in building a pendulum which would beat exactly 

86,400 times during one day. Mersenne got interested in the problem, 

and in 1636 determined that the correct pendulum would have a length 

of 3 feet (French style, with 32.87 cm to the foot). He then used his pen¬ 

dulum to measure the distance traveled during the first second of free 

fall, and found 12 feet, whereas Galileo had found a little more than half 

that amount, which goes to show how imprecise his experiments were. 
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Some years later, the Reverend Riccioli in Bologna tried his hand at the 

same problem; he built a pendulum of 3 feet, 4.2 inches (Bolognese style, 

with 29.57 centimeters to a foot) and, together with nine other Jesuit 

fathers, counted all the oscillations for a full day, namely May 12,1642. 

They counted 86,999 oscillations and deduced that the correct pendu¬ 

lum would have a length of 3 feet, 3.27 inches. Riccioli then proceeded to 

find 15 feet for the distance traveled during the first second of free fall, 

more than twice as much as Galileo. 

We are very far from these heroic times. The second today is defined, 

with an accuracy of one part in ten billion, as the duration of 9,192, 

631,770 periods of the radiation emitted by an atom of cesium 133 during 

the transition between two hyperfine levels of the fundamental state, and 

there are timepieces which enable us to actually reach that level of accu¬ 

racy. This may be Galileos final vindication. The period of a real pendu¬ 

lum depends on its amplitude, although Galileo claimed the contrary; 

one full century of effort was needed before his ideas could be used to 

build a reliable timepiece; his own measurements were inaccurate; and 

his theories relied more on their inner coherence and his scientific pres¬ 

tige than on experimental evidence, if there was any. But today we have 

found an ideal pendulum, one which confirms Galileos intuition, and we 

use it to measure time by counting the beats. This pendulum is not 

manmade; it is a wave of light, in accordance with the great intuition of 

Huygens, who was the first physicist to claim that light consists of waves 

and not of particles, and who made the first systematic study of waves 

and vibrations. 

Even without its physical realizations, as chronometers or light 

waves, Galileos ideal pendulum had considerable impact on the history 

of science. It turned time into a homogeneous quantity that could be 

divided into equal pieces, just like a length or a weight. These parts could 

be counted, and in this way various lengths of time could be compared 

and measured. From that moment on, mathematics entered the picture. 

Galileo discovered the mathematics of time, as the ancient Greeks 

discovered the mathematics of space. 
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(CHAPTER 2) 

The Birth of Modern Science 

the scope of mathematics extends far beyond geometry, and 

reaches to the very heart of reality. This was Galileos great discovery, and 

he has recorded it for posterity: “Philosophy is written in that gigantic 

book which is perpetually open in front of our eyes (I allude to the uni¬ 

verse), but no one can understand it who does not strive beforehand to 

learn the language and recognize the letters in which it is written. It is 

written in mathematical language, and its letters are triangles, circles, 

and other geometrical figures, and without these means it is humanly 

impossible to understand any of it; without them, all we can do is to wan¬ 

der aimlessly in an obscure labyrinth.”1 

Even today, four centuries after Galileo, one still wonders why math¬ 

ematical concepts, related by equations and computations, are able to 

mimic and predict the behavior of physical systems in the real world. 

In i960, the physicist Eugene Wigner wrote a famous paper, “On the 

Unreasonable Effectiveness of Mathematics in the Natural Sciences.”2 

There should be a deep gap between the mathematical world, inhabited 

by ideas and concepts, with logical criterions for truth, and the physical 

world, made of objects and events, with no other criterion of truth than 

the evidence of our senses. How can these two worlds be connected? 

How can a mere calculation, or a logical argument, constrain the paths 

of galaxies or atoms? Inversely, how can consciousness and intelligence 

emerge in a purely material world? 

And yet, it is so. Galileos discovery marks the beginning of modern 

science. He has shown the way. All the scientists of the seventeenth century 

follow his path. Let us quote Rene Descartes, for instance, describing his 

1. II saggiatore (1623), chap. 6. 

2. Wigner, "On the Unreasonable Effectiveness of Mathematics in the Natural 

Sciences,” Communications in Pare and Applied Mathematics 13 (i960): 1-14. 



years of study: “I was particularly fond of mathematics, where I found the 

arguments reliable and self-evident; but I did not notice at that point the 

true use of mathematics, for I thought they applied only to mechanical 

arts, and I wondered that nothing of greater import had been built on 

such firm and assured foundations.”3 

A few years later, Descartes himself would unify geometry and 

algebra, thereby creating modern mathematics, which turned out to 

be precisely the right tool to develop Galileo's ideas into a full-fledged 

theory of motion. Descartes' great invention, analytical geometry, 

translated every problem in geometry into a problem in algebra, 

which could be solved by computations. No longer was mathematics 

split into geometry and algebra, it became a unified theory. Mechanics 

is the study of motion, and at the end of the seventeenth century, as 

we shall see, it became analytical also, meaning that it was reduced to 

algebra: every problem in mechanics could be stated as a problem in 

algebra, the equations of motion could be written directly, and find¬ 

ing the motion meant solving the equation. In the three centuries 

since Descartes, geometry and mechanics were reduced to computa¬ 

tion, and the proper procedure to solve a problem has been to try to 

solve the corresponding equation. Only with Henri Poincare, at the 

eve of the twentieth century, did the limits of this approach become 

apparent. 

The mathematics of Descartes were the proper tool to express and 

develop Galileo’s ideas. But why are the right mathematics so powerful? 

An answer can be found in Bertolt Brecht’s Life of Galileo,4 in a lively and 

funny exchange between Galileo and Cardinal Barberini, soon to become 

pope under the name of Urban VIII: 

BARBERINI. Are you so sure, my dear Galileo, that you astronomers are not 

just trying to make your own life easier? You have in mind circles, or ellipses, 

and uniform speeds, simple motions which your brains can understand. 

Imagine that it had pleased God to have His stars move like that. (Hisfinger 

draws in the air a very complicated path with an irregular speed.) What would 

happen to your calculations? 

GALILEO. Your Eminence, if God had constructed the world in this way, (He 

retraces Barberini’s path) then he would also have constructed our brains that 

way (He retraces the same path), so that these paths would appear to us to be 

the simplest ones. I believe in the power of reason. 

3. Discours de ia mithode (1637), chap. 1. 

4. Scene no. 
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BARBERINI. I don’t think the power of reason is good enough. See how he 

keeps silent. He is too polite to reply that he doesn’t think the power of my 

reason is good enough. 

Barberini, who by the way was an admirer and a friend of Galileo, 

raises an extremely interesting question: what do we mean by simplicity 

in science? What is a simple explanation, and why should physical laws 

be simple? In astronomy, for instance, there have been many different 

models of the universe, all claiming to be simple. During antiquity and 

the Middle Ages, going around a circle at constant speed was held to be 

the simplest of all possible motions. Moving along a straight line at 

constant speed was not considered possible, for the universe was 

thought to be surrounded by a huge solid sphere on which the stars 

were fixed, so that such a motion would necessarily end by hitting the 

boundary. It took a long time before a uniform linear motion was 

accepted as physically relevant, and even longer before it was consid¬ 

ered to be simpler than a circular motion.5 Even Galileo thought in 

terms of circular and uniform motions, and the first one to state explic¬ 

itly that linear and uniform motions are the simplest of all was 

Descartes. He was also the first to state that a point traveling in space, 

free from any outside influence, would move at constant speed along a 

straight line.6 

But for many centuries, circular uniform motions were considered the 

simplest of all, and for the sake of this false simplicity, astronomical sys¬ 

tems, such as the one inherited from Ptolemy and transmitted by the 

Arabs, tried to combine such motions to approximate the actual motions 

of planets and stars in the sky: imagine a wheel carrying another wheel, 

itself carrying a third one which carries the planet, all rotating at different 

speeds. The end result is far from simple. After listening to a thorough 

exposition of the Ptolemaic system, King Alphonse X of Castile, nick¬ 

named the Wise, is reported to have said that if Our Lord had done him 

the honor of consulting him before creating the world, he would have 

come up with some good advice. 

For the sake of simplicity, Kepler did away with all these uniformly 

rotating wheels, and put the Sun squarely at the center of the universe. All 

the planets and the Earth itself rotate around the Sun with variable speeds, 

on elliptical trajectories: they accelerate as they get closer to the Sun, and 

they slow down as they pull away from it. For the sake of simplicity again, 

5. From here on, “uniform” will mean “moving with constant speed"; "linear" will 

mean “moving along a straight line”; and “circular” will mean "moving along a circle.” 

6. This is usually referred to as “inertial motion.” 
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Newton replaced Keplers experimental laws by a deeper, mathematical 

one, for celestial bodies orbiting around the Sun, but for much more gen¬ 

eral situations as well. Unfortunately, this new-found simplicity turned out 

to be an illusion: Newtons law can lead to extraordinarily complicated 

motions. In the most important cases the equations of motion cannot be 

solved, and such basic questions as the long-term stability of the solar sys¬ 

tem remain unanswered to this day. Last but not least, it is also for the sake 

of simplicity that Einstein eventually did away with Galileos idea of univer¬ 

sal time. In Einsteins theory of general relativity, there is no longer any 

clear-cut distinction between space and time. There is instead a general 

geometry of space-time, giving rise to mathematical relations which include 

Newtons law of gravity as a special case. So we have gone from circular 

motions to elliptical ones, and then to mathematical relations of steadily 

increasing sophistication. Is that really the path to simplicity? Barberini s 

point is well taken: what do scientists mean by a simple explanation? 

In the beginning of the fourteenth century, a Franciscan friar, William 

of Ockham, provided a first answer to this question. He stated a general 

principle which is known today as “Ockhams razor,” because the implicit 

advice it carries is to cut out from our explanations everything we can 

remove without hurting the essence of the argument: “Concepts should 

not be multiplied beyond what is needed.” Or again, “There is no point 

in doing with more what can be done with less.” The argument by which 

the case at hand follows from general and accepted principles is always 

stronger than the one that devises new and untried explanations for a 

very particular situation. 

The emperor Napoleon once asked the great astronomer Pierre 

Laplace, who had just published a vast treatise on celestial mechanics, 

what place he had left for God in cosmology. “Your Majesty,” answered 

Laplace, “I found no need for this assumption.” This is a beautiful 

instance of using Ockhams razor. Note that Laplaces answer is less obvi¬ 

ous than it seems: Newton, for instance, needed this assumption, for he 

thought that the planets would eventually slow down on their path, or be 

diverted by small perturbations, so that once in a while God's hand 

would put them back on track. Not so Laplace: he found that all known 

motions of celestial bodies could be explained by applying Newtons law 

and performing the necessary calculations. To formulate this law one 

needed the Galilean framework of space and time, plus the mechanical 

concepts of mass and force, and Laplace very rightly felt that as long as 

they proved sufficient to explain natural phenomena, every other princi¬ 

ple, such as the existence of God and his goodwill toward men, would be 

superfluous and hence metaphysical, beyond the domain of science. 
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Two centuries later, experimental evidence had accumulated that 

could not always be accounted for by Galilean mechanics; there was, for 

instance, a troubling discrepancy in the orbit of Mercury, the closest 

planet to the Sun. The planetary orbits change throughout the centuries, 

the main change being a very slow rotation around the Sun (such a rota¬ 

tion could not be seen if the orbits were circles, but, remember, they are 

ellipses). This rotation can be partly explained by the attraction of the 

other planets: the main force exerted on each planet is due to the Sun, 

but corrections must be made for other celestial bodies, which also exert 

an attraction on the planet. In the case of Mercury, however, this leaves 

forty-three seconds (of arc, not of time) per century unaccounted for, a 

trifling amount, but well within the accuracy of astronomical observa¬ 

tions. New concepts were introduced by Einstein which accounted for 

this and other facts, and a new theory of space and time replaced the 

Galilean framework: this is the theory of relativity. So it finally turned out 

that new concepts were needed after Laplace, which probably would have 

surprised him very much, but Ockhams razor was still effective: Einstein 

introduced no more concepts than were absolutely necessary to account 

for known phenomena. 

In fact, Newton himself says so in book 3 of his great work, published 

in 1687, the Mathematical Principles of Natural Philosophy. Here are the 

rules he lays down for the scientific method: 

1. No other causes must be admitted but those which are necessary to 

explain the facts. 

2. Thus, effects of the same kind must always, as far as possible, be attrib¬ 

uted to the same cause. 

3. Properties of objects which are not susceptible of variation, either of 

increasing or of diminishing, and which hold for all the objects one can 

experiment on, must be regarded as holding for all objects in general. 

4. In experimental philosophy, the propositions which can be derived by 

induction from the facts must be regarded as true, or close to the 

truth, notwithstanding assumptions to the contrary, until some more 

facts confirm them entirely or show that there are exceptions. For no 

assumption can weaken an induction from experience. 

Even today, after several centuries and scientific revolutions, there is 

nothing to change in these rules. Newton is a genius; he expresses deep 

thoughts in a concise way, very far, as we shall soon see, from the lyrical 

outpourings of Maupertuis. Newton knows that science is a chain con¬ 

necting theory and experiments, and he pulls on the chain to check that 
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it is unbroken. The four rules he states are a recipe for good science. The 

first two are an elaboration of Ockhams razor: do not introduce new 

concepts and principles if they are not needed, and use the old ones as far 

as they will go. The third rule is a principle of uniformity in nature, very 

similar to Ockhams razor: there is no reason to suspect that what you do 

not see is so very different from what you see. Even before one had seen 

the other side of the Moon, it would have been unreasonable to think it 

was covered with snow, or blue cheese. Newton gives other examples 

where this principle of homogeneity operates: “the breathing of humans 

and animals, a stone falling in Europe or in America, the light of a fire 

and of the Sun”; in each of these pairs, the phenomena must be thought 

of together. There is no reason to suspect that breathing is different in 

humans and in animals, or that stones will not fall in the same way in 

different places, or that light will behave differently if it is emitted by the 

Sun or by a fire. 

Newtons last rule set the boundary between theory and experiment. 

A theory must arise by induction from the facts, it can never follow from 

other assumptions (for instance, that nature strives to achieve a certain 

purpose). It will be accepted only on provision, for the time being, until 

new experiments (not new assumptions) show its limits, in which case it 

will make way for a new theory. This—in 1687 yet—was an astonishingly 

modern view of science, very similar to the one Popper put forward in the 

middle of the twentieth century. Perhaps Newton put more emphasis on 

thrift, on using concepts and principles sparingly. If there was no regu¬ 

larity or uniformity in nature, if different explanations were to be found 

for the breathing of animals and for the breathing of humans, if one 

needed a theory for stones falling in Europe and another one for stones 

falling in America, causes would multiply without end, and no systematic 

knowledge would be possible. 

It is a remarkable fact that this is not the case. Nature is no intellectual 

spendthrift, and a great many individual phenomena can be explained 

with very few general concepts and principles, connected by a set of logi¬ 

cal relations and mathematical calculations. The best example, of course, 

is Newtons theory of gravity. Beside the Galilean framework of space and 

time, only three concepts are needed: acceleration, mass, and force. Once 

this is understood, the law of gravity is a very simple statement, namely 

that two bodies are attracted to each other, the force being proportional 

to their mass and inversely proportional to the square of their distance 

(if they are twice as far apart, the attraction is divided by four). This very 

simple statement is absolutely general: it holds throughout the universe, 

and applies to an extraordinary range of situations. With Newtons 
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law, one can predict tides and lunar and solar eclipses, and position 

satellites over the Earth. 

Of course, the mathematical arguments that lie behind all these 

predictions are far from easy. Newtons Prmcipia is one of the greatest 

books of all time, and the reader cannot but be overwhelmed by the 

author s genius. Before Newton, Edmund Halley, Christopher Wren, and 

Robert Hooke all had formulated the inverse square law, mainly because 

of Kepler s observations connecting the distance of the planets from the 

Sun with the length of the year.7 But only Newton had the mathematical 

talent to show that all the facts that Kepler had discovered about the 

planets followed as logical consequences from the inverse square law. 

Even today, with all the tools of modern mathematics at our disposal, it is 

no easy matter to perform the necessary calculations. Newton did it by 

elementary geometry, using only some properties of ellipses, which the 

ancient Greeks already knew. 

How is it possible? How can physical reality be accounted for with a 

minimal set of rules, and seem compliant to logical arguments and math¬ 

ematical calculations? For Newton, the answer is obvious: it is because 

God has created heaven and Earth. The whole planetary system has been 

constructed according to rules which are not beyond our intelligence, 

for God has also created us as a copies of himself, as it is said in Genesis; 

that is, as far as we are from Gods perfection, we are still made after the 

same pattern. No wonder then that we understand this world and its 

rules, since we are of a kind with its maker: if we find that the planets' 

motions are explained by an inverse square law, this is simply because 

when God created matter, he decided that it would be subject to the 

inverse square law. 

However, Newton is quick to point out that the inverse square law 

does not provide us with a full explanation: it tells us how motion 

proceeds; it does not tell us how it started. "The original, regular, 

position of these orbits cannot be attributed to these laws: the won¬ 

drous disposition of the Sun, the planets and the comets, can only be 

the work of an all-powerful and intelligent Being.”8 In other words, 

the world is a machine, and science gives us the blueprint. It will not 

tell us why the machine has been built in the first place, or what it is 

good for. Science is given a very modest role, simply to tell us how the 

machine works. Deeper explanations are to be sought elsewhere, if 

they are to be found at all. Newton himself spent a lot of time and 

7. This is Kepler's third law: ifthe distance from the Sun is multiplied by k the length 
ofthe year is multiplied by fe3/2. ’ 8 

8. Scholium genemle, added to the second edition ofthe Prmcipia (1713). 
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energy studying the prophecies in the Bible, and wrote over 300,000 

words on the book of Revelation,9 which probably was not the best 

use of his time. Let us enter the game by asking a question: what did 

God do after Creation? 

Nicolas Malebranche, a disciple of Descartes, a strong believer by pro¬ 

fession (he was a priest of the Oratoire order, and a very pious one), finds 

the answer in Genesis: “The seventh day, after having done all His work, 

He rested.” After Creation, after having created heaven and Earth and 

started them moving, he rests, like a good engineer who takes pleasure in 

seeing the machine he has built function without a hitch. The mecha¬ 

nisms he has designed and put in place during the first six days keep the 

whole contraption going, and there is no longer any need for him to 

intervene. We may discover these mechanisms by lifting the hood and 

watching them in action, and we may reconstruct the blueprint of the 

machine. But, according to Malebranche, we will never be able to infer 

from the blueprint the goal of the engineer: only in holy scripture and the 

teachings of the church is God’s purpose revealed. It is beyond the reach 

of mere science. 

Newton and Malebranche are quite representative of their times. In 

the seventeenth and eighteenth centuries, the physical world was seen as 

a machine designed and set in motion by a creator. Having done his 

work, he stands by idly as the machine churns blindly along. This may 

seem, and is indeed, a very crude model of the world, especially if one 

remembers that there is a biological world along the physical one; animals, 

for instance, are considered by Descartes to be just another kind of 

machine. A senseless machine built by an intelligent being: this is a 

polarized world, and it will be very hard to pull the two pieces together. 

On the one side, an almost pure subjectivity, a mind that contains 

everything: the world is a temporary dream in God’s eternal monologue. 

On the other side, a pure objectivity, a senseless machine, devoid of any 

consciousness, ready to sink back into oblivion as soon as it is no longer 

needed. Such pairs of alternatives abound in philosophy, they are all 

images of the original opposition between God and creation, and they 

are just as hard to overcome: soul and body, spirit and flesh, form and 

substance, natura naturans and natura naturata. 

Another example, more important for our purposes, is the distinction 

between efficient causes and final causes, classic in ancient philosophy. 

Efficient causes give the blueprint of the machine, they describe the vari¬ 

ous mechanisms and their operations, while final causes start from the 

9. See www.newtonproject.ic.ac.uk for an online edition. 
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engineers purpose to explain the machines design. This distinction is 

well explained by Plato, in his dialogue Phaedo. The question raised is 

whether Socrates, who has been condemned to death and is now in 

prison awaiting execution, should avail himself of an opportunity to 

escape. He teaches his disciples that there are two kinds of explanations 

for the fact that he is staying: one is that he has decided to on moral 

grounds (which is a final cause), and here is the other one (efficient 

cause): "Let us imagine a man who, while claiming that Socrates uses his 

intelligence to do whatever he decides to do, would proceed as follows 

when analyzing the causes of my actions. First, he would say, the reason I 

am sitting here right now is that my body is made of bones and muscles, 

that bones are rigid and connected to each other, while muscles can pull 

or let go, so that the muscles acting on the bones enable me to flex my 

arms and legs, until I find myself sitting here in front of you! Similarly, 

to describe our conversation, he would call upon other causes of the 

same kind, sounds being emitted, vibrations being carried to the ears, 

and many other such trifles, but he would not mention the true cause, 

which is that I have decided to sit here while the Athenians have decided 

to condemn me to death, so that each of us is doing what he thinks 

best.”10 

Indeed it is much more satisfactory to hear from Socrates why he is 

staying than to resort to an explanation in terms of muscles acting on 

bones. Unfortunately, we cannot question God in this way, and his pur¬ 

pose in creating the world (if there is a God and not several, and if he 

created the world) remains a mystery. So we have to do without: there 

can be no final causes in science, and we have to settle for the only 

remaining ones, the efficient causes. This means explaining everything 

in terms of nuts and bolts. Descartes, for instance, envisions a machine 

that would imitate the human body: 

I now want you to consider all the functions that this machine performs, 

such as the digestion of meats, the beating of the heart and arteries, the 

nurturing and growth of arms and legs, breathing, waking and sleeping; 

perceiving light, sounds, smells, tastes, heat, and other qualities, in the exte¬ 

rior organs of senses; the impression they make in the organs of common 

sense and imagination; the way they are retained or imprinted in memory; 

the interior motions of the spirit and the passions; finally the exterior 

motions of our body, which adjust so closely to the actions of objects which 

our senses perceive and to the passions and the impressions which they 

10. Phaedo, 98. 
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encounter in our memory, that they imitate as perfectly as possible the 

behavior of a true human being. I want you to consider that all these func¬ 

tions follow in a straightforward way from the disposition of the organs in 

the machine, just as the motion of a clock, or of an automaton, follows from 

its weights and wheels.11 

Animals are machines, and so is the human body. 

This idea that the world is a machine, and that science should give us 

the blueprints, even if it cannot tell us the purpose of the machine, will 

lasted until modern times. There is nothing surprising about this: during 

the Renaissance, science was closely connected with technology (which 

was not the case in classical antiquity), and the industrial revolution 

made the ties even closer. The greatest scientists of the times, Galileo, 

Huygens, Pascal, not to speak of Leonardo da Vinci, were all engineers, 

and they built instruments as an integral part of their scientific work. For 

an engineer, to understand something is to be able to build it; whatever 

you have built yourself you understand perfectly. If the world can be 

understood, it is because it is a machine, built by the greatest of all engi¬ 

neers. The world is a clock, and by seeing the clock you know there is a 

watchmaker. God’s work can be seen, and his character inferred, from the 

wondrous arrangement of the physical world rather than in the blood¬ 

thirsty histories of the Bible: he is, above all, a rational being. These ideas 

reached their culmination during the French Revolution; temples were 

built to the goddess Reason throughout the nation, and on the facade an 

inscription read “The French people recognizes the Supreme Being and 

the immortality of the soul.” 

Galileo raised reason to a pinnacle. All the scientists and philoso¬ 

phers of the time agreed that reason stands above everything: it is not 

created, as the world is; on the contrary, it presides over creation. Even 

for true Christians, like Malebranche, “sovereign reason is coeternal and 

consubstantial with God. In other words, God is not rational, or rea¬ 

sonable: he is reason itself. Mathematical and logical truths are not 

created: they are part of divine nature, and God could no more change 

them than he could change himself. Brecht puts in the mouth of Galileo 

the idea that God could have created quite a different world, inhabited by 

different humans who would not consider ellipses and circles to be the 

simplest possible paths. This idea is truly a modern one, quite foreign to 

the seventeenth and eighteenth centuries. For those times, God does not 

n. Annie Bitbol-Hesperies and Jean-Pierre Verdet, eds., Le monde, I’homme (Paris: 

Editions du Seuil, 1996), conclusion. 
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make the rules of logic or mathematics, they are part of himself, and are 

the same in every possible world. 

We now run into a very interesting question, one that came into 

fashion when Galileo discovered that Jupiter had satellites, and that 

there were mountains on the moon: could there be other worlds? Is this 

the only one possible, and if not, do others exist? Indeed, if God created 

one world, he presumably could create more, perhaps with different 

rules. He is bound to keep the same rules for logic and mathematics, but 

what about physics? Could God create a world where the inverse square 

law was replaced by another one, an inverse cube law, for instance? In 

this hypothetical world, the attraction between two bodies would be 

inversely proportional to the cube of their distance, so that if they are 

twice as far apart, the force would be divided by eight (instead of four). 

Such a world would be as logical and mathematical as ours; has it been 

created, and if so, where? If not, why? 

One would, of course, answer that such investigations are straying 

well away from the path of science. But no, not in those times, where new 

worlds were continuously discovered, not only by exploring the Earth, 

but by raising ones eyes. Galileo was the first to direct one of the newly 

discovered field glasses to the nightly sky, and he found scores of new 

heavenly bodies, some quite close to us, like the satellites of Jupiter, some 

very far, like stars of low magnitude. Even very familiar objects had 

revealed totally unsuspected and remarkably original features: the Moon 

had mountains and seas, the Sun had spots, Saturn had rings. These 

were no mere lamps moving around the sky; these were entire worlds, 

very different from the Earth, and sometimes larger. As astronomers were 

exploring the heavens, others were looking in the other direction, and 

using microscopes to investigate the smaller parts of our world. They saw 

insects and worms turn into gigantic monsters, and probing even deeper 

they found entire populations of minuscule creatures living happily far 

below the reach of our sight. The world is full, at every scale, and every 

scale ignores the higher and lower ones. 

The philosophical consequences of these discoveries are immense: 

humans were born in a finite cosmos, surrounded by a sphere carrying 

the stars. At the time of the Renaissance, they emerged into an infinite 

universe. Perhaps they were not alone, for there was no reason to believe 

that all the new worlds astronomers were discovering were so many 

deserts. If they turned out to be inhabited, another Copernican revolu¬ 

tion would be needed: humankind would no longer be at the center of 

creation, just like the Earth no longer was at the center of the universe. It 

could also be the case that the worlds discovered beneath us, in the 
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smaller dimensions, had some similar surprise in store: since there was 

an abundance of life at all scales, why should intelligence be limited to 

our size? 

There is a short story by Voltaire that captures the philosophical 

mood of the times. On the star Sirius lives a benevolent and educated 

giant, named Micromegas (small/large, in Greek), who wants to see the 

world. He finds a travel companion, much smaller than himself 

(although still extremely large by our standards), but overcomes his 

prejudice with the admirable thought that “a thinking being should not 

be dismissed for being only six thousand feet tall.” They land on the 

planet Earth, and at first they find no life on it, for the scale of men and 

animals is far below what they can see. Fortunately, they have the bright 

idea to observe Earth through a microscope, and then of course they 

start seeing small creatures running and swimming around. In fact, 

they hit upon the ship carrying Maupertuis back from Scandinavia, and 

of course Voltaire does not miss the opportunity to ridicule his old 

enemy one more time. 

There were many more stories, novels, and treatises dealing with 

other possible worlds. In Great Britain, John Wilkins book Discovery 

of a New World, or a Discourse Tending to Prove That It Is Probable That 

There May Be Another Habitable World in the Moon, published in 1638, 

met with a huge success. In France, Fontenelle wrote Discussions on the 

Plurality of Worlds; when he died in 1757, the book had been reprinted 

thirty times. We should also quote Cyrano de Bergerac, who is famous 

for other reasons, and Pierre Borel, who wrote in his New Discourse 

Proving That Celestial Bodies Are Inhabited Earths, published in 1657, that 

"humans should stop behaving like ignorant peasants, who have never 

set foot outside their small village, and yet believe firmly that noth¬ 

ing in the world could be as magnificent. Good advice, and still valid 

today. 

The major work in all this literature probably is the book by Tommaso 

Campanella, Apology of Galileo, written in prison and published in 1616. 

He puts all the astronomical discoveries of Galileo in perspective, and 

shows how they fit the picture of a single, well-organized universe. For 

instance, it is hard to imagine that Earth is floating around in empty 

space, with the Moon circling around it, but is much easier when we see 

Jupiter doing precisely that, with not one but five satellites. Similarly, the 

phases of the Moon are no longer an isolated phenomenon: Galileo has 

discovered that the planet Venus has phases as well, so that we can iden¬ 

tify the common cause, namely the Sun. Mountains are known on Earth, 

but there are also mountains on the Moon, and we can recognize them 
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by the shadow they project. We see the same phenomena in different 

surroundings, so that our experience on Earth can be extrapolated to all 

the new worlds that have been discovered. A few years later, Isaac Newton 

would vindicate Campanellas vision by showing that a universal law, valid 

throughout the universe, can account for all these observations. We do 

not have different laws of nature for different planets or different scales: 

they are the same throughout. So, in fact, they are all part of the same 

world, and we are back to the same question: are there any other worlds? 

If not, why is this the only one to exist? 

Gottfried Wilhelm Leibniz (1646—1716) may be the only philosopher 

who ever tried to answer this question in a precise way. He is certainly 

one of the greatest intellectual figures of the age, on a par with such 

giants as Newton and Spinoza. As a scientist, he is remembered as the 

inventor of differential calculus, in spite of a quarrel with Newton about 

priority, which he largely seems to have won. Modern mathematicians 

still use the concepts he introduced and the notations he chose. His work 

in philosophy is now seen through the distorting prism of quarrels 

which happened long after his death, and he is chiefly remembered as the 

proponent of the much ridiculed idea that we are living in the best of all 

possible worlds. A bold statement indeed, but what Leibniz actually 

means is far from naive, and deserves some attention. 

Leibniz begins by defining precisely what is meant by a “possible” 

world. Let us start from the fundamental duality we described earlier, the 

face-to-face between God and creation, or subject and object. There are 

many ways in which God can create a world, but he has to abide by 

some logical principles, noncontradiction for instance: “to be” means to 

be something, and if you are something, you cannot simultaneously be 

something else. Even God cannot create something which is at once a tri¬ 

angle and a circle. A triangle is a triangle: it consists of three vertices joined 

by three straight sides. A circle is a circle: it consists of all points at the same 

distance from the center. There is no way a triangle could ever be a circle, or 

a circle a triangle. Such clear-cut divisions might not hold if one wandered 

outside the realm of mathematics; it is not so obvious, for instance, that 

one cannot be simultaneously good and evil, or adult and child. But Leibniz 

thinks as a Cartesian; that is, he draws from well-defined concepts, free 

from any ambiguity. The noncontradiction principle is then reduced to a 

tautology, a logical statement that is true for purely formal reasons, inde¬ 

pendent of any empirical content. Whatever a statement “S” has to say, “5” 

and its opposite cannot be true together: such is the strength of logic. 

According to Leibniz, this strength binds even God. Everything in 

existence must satisfy the noncontradiction principle, and the identity 
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4- GOTTFRIED WILHELM LEIBNIZ 

(1646-1716). 

principle as well: whatever S is, it must be itself. 5 is S. In Leibnizs phi¬ 

losophy, existence is just a way of checking out the noncontradiction 

principle and the identity principle. Any concept that satisfies both is 

“possible,” and God can bring it to existence. But not every possible 

concept exists: it is up to God to decide which ones he will endow with 

existence. In so doing, he faces a superhuman problem, which is to 

choose them in a consistent way: inserting a new series of events into 

the world requires not only that it entail no contradiction within itself, 

but also that it fit into the already constructed chain of being, so that it 

entails no contradiction with existing events. In Leibniz s terminology, 

the world consists of things which are not only possible by themselves, 

but also “compossible” with the others. However, between possibilities 

which come to existence and possibilities which don t, there is no other 

difference than this divine election, which is an outside event and does 

not affect their true nature. This may be compared to God sending some 

of us to heaven and others to hell: such outcomes can be understood as 

logical consequences of our personalities, but they are not part of them. 

All possible things coexist in Gods mind, which, in Leibnizs words, is 

“the land of possible realities.”12 

12. Letter to Arnauld, July 14,1686. 
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Each of these possible realities is entirely encompassed by the princi¬ 

ples of identity and noncontradiction. For instance, there was always 

present in God's mind an Ivar Ekeland typing these lines in Chicago on a 

fine summer night in 1998. This particular idea of Ivar Ekeland also 

encompasses many other things: childhood sicknesses, scientific papers, 

and cruises in the Aegean. In fact, it is nothing else than the full story of 

Ivar Ekeland, from conception to death, down to the smallest detail. The 

life I live is nothing but the gradual unfolding of that particular idea, 

which, however, is as immediately accessible to Gods mind as the idea of 

a circle is to mine. There are also all the possible Ivar Ekelands which 

never existed—the one who was born a day later, the one who was run 

over by a car when crossing the street on his way to school, the one who 

decided to live in Norway. They are all there, infinitely many of them; 

each of them would have been called Ivar Ekeland, but would have done 

something different with his life. They are all present together in God’s 

mind, but he bestowed existence to one only. 

This way of looking at existence provides an elegant answer to the 

age-worn question of predestination: how can God create me, and cre¬ 

ate me free? If I end up in hell, should I not blame him for not having 

created me a better man? Suppose I murder someone; since nothing is 

hidden from God, he certainly knew in advance I was going to commit 

this crime. But if so, I was no longer free not to commit it: I may have 

imagined, at the time of the deed, that it was up to me to fire the gun or 

not, but I was mistaken; it had all been decided long ago. From the very 

beginning, it was preordained that I would kill that person. I am like 

Oedipus, who was doomed from birth to kill his father and marry his 

mother. I am luckier than he was, for the crime that was imposed upon 

me is not as heinous, and less so, because I was never warned, whereas 

an oracle told him his fate, and he could take steps to avoid it. If I had 

been truly free, the choice would have remained open till I actually 

pulled the trigger. The fact that the result was known in advance 

proves that the choice was not mine, and I should not bear responsibility 

for it. 

This is basically the example that Leibniz gives in his Theodicy. He 

connects it with an episode in Roman history, the rape of Lucretia, 

which was so well known at the time that Shakespeare had made it the 

subject of a lengthy verse narrative. The villain in this particular story is 

one Sextus Tarquin, and his deed resulted in the death of Lucretia, who 

killed herself in shame. In vengeance, her family then succeeded in over¬ 

throwing the reigning king, Sextus's father, and that was the end of the 

monarchy in Rome. So the rape of Lucretia, an evil act in itself, changed 
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history in a positive way, since it replaced a tyrannical and corrupt 

regime with a better one, the Roman Republic, which went on to con¬ 

quer the whole world. This is an example of the mixed consequences 

that a single action may have, and it may be argued that in that particular 

case the good overrode the bad. But Leibnizs concern is with Sextus 

himself. He has him present the argument that, since God knew in 

advance that the Roman Republic had to come into existence, he, Sex¬ 

tus, had really no choice but to rape Lucretia, and should not be held 

accountable for that crime. Leibniz then points out that, at that very 

moment, there are many other Sextuses present in God’s mind, most of 

whom would have behaved quite decently at that juncture, out of their 

own free will. The particular Sextus who is complaining exercised free 

will, just like the others: his misfortune is that he was the one that God 

chose to bring into the world. He decided to rape Lucretia, and God 

decided to give him existence. 

So every possible reality, once God gives it existence, will reveal 

its own identity. Its life will unfold it slowly, whereas God encom¬ 

passes it at a single glance. God’s mind is like the library which Jorge 

Luis Borges describes in a famous tale,13 with infinitely many books 

shelved in infinitely many stacks. Each of these books contains a full 

biography of a possible person, Ivar Ekeland, say, but they are no help 

to me as I browse around, because I don’t know which is—or will 

be—the true one. I can open one of the books and check whether the 

events described until today are correct, but as for the events which 

are recorded but are yet to occur, I have no clue. There are many other 

libraries, each of them containing possible biographies of other indi¬ 

viduals. God has read them all, and he will bring to existence one 

book from each library, and all these biographies have to fit with each 

other. 

This is quite an undertaking. As I said before, it is not enough that 

each of these biographies is internally coherent, it must also agree with 

all the other ones which have been chosen when they describe common 

events. If two biographees meet, both accounts of their encounter must 

agree to the last detail. There are also other realities to worry about— 

plants, animals and things—all of which have to be chosen among 

infinitely many possibilities, and all of which have to fit with all the other 

ones. The whole world has to be created in a coherent way, and, as every¬ 

one knows, the devil is in the details. One finds some attempts of this 

kind in works of fiction: Frank Herbert, for instance, or J. R. R. Tolkien, 

13. “The Babel Library," from Fictions, 1944. 
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have succeeded in creating imaginary worlds that stick in our minds 

because of the painstaking care with which every detail is woven into the 

whole. Tolkien conjured up the whole history and folklore of Middle-earth 

in support of the adventures of Bilbo the Hobbit, and Frank Herbert 

went at great length to imagine what kind of culture and technology 

would develop on a waterless planet like Dune. 

If we could push Tolkien’s or Herbert s idea to the limit, describing not 

only Hobbits or humans but all the other forms of life, as well as the nat¬ 

ural laws which would be valid in these particular worlds, we would get 

instances of what Leibniz calls a “possible” world: a complete and coher¬ 

ent set of possible realities. There may be many such possible worlds, 

even outside the realm of fiction. One could imagine, for instance, that 

the Pearl Harbor attack had never occurred, and that the United States 

did not enter the war in 1941. One could also imagine that evolution had 

taken another route, sparing the dinosaurs, which would still be around 

today as the dominant species on Earth. Finally, one can wonder what 

kind of life may have developed on planets lost in interstellar space, far 

from any sun, but endowed with water and volcanoes, and hence oceans 

and continents.14 

Why did God choose this particular world to exist? Many who experi¬ 

ence it find much to object in the way it is run. Let us look up Leibnizs 

answer in the Monadology. It is a concise exposition of his theory, in 

ninety propositions, and it is the only philosophical book he published 

in his lifetime. 

53. Now, since in the divine ideas there is an infinity of possible universes 

of which only one can exist, the choice made by God must have a sufficient 

reason which determines him to the one rather than to another. 

54. This reason can be found only in fitness, that is, in the degree of perfec¬ 

tion contained in these worlds. For each possible has a right to claim exis¬ 

tence in proportion to the perfection it involves. 

55. This is the cause for the existence of the best, which is disclosed to God 

by his wisdom, determines his choice by his goodness, and is produced by 

his power.15 

So this is it: the present world has been chosen to exist because it 

is the best of all possible worlds. Tarry a moment: hqw “the best”? 

From what proposition 54 says, it has to be the most perfect. And 

14. “Life-sustaining Planets in Interstellar Space?” Nature 400 (1999): 32. 

15. Translations by Paul Schrecker and Anne Martin Schrecker, in Monadology and 

Other Philosophical Essays (Indianapolis: Bobbs-Merrill, 1965). 
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what is perfection? That’s what the next three propositions set about 

to explain: 

56. This connection of all created things with every single one of them and their 

adaptation to every single one, as well as the connection and adaptation of every 

single thing to all others, has the result that every single substance stands in 

relations which express all the others. Whence every single substance is a per¬ 

petual living mirror of the universe. 

57. Just as the same city regarded from different sides offers quite different 

aspects, and thus appears multiplied by the perspective, so it also happens 

that the infinite multitude of simple substances creates the appearance of as 

many different universes. Yet they are but perspectives of a single universe, 

varied according to the points of view, which differ in each monad. 

58. This is the means of obtaining the greatest variety, together with the 

greatest possible order; in other words, it is the means of obtaining as much 

perfection as possible. 

So perfection consists of two things: variety on the one hand, that is the 

inexhaustible profusion of natural phenomena; and order on the other, 

that is the interrelatedness of all things and the basic simplicity of natural 

laws. Leibniz sees variety and order as two sides of the same coin; in a 1679 

letter to Malebranche, he explains: “We also have to say that God makes as 

many things as it is possible, and the reason why he has to look for simple 

laws is precisely that he must accommodate as many things as it is possible 

to fit together: if he were using other laws, it would be like building a house 

with round stones, which would lose as much space as they fill.” However 

well this thought is put, it is not clear how one can achieve simultaneously 

the greatest possible variety and the greatest possible order: one would 

rather expect that some kind of compromise would have to be reached 

between these two criteria. Leibniz does not follow up on this point, and 

does not seek to formulate some kind of quantitative criterion to be maxi¬ 

mized. He is more inclined to qualitative arguments, which seek an over¬ 

riding harmony in the abundance and variety of the universe. 

To understand Leibnizs world, think of constituting an orchestra. 

First, there must be instruments, and musicians able to play them; 

these are all the possible realities, waiting to be called forth. But a 

choice must be made: not all can play. There are certain rules to follow as 

to the instruments. To get a balanced sound, and the musicians must 

learn to play together; this is where one checks that all the individual 

choices that were made fit into a coherent ensemble. Every such orchestra 

is a possible world, and now comes the tough problem: choose the best 
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one, for it is the one that will be created. It is doubtful that quantitative 

criteria will be devised to rank orchestras, or even that there will ever be 

general agreement as to which orchestra is the best at any given time. 

Certainly Leibniz does not think of anything so crude when he talks 

of this world as being the best of all possible ones. He does not have a 

mathematical formula in mind. Neither does he put human happiness in 

the forefront: there is scarcely any mention of it. Happiness may play a 

role, insofar as it is a component of the universal harmony, but this role is 

not essential, or even important. Of course, it all depends on what con¬ 

stitutes happiness; Leibniz belongs to this category of philosophers who 

claim that happiness lies in contemplating the wonders of God in his 

creation, an idea that is certainly far away from the everyday concerns of 

most human beings. All in all, to say that this world is the best of all pos¬ 

sible worlds does not necessarily imply that it is a pleasant one to live in. 

In fact, since it has to be both as varied and as orderly as possible, it must 

accommodate extremely different beings, living together under simple 

laws; this can only lead to compromises, which cannot all be expected to 

be advantageous for all concerned. 

We are far from the crude philosophy “Alls well that ends well” incor¬ 

rectly attributed to Leibniz. We are also far from the mechanistic concep¬ 

tion of the universe which was shared by Descartes and Newton. Leibniz 

does not see the world as a machine; he sees it, in his own words, “as a 

garden full of plants or as a pond full of fish.” He is a naturalist, whereas 

the others are engineers. He is not like Galileo, who raised his telescope 

to the stars and explored the infinite universe above him; he is like 

Antony van Leeuwenhoek, the inventor of the microscope, who looked at 

the infinite universe below him and explored the worlds contained in a 

single drop of water. Indeed, let us put side by side a quotation of a letter 

from Leeuwenhoek to Robert Hooke (1676): 

It is as if one saw, with the naked eye, small eels writhing against each other, 

and all the water was alive with these minuscule animals; and of all the won¬ 

ders I have observed in nature, this is the most wonderful of all. 

and three more propositions of the Monadology: 

67. Thus every portion of matter can be conceived as a garden full of plants 

or as a pond full of fish. But every branch of the plant, every limb of the ani¬ 

mal, every drop of its humors, is again such a garden or such a pond. 

68. And though the soil and the air in the intervals between the plants of 

the garden is not a plant, nor the water between the fishes a fish, yet these 
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intervals contain again plants or fishes. But these living beings most fre¬ 

quently are so minute that they remain imperceptible to us. 

69. Thus there is nothing uncultured, sterile or dead in the universe, no 

chaos, no disorder, though this may be what appears. It would be about the 

same with a pond seen from a distance: you would perceive a confused 

movement, a squirming of fishes, if I may so, without discerning the single 

fish. 

This is Leibnizs philosophical inheritance. Fifty years after his death, 

largely by Voltaire’s doing, it will be mixed up with a very different 

philosophy, Maupertuis’ quantitative and mechanistic metaphysics, 

according to which, “in ordinary life, the sum of benefits exceeds the sum 

of misfortunes.” Flow such a philosophy came to be, and how it was con¬ 

fused with that of Leibniz, will be the subject of our next chapter. 
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(chapter 3) The Least Action Principle 

in june 1633, Galileo was condemned. After a six-month trial, the 

Inquisition tribunal declared him “vehemently suspect of heresy, for 

having held forth and believed a false doctrine, contrary to the Holy 

Scriptures; to wit, that the Sun is the center of the world and does not 

move from East to West, that the Earth moves and is not the center of 

the world, and that one may hold probable and defend an opinion after 

it has been examined and declared contrary to the Holy Scriptures.” In 

the course of the trial, it had been proved beyond doubt that the accused 

had not been content with supporting these abominable opinions; he 

had also done everything in his power to propagate them as widely as 

possible, for instance by using the simple trick of writing in the vernacu¬ 

lar. As the sentence puts it, “Not only does he provide the Copernican 

opinion with new weapons, which no foreigner has ever thought of, but 

he does so in Italian, the language which is the most likely to bring to his 

side the ignorant people, those among whom errors find the most fertile 

ground.” 

Wouldn’t it have been wiser and fairer, indeed, for a Christian gentle¬ 

man, to put forth his arguments in Latin, thereby restricting access to 

prudent and educated people, well acquainted with the holy scriptures, 

and the Church Fathers, better equipped to find the dangers lurking in 

new ideas, and less likely to be infected by them? The sentence goes on to 

reject Galileos defense, according to which he was merely setting forth a 

mathematical theory without practical consequences: “The author claims 

to have discussed a mathematical hypothesis, but he attributes to it a 

physical reality, something that mathematicians would never do.” 

It was not a warning; it was a condemnation. On June 22, 1633, 

Galileo, in a penitents gown, knelt before the cardinals of the Sacred 

Congregation of the Holy Inquisition, and pronounced a public retrac¬ 

tion: With sincere heart and unfeigned faith, I abjure, curse and detest 



the above errors and heresies, and I swear that in the future I will never 

again say or assert, orally or in writing, things which may arouse similar 

suspicions, but if I ever encounter some heretic or anyone suspect of 

heresy, I will turn him over to this Holy Office.” He was condemned to 

ending his life in detention, first in Sienna, and later at his villa in 

Arcetri, near Florence, where he remained under house arrest until his 

death, a blind and broken man, in 1642. 

The blow was felt throughout Europe, where a thriving scientific 

community had developed. Long before the Internet, information flowed 

through daily exchanges of letters; people like Mersenne maintained a 

vast correspondence throughout Europe, and served as information 

hubs, disseminating news, recording progress, and distributing prob¬ 

lems to be solved. Galileo was a towering figure in this world, everywhere 

his discoveries were known, his books quoted. He was the first to have 

turned a telescope toward the night sky. He discovered that Jupiter has 

satellites like the Earth, that Venus has phases like the Moon, and that 

the Moon has mountains and seas like the Earth. He also discovered that 

the shape of Saturn changes, from a circle to an oval; his instruments 

were not sharp enough to separate the rings from the body of the planet. 

The books inherited from antiquity make no mention of these facts, but 

anyone could ascertain them by pointing a telescope to the sky, without 

first having to learn Latin or Greek. It was a triumph of the experimental 

method over mere bookish knowledge; from then on, research would 

interrogate nature rather than tradition, and the idea of scientific 

progress, constantly extending the boundaries of knowledge, took hold. 

One century before, Martin Luther had freed believers from the shackles 

of tradition and had empowered them with the right to read and under¬ 

stand scripture by themselves; Galileo taught individuals to see through 

their own eyes, and to seek the truth in nature rather than in the writings 

of ancient philosophers. In addition, Galileo was an influential person in 

the political world. He was a personal friend of pope Urban VIII, whom 

he knew as cardinal Maffeo Barberini, and who expressed his admiration 

for Galileos scientific work in several letters written over the years. 

Galileo had been honored by the Republic of Venice, by the Duke of 

Florence, to whom he dedicated the newly discovered satellites of Jupiter, 

henceforth known as the Medicean stars. He had powerful friends in the 

Roman Curia who had fended off several attempts against him. In 1616, 

for instance, even when Copernicus’s opinion was condemned and his 

book prohibited to the faithful, Galileo got off with a warning “to com¬ 

pletely abandon that opinion, and in no way to hold it, or to defend it, or 

to teach it.” 

45 

T
H

E
 

L
E

A
S

T
 
A

C
T

IO
N
 

P
R

IN
C

IP
L

E
 



C
H

A
P

T
E

R
 

T
H

R
E

E
 

But this time, things proceeded quickly. Galileos Dialogue on the Two 

Greatest Systems of the World, the Ptolemaic and the Copernican, appeared 

in 1632; the inquisitor in Florence ordered a halt to its diffusion, and in 

October Galileo was summoned to Rome. He made the trip in January 

1633, appeared before the court on April 12, and two months later, on 

June 22, was sentenced. This was a lesson for others as well. In Novem¬ 

ber of the same year, Descartes learned of Galileos condemnation, and 

immediately decided not to publish his magnum opus, the Treatise of the 

World, or Of Light. He had been working on it ever since he had settled in 

the Netherlands five years earlier, and it lay ready to be sent to the 

printer. This was a momentous decision, for the Treatise was to have 

been the linchpin of his philosophy, the center from which Descartes’ 

achievements in science and metaphysics would appear as a well- 

ordered whole. In addition, the experience exaggerated Descartes’ nat¬ 

ural tendency toward prudence, and toward protecting his ideas by 

ambiguous formulations. From then on, according to his own account, 

he would proceed "under a mask.” Gone was the mystical enthusiasm 

of that night in Ulm where "the foundations of a marvelous science” 

were revealed to him.1 The epitaph on his grave still carries an echo of 

that initial impulse: "Taking advantage of his Northern sojourn2 to 

connect the laws of mathematics with the mysteries of nature, he was 

bold enough to hope that one could open both secrets with the same 

key.” 

In 1637, Descartes decided to give it another try. He published anony¬ 

mously a book containing three short scientific treatises, Optics, Meteors 

(meaning large-scale natural phenomena, such as the rainbow), and 

Geometry. There was also a general introduction which, isolated from the 

rest, was to become one of the most important texts in the history of phi¬ 

losophy: it is the celebrated Discourse on Method, in which Descartes lays 

the ground for his philosophy, and described the method by which one 

might find the truth in the sciences.” Following the example set by 

Galileo, the book was written in French rather than Latin. Strangely 

enough, the Discourse does not seem to have attracted much attention at 

the time, but the scientific treatises did. Much of Descartes’ correspon¬ 

dence at the time was devoted to the discussions and controversies sur¬ 

rounding them. 

1. November io, 1619; “Ut comoedi, moniti ne in fronte appareat pudor, personam 

induunt, sic ego hoc mundi teatrum conscensurus, in quo hactenus spectator exstiti, lar- 

vatus prodeo.” Cogitationes Privatae (1619), in Oeuvres de Descartes, ed. C. Adam and 

P. Tannery (Paris, 1897-1913), 10:213.4-6. 

2. Descartes spent most of his active years in the Netherlands and died in Sweden. 
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From that time on, these four fragments of the Treatise of the World 

have led separate lives. The Discourse is no longer seen as an introduction 

to a scientific treatise, but as a self-standing work in philosophy. The 

Geometry created a new science, mathematics, by unifying arithmetic and 

geometry. Up to Descartes, these were distinct endeavors: arithmetic 

dealt with numbers, integers, or fractions; geometry with shapes, in the 

plane, like squares and circles, or in space, like cubes or spheres. 

Descartes hit upon the idea of representing each point in the plane by 

two numbers—the so-called Cartesian coordinates—and each point in 

space by three. By this method, every problem about shapes could be 

translated into a problem about numbers and vice-versa, so that geome¬ 

try and arithmetic were seen as two sides of the same coin: the Geometry 

was the first treatise in modern mathematics. Similarly, the Optics and 

Meteors constituted a full-blown theory of light, where Descartes proves 

the law of refraction from first principles and uses it to explain rainbows. 

These are works in physics, to be read and understood on their own, 

while the overall connection with mathematics and philosophy has been 

forgotten. 

This would probably not have happened had Descartes been able to 

publish the Treatise of the World in due course. An essential part of his 

message has thus been lost, for unity is central to his way of thinking. 

In a set of notes which were obviously meant for personal use, and 

which were found in his papers after his death, he writes, “All sciences 

are nothing but human wisdom, which remains one and the same, how¬ 

ever different the objects to which it applies itself may be, and which is 

no more changed by these objects than the light of the sun by the vari¬ 

ety of things it illuminates.”3 Of course, this human wisdom is but the 

reflection of God's own wisdom, and the ability to grasp the rules by 

which he has created the world, chief among which are the rules of 

mathematics. In an unpublished section of his Treatise of the World, 

Descartes writes, “I will be content with warning you that, besides the 

three laws I have explained, I will assume none other than those which 

follow unfailingly from these eternal truths on which mathematicians 

are accustomed to rest their most certain and most transparent proofs; 

these truths, I say, according to which God himself has taught us that 

he had arranged all things in number, weight and measure, and the 

knowledge of which is so familiar to our souls that we cannot but deem 

them infallible whenever we perceive them distinctly, nor doubt that, if 

God had created several worlds, each of them would be in every respect 

3. Rules for Directing the Mind, published 1701 but probably written around 1628; rule 1. 
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as truthful as this one. In this way, whoever is sufficiently alert in exam¬ 

ining the consequences of these truths and of our rules will be able to 

recognize the effects from their causes, and, if I may express myself in 

scholarly terms, will have a priori proofs of everything that could be pro¬ 

duced in this new world.” In other words, the laws of nature are noth¬ 

ing but the rules by which God has built the world; we have access to 

them because he is truthful, and he is bound by them to such an extent 

that, if he has created other worlds, they would still apply and we could 

reconstruct these worlds from basic principles, with minimal recourse 

to experimentation. 

A modern scientist, wondering about “the unreasonable effectiveness 

of mathematics in the physical sciences,” may sympathize with these 

ideas. Nowadays, however, we are much more aware of the fact that the 

best proof in the world is worth no more than its premises: every scientific 

theory is transitory and provisional, in wait for a better one, and accepted 

only as long as the experimental results conform to its predictions. 

Descartes, on the other hand, believed that science rests on eternal truths. 

As a consequence, he held experimental results in low esteem, thinking 

them to be error-prone (not a wild claim in his time) and less trustworthy 

than sound argumentation. His was a normative science, telling nature 

what it was supposed to do, not a positive one, investigating what it was 

actually doing. 

After Descartes’ death in 1650 his ideas were carried on by his disci¬ 

ples, most notably Claude Clerselier (1614—1684), who was responsible 

for finally publishing the Treatise of the World in 1677. Throughout the 

seventeenth century, and well into the eighteenth, the Cartesians fought 

for the master’s ideas, and against the onset of Newtonian physics. The 

quarrel with Fermat in 1662—1665, and Maupertuis' expedition to the 

North in 1736—1737, which we shall describe presently, can be seen in per¬ 

spective as the opening and the closing battles in this long, drawn-out 

struggle, ending with the final triumph of Newtonian physics. This shift 

toward a more experimental science is well exemplified by the personal 

evolution of another great physicist, Huygens: “When I read [Descartes’] 

Principles4 for the first time, I was under the impression that everything 

was proceeding smoothly, and I believed, when I encountered some diffi¬ 

culty, that it was my fault, not to be able to grasp his thought fully. I was 

then but fifteen or sixteen years old. But having since discovered in that 

book things which are patently wrong, and others which are extremely 

unlikely, I have much reconsidered my previous position, and today, in all 

4. Principles of Philosophy (1644). 
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of his physics, or metaphysics, or meteors, I find almost nothing to 

which I can subscribe as being correct.”5 

Let us now open Descartes' treatise Optics, part of the book published 

in 1637. In the first chapter, we are told that, in a homogeneous, transpar¬ 

ent medium, light propagates in a straight line, called a ray. Without say¬ 

ing in so many words that light consists of particles, Descartes compares 

it to a tennis ball which rebounds at a different angle if it is sliced instead 

of lifted.6 The second chapter deals with refraction. This is the phenome¬ 

non by which the rays change direction when light goes from air into 

water, which is the cause of many optical illusions. A stick, one end of 

which is dipped in a pond, appears to be broken at the surface of the water. 

Do not try to harpoon a fish from the bank of the river: it is not where it 

seems to be. 

Descartes compares light traveling from air to water to a tennis ball 

which is accelerated in the vertical direction as it crosses the surface, the 

horizontal speed being unaffected. From this he derives the celebrated 

“sine law,” sin i = n sin r, where i is the angle of the incoming ray with the 

vertical (in the air), r is the angle of the outgoing ray with the vertical (in 

the water), and n is simply the acceleration factor, that is, how much 

faster light travels in water than in air: 

^ speed of light in water 

speed of light in air 

This number n, called the refraction index, turns out to be about 1.33. 

This law had already been discovered by a Dutchman, Willebrord 

Snell, in 1620, but the interesting point here is that Descartes actually 

proves it. His argument, as one goes through it, is mathematically and 

logically correct, so the conclusion must follow, provided however that 

one grants the premise, namely that light is accelerated as it enters the 

water. We are then faced with a factual question: is it true that light trav¬ 

els faster in water than in air? It would be wrong to believe that this is the 

case, just because the conclusion Descartes draws from it, namely Snell’s 

law of refraction, is correct: many a correct statement has been drawn 

from false premises. The question was not settled until 1850, more than 

two centuries later, when Leon Foucault and Hippolyte Fizeau measured 

the speed of light in water. In the meantime, it was a matter of opinion, 

5. Letter to Pierre Bayle, February 26,1693. 

6. Tennis did not exist in the modern version, but its ancestor, the French longue 

paume, was a popular racquet game in Descartes' times, and is still played today. 
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the majority (including Isaac Newton) holding the opinion that light, 

like sound, travels faster in water than in air. Very few people did not, and 

the first among them was probably Pierre de Fermat (1601—1665), 

another of the great mathematicians who seemed to proliferate in France 

at that time. 

Fermat was an extraordinary genius. He was a lawyer by training, a 

member of the Toulouse parliament, and could devote to science only 

the spare time left from an extremely busy professional life. In mathe¬ 

matical circles, he is famous for a statement he wrote in the margin of a 

Greek treatise, adding that since he was short of space, he would write 

the proof elsewhere. That statement became known as Fermat's “great” 

or "last” theorem, and was proved only in 1993 by Andrew Wiles. Three 

centuries of progress in mathematics had been needed to bring it 

within reach. We have no idea what kind of proof Fermat had—or, 

much more likely, thought he had—but his intuition was right. So it 

was in the matter of the speed of light. Already in 1637 he had taken 

issue with Descartes, and he became more critical as the years went by. 

In 1662, he writes, “M. Descartes never proved his principle, for com¬ 

parisons cannot serve as basis for proofs; in addition he makes a poor 

use of those he makes, and even assumes the passage of light to be eas¬ 

ier through dense bodies than in lighter ones, which seems to be 

wrong.” 

Reflection of light is a much easier problem than refraction, and has 

been understood since antiquity: when a ray of light hits a reflecting sur¬ 

face, a mirror say, it bounces back at an equal angle (but at the other side 

of the vertical). In 1657, seven years after Descartes’ death, Fermat 

received a treatise On Light, by one Marin Cureau de la Chambre, in 

which the law of reflection is stated and derived from a general principle, 

according to which “nature will always take the shortest way to act,” 

meaning that light will travel by the shortest possible path between two 

given points. Cureau’s argument is not original (nor does he claim it is): 

it goes back to the scientists and engineers in the first or second century 

AD, and can be found in the mass of writings attributed to one Hero of 

Alexandria. It is a beautiful argument, based on symmetry, and we repro¬ 

duce it here for the reader to appreciate. 

Fermat wrote back to Cureau, thanking him for the book. In his letter, 

he states his agreement with Hero’s general principle, and raises a new 

question: “Since it has been useful for studying reflection, would it not be 

useful as well for refraction?” At first glance, it does not seem to be the case: 

to travel from point A to point B, the shortest path always is a straight line, 

but it is not the path along which light will travel if A lies in air and B in 
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5. reflection When a ray of light is reflected by a mirror, the incoming angle 

/ is equal to the outgoing angle r. Hero of Alexandria noticed that this implies 

a remarkable physical property: if light travels from A to B, then it takes the 

shortest path between A and B. He even gave a mathematical proof. Take any 

two points A (on the incoming ray) and 6 (on the outgoing one). Denote by A' 

the point which lies in a symmetric position to A with respect to the mirror. Then 

the two paths AOB and A'OB have equal length, and so do the paths AMB and 

A'MB, where M is any other point on the mirror. Since A'OB is a straight line, it 

must be shorter that A'MB. So AOB must be shorter than AMB. This proves that 

the impact point O is positioned so that the path AOB is the shortest possible. 
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water. However, writes Fermat, if one accepts the idea that light travels faster 

in air than in water, the direct path from A to B, meaning the straight line 

AMB, will not be the fastest. As the picture shows, moving the crossing 

point M slightly closer to O, to M' say, will increase the distance traveled 

in air, but decrease the distance traveled in water. To be sure, the total 

length traveled, in air and in water, will be increased, as Hero’s argument 

tells us, so that the time spent in air will increase and time spent in water 

will decrease; but since the speeds are not the same, the time lost in air 

will not be equal to the time gained in water, and it could well be the case 

that the time lost is less than the time gained. On balance, the broken 

line AM'B will be traveled faster than the straight line AMB. In fact, 

light behaves like a hiker traveling across a shifting landscape; if B lies in 

very difficult terrain, where progress is slow, it is the best idea to stay 

6. refraction The horizontal line separates air (above) from water (below). 

The shortest path from A to B is the straight line AMB, and it would also be the 

quickest if light traveled as fast in air as in water. Since light travels faster in 

air, the path AM'B is actually quicker. It takes more time to go from A to O, and 

less to go from O to B; on balance, AM'B is faster than AMB, even though it is 

longer. Fermat showed that the quickest possible path from A to B is AOB, where 

the incoming and outgoing angles i and r satisfy Snell’s law sin i = n sin r. 

52 



within the easier terrain as long as possible before crossing over. For 

instance, the hiker could aim for K, which is the point in the easy region 

which lies closest to B, thereby minimizing the amount of time spent in 

the difficult region. It may well be, however, that K lies too far from the 

starting points, so that the hiker would gain time by aiming for some 

intermediate point H'. The best compromise is O, and that is precisely 

what Fermat is saying. 

Fermat’s letter to Cureau is quite remarkable. It is one of the earliest 

successes of mathematical modeling. There is first a general statement of 

a physical principle: to get from one point to another, light travels by the 

fastest (not necessarily the shortest) path. This principle is then applied 

to a new situation, namely refraction, yielding a mathematical problem: 

given two points A and B, separated by a line 5, and a number n, find a 

point M on the line S such that the length AM + nMB is the smallest 

possible. The connection between the physical problem of refraction and 

the mathematical model is through the number n, which tells us how 

much faster light travels in air than in water, so that Fermat is actually 

looking for the fastest path from A to B. 

Although Fermat’s letter to Cureau states the problem and goes very 

far toward the solution, it does not actually solve it. Fermat states that 

the solution of the problem will yield precisely Descartes’ or Snell’s sine 

law, sin i-n sin r, and he boldly announces that he will provide a mathe¬ 

matical proof: “I promise you in advance that I will find the solution 

whenever you like, and that I will draw consequences that will solidly 

establish the truth of our opinion. I will deduce at first: that the perpen¬ 

dicular ray does not break; that light breaks at the interface, without 

changing direction later on; that the broken ray moves closer to the per¬ 

pendicular if it crosses from a rarer medium to a denser one, and moves 

away from it in the opposite case. In a nutshell, I will show that this opin¬ 

ion accounts exactly for all appearances.” 

Five years later, in 1662, Fermat delivered; he sent the solution to 

Cureau, in a letter brimming with enthusiasm, where the reader gets a 

rare glimpse into a mathematician's hour of triumph: “The price for my 

work turned out to be the most extraordinary, the least expected, and the 

happiest there ever was. Indeed, after running through all the equations, 

multiplications, antitheses, and the other operations which my method 

requires, and having finally solved the problem, as you will see in the 

enclosed sheet, I have found that my principle yielded the very same pro¬ 

portion that Mr. Descartes had discovered for refractions. I was so taken 

away by such an unexpected result that I almost could not overcome my 

surprise. I have done my algebraic calculations over and over again, and 
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the outcome has always been the same, even though my proof assumes 

that light travels faster through rarer mediums that denser ones, which I 

believe to be very true and necessary, although Mr. Descartes assumes the 

opposite.” 

A remarkable situation, indeed: two of the greatest mathematicians of 

all times, starting from assumptions which are in direct contradiction, 

end up at the same result. Descartes assumed light to travel faster in 

water that in air, Fermat assumed the opposite. They both agreed on the 

value of the refraction index n, namely 1.33 for the water/air interface, but 

they did not agree on its meaning: for Descartes, that number meant that 

light travels 1.33 times faster in water than in air, and for Fermat it meant 

that it travels that much slower. One could not disagree more: only one of 

them can be right. The controversy quickly became a fight. The Carte¬ 

sians rallied to the defense of their dead master, and in their corre¬ 

spondence with Fermat sharpened blades showed under the flowers 

of courtesy. Their task was difficult: now that Descartes was dead, 

Fermat was acknowledged to be the best mathematician of his time, and 

there was no question that he had solved the problem he set himself: 

given two points in two mediums separated by a plane, given that one 

can travel in the first medium n times faster than in the second, find the 

quickest (and not the shortest) path between them. The solution is 

indeed given by the sine law, sin i = n sin r. What is open to attack is the 

relevance of Fermat’s problem, which is purely mathematical, to the 

study of refraction, which is a physical phenomenon. One can under¬ 

stand that a weary traveler would try to figure out the quickest way home, 

and perhaps even resort to algebraic computations, but what about light? 

It has neither consciousness nor purpose, little does it care how fast it 

reaches a particular point, and there is no reason why it should prefer the 

quickest path, even if it knew it from the others. What is the basis for 

Fermat's claim? 

In May 1662, Fermat received two letters from that same Clerselier 

who was to publish Descartes’ Treatise of the World fifteen years later, and 

who was already a leader among the Cartesians. In these letters, he stated 

a certain number of objections to Fermat’s approach, among which was 

the point we have just raised. Clerselier was not the most felicitous 

writer, and he put it as follows: 

The principle upon which you build your proof, namely that nature always 

acts by the shortest and simplest ways, is but a moral principle, not a physi¬ 

cal one, which is not and cannot be the cause of any effect of nature. It is 

not, for it is not by this principle that it acts, but by the secret force and 
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virtue which lies in every thing; the latter not being determined by that prin¬ 

ciple, but by the force that lies in all causes that concur to a single action, 

and by the disposition which is found in all bodies on which that force acts. 

And it cannot be, otherwise we would be assuming some kind of awareness 

in nature; and by nature, we mean here only that order and that law which 

are established in the world as it is, and act without forethought, without 

choice, and by a necessary determination. 

There is no awareness in nature, says Clerselier. Attributing to nature 

any sense of purpose, suggesting for instance that it is striving to minimize 

some transition time, is not a scientific explanation, and any conclusion 

that can be derived from this kind of reasoning must be dismissed. 

Nature acts “without forethought, without choice,” it does not look 

ahead and it is never faced with choices. It does not pick its way among 

several possibilities, taking into account their consequences, far or near 

into the future; at any time, it finds just one door open, and it goes 

through that door. This is what Clerselier means by “a necessary determi¬ 

nation”; since there will never be two open doors to choose from, the full 

path is determined as you walk through the first door. The full story is 

already written, you cannot change it, all you can do is to watch it unfold; 

if you want to know more about the future, you need more information 

about the present. 

Nowadays, this view of the world is called determinism, and Clerselier 

came very close to having coined the word. Determinism would be much 

strengthened later on by Newtons discoveries, and would become the 

prevailing view among scientists until the advent of quantum physics in 

the beginning of the twentieth century. With quantum physics, nature is 

sometimes given a choice and settles it randomly: whenever it is con¬ 

fronted with several possibilities, it draws lots between them. Even today, 

this seems a strange idea, and we feel much more comfortable with the 

deterministic view of the world, which Einstein, for one, never aban¬ 

doned: as he put it, “God does not play dice.” 

The argument against Fermat is that nature does not think ahead and 

does not make decisions. Clerselier did not know Newtons laws, and his 

idea of good science was modeled by Descartes’ physics, which was based 

on the idea that bodies interact only by direct contact: everything pro¬ 

ceeded from the laws of collisions, as bodies great and small endlessly 

bounced against each other. This is why so much of the scientific effort at 

that time was devoted to studying what happens when two bodies or 

more collide, with the aim of determining the outgoing velocities from 

the incoming ones. Between collisions, the trajectories are just straight 
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lines; this was Galileos principle of inertia, which Clerselier called to the 

rescue to challenge Fermat: “That way which you deem the shortest 

because it is the quickest is but a way of getting mistaken and lost, 

which nature does not follow nor would want to follow. For, as it is deter¬ 

mined in everything it does, all it ever tends to do is to proceed in a 

straight line.” 

Here comes another argument against Fermat: we already know 

Galileos principle of inertia, which satisfies the basic requirements of 

determinism (no looking forward, no open choices). Deriving it from 

other principles, such as the idea that light always travels the fastest 

path, is redundant, and so should be shorn by Ockhams razor. This sec¬ 

ond argument was taken up at later stages to dismiss Maupertuis’ least 

action principle, just as Clerselier himself used it to dismiss Fermat's 

minimum time principle. Ernst Mach, for instance, in his great history 

of mechanics, published in 1883, stated that “the least action principle, 

and with it, all the minimum principles that one encounters in 

mechanics, simply express that, in every case, whatever happens is 

precisely what can happen under the circumstances, that is, whatever 

the circumstances determine, and determine uniquely.” Farther on, he 

developed the idea to the conclusion that there is nothing more in 

Fermat’s principle, or in his farther-reaching generalizations, such as 

Maupertuis’ principle of least action, than the general fact that all 

phenomena of nature are fully determined by the relevant circum¬ 

stances at the time of their occurrence. Neither Clerselier nor Mach 

gave a convincing argument for this downgrading of Fermat’s and 

Maupertuis’ principles, and in fact they were both wrong, as we will 

presently show: minimum principles do not follow logically from a 

general statement that the laws of nature are deterministic. They con¬ 

tain another type of information about the world. 

Of course, in his answer to Clerselier, Fermat could not address issues 

which would be raised two and a half centuries later; but his letter, 

strangely enough, conveys some of the flavor of the famous controversy 

between Niels Bohr and Albert Einstein about the foundations of quan¬ 

tum mechanics. Here we go: 

Going back to the main question, it seems to me that I have often said, both 

to Mr. de la Chambre and to you, that I do not claim to be in Nature’s secret 

confidence, nor have I ever claimed to be. It has obscure and hidden ways, 

which I have never tried to penetrate; I had only offered it some slight 

geometrical help in the matter of refraction, in case it had needed it. But 

since you assure me, Sir, that it can proceed to its business without that, and 
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that it is content with following the way Mr. Descartes has prescribed, I 

heartily abandon you my pretended conquest in physics, provided you leave 

me in possession of my problem in geometry, all pure and in abstracto, 

whereby one can find the path of a moving object which crosses two different 

mediums, and which tries to end its motion as soon as possible.”7 

Fermat associated a mathematical problem (the model) with a physical 

phenomenon (refraction). Clerselier objected that there is no reasonable 

meaning to be attached to the model: things cannot actually work that 

way, it cannot be that light has both the desire to travel fast and the means 

to compute the quickest path. Fermat answered that light propagates as if 

it had both that desire and these means, and while the mathematical 

problem may not be an accurate description of what is happening at some 

deeper level of reality, it is good enough to make predictions which turn 

out to be in agreement with experiments. So the model should be kept as a 

working tool for scientists, until it is discarded for a better one, and the 

question of why it works and what it means should be left to philosophers 

to worry about. 

This was a very modern position, precisely the one Bohr would 

take against Einstein: do not worry about the meaning of the mathe¬ 

matical model, as long as it is logically coherent and it accounts for 

observations. Einstein claimed that God does not play dice; Bohr 

answered: "I don’t know; all I am saying is that, using quantum 

mechanics and probability theory, I can make very accurate predic¬ 

tions.” Clerselier claimed that nature cannot show purpose; Fermat 

answered: “I don't know; all I am saying is that, using a minimum 

principle and some calculus, I can account for the refraction of light.” 

Fermat and Bohr could not be farther from Leibniz, who believed that 

God had created the world with a definite purpose in mind, namely to 

make it as perfect as possible; that purpose must then lie at the heart 

of all physical laws, and must be their hidden meaning. One might 

even think that all of physics could be recovered from that single idea, 

and that a real scientist should aim for that inner core of reality; this 

is what Maupertuis will claim to achieve in the following century. But 

Fermat’s position was already firm: science does not need this. It 

would have been fascinating to watch that controversy develop. 

Unfortunately, Fermat died three years later, in 1665. The Cartesians 

faced a much more formidable adversary: Isaac Newton. 

7. P. Tannery and C. Henry, eds., Oeuvres de Pierre de Fermat (Paris: Gauthier-Villars 

et fils, 1891-1894). 
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Newton’s ideas did not meet with immediate success, even in 

Great Britain; and France, under the influence of Descartes’ disciples, 

remained a stronghold of resistance for fifty years. In France, the fight 

against Cartesian physics was part of the fight against Cartesian phi¬ 

losophy, and more generally the old order of things, the ancien regime 

which would finally be brought down by the 1789 revolution. The main 

leader in this fight was Voltaire, whose astonishing activity extended 

over all aspects of intellectual life. In 1733, he published, in English and 

in French, twenty-four Letters Concerning the English Nation, which con¬ 

tained an enthusiastic account of Newtonian physics. His companion 

of many years, the marquise du Chatelet, wrote an excellent French 

translation of the Principia, to which Voltaire contributed an introduction 

in verse. 

In the Paris Academy of Sciences, the fight quickly crystallized around 

a specific question, namely the shape of the Earth. It had been known to 

be round since one of Magellan’s ships had sailed westward from Spain 

to Spain between 1520 and 1522. But it was not a perfect sphere. Newton, 

working on the idea that the Earth is a liquid ball that had solidified, had 

predicted that it would be flattened at the poles, because its rotation 

when it was fluid would have created a bulge around the equator. Cassini, 

the French astronomer royal, a loyal Cartesian, believed the opposite: the 

Earth should be elongated at the poles, somewhat like a lemon. Measur¬ 

ing two arcs of meridian, one near the pole and one near the equator, 

would settle the question. Indeed, an arc of meridian is the distance 

between two points on the surface of the Earth which would be seen 

from the center at an angle of exactly one degree. If the Earth were a per¬ 

fect sphere, this distance would be the same all over the globe, and would 

be equal to P/360, where P is the circumference of the sphere. If it were 

not a perfect sphere, this distance would depend on where it is measured: 

if Newton is correct, it must be smaller near the pole than near the equa¬ 

tor, if Cassini is correct, it must be greater. 

In time, this question came to be seen as a litmus test between Carte¬ 

sian and Newtonian physics, so that the Academy decided to send two 

expeditions to measure the arc of meridian, one near the North Pole, the 

other near the equator. In 1736 the two expeditions left, one for Peru, the 

other one for Lapland. The latter was placed under the leadership of a 

mathematician aged thirty-four, named Pierre Moreau de Maupertuis, 

who in 1732 had written a brilliant essay on gravitation. He was one of the 

most remarkable characters of a time with no shortage of extraordinary 

figures. The Peruvian expedition took ten years, but Maupertuis was 

already back by 1737, sixteen months after he had left. The measurements 
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7- PIERRE MOREAU DE 

MAUPERTUIS (1698- 

1759) In this portrait, 

Maupertuis is represented 

flattening the Earth with 

his right hand, a reference 

to his famous northern 

expedition of 1736-1737. 

There is also, at the bot¬ 

tom, a reindeer pulling a sleigh, one ofthe many 

adventures that Maupertuis described vividly on his 

return to France. 

he brought, compared with the arc of meridian at the latitude of Paris, 

showed that Newton was right, and made Maupertuis a hero overnight. 

Father Outhier, who accompanied him, wrote an account of the expe¬ 

dition. He tells of the many difficulties that met them in the northern 

lands, of being devoured by mosquitoes and flies, of gliding on the snow 

with strange planks strapped to their feet, of pushing themselves for¬ 

ward with sticks, of continually falling down and not being able to get 

back on their feet. His book carries an illustration of “a Lapp walking on 

the snow with one pine plank at each foot, and a stick with a circle at the 

end so as not to sink into the snow.” True to this description, Maupertuis 

brought back with him the first pair of skis that had ever been seen in 

France. Two native Lapp girls followed him, and they were a great success 

in Paris, where they eventually found spouses and settled . Maupertuis 

became immensely popular, and in 1745, Frederick the Great, the 

philosopher-king of Prussia, called him to Berlin to preside over the 

newly founded Academy of Sciences. He held that position until his 

death in 1759, carrying out scientific activities on a great many different 
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subjects, from mathematics and physics to biology, as we shall see. We 

should note, for instance, that Maupertuis holds the honor of being the 

first scientist ever to have stated the idea that animal and plant species 

are not immutable. In his books, strangely titled The Physical Venus, and 

The White Negro, he puts forward the idea that populations can evolve 

because of external circumstances and the accumulation of small changes 

over long periods of time. Of course, he brings no serious evidence in 

support of these revolutionary ideas, but there is no lack of merit in put¬ 

ting them forward at a time when everyone else thought that elephants 

had been around since the beginning of the world. 

Maupertuis' was an eventful life, full of impressive achievements. He 

certainly left his mark on the world, and should be recorded as one of the 

leading figures of the French Enlightenment. Unfortunately, in his 

Parisian days, he fell afoul of Voltaire. The Parisian literary circles, the 

famous salons where wits were perpetually matched against each other 

and a sharp tongue was prized above everything else, were not the proper 

place for friendships to develop. All the leading intellectuals of that time 

were at odds with each other, Voltaire against Rousseau, d'Alembert 

against Diderot; but Maupertuis gained Voltaire’s special enmity, sub¬ 

dued at times, but always ready to surface. When Maupertuis came back 

from his northern expedition, and all of Paris sang his praises, Voltaire 

chimed in with these verses: 

You have gone to confirm, in places far and lonesome 

What Newton always knew without leaving his desk. 

True genius stays at home, while lesser men run to Lapland, hardly a 

laudatory account. Later on, things would become much worse. Voltaire 

had been corresponding with Frederick II of Prussia for a long time, and 

finally he accepted the king’s invitation to join his court in Potsdam. 

Their relationship soured, and a few years later Voltaire fled Prussia in 

humiliating circumstances, bringing with him an undying hatred of 

Maupertuis, who, as president of the Academy in Berlin, stood for all of 

Frederick’s intellectual pretences. From then on, ridiculing Maupertuis 

was a way of getting even with the king, and no opportunity to do it was 

ever missed. For instance, in 1753, during the Seven Years’ War, Mauper¬ 

tuis was captured by the Austrians, who at the time were fighting the 

Prussians, sent to Vienna, and then set free because of his renown as a 

scientist—hardly a dishonorable episode. Voltaire relates it as follows: 

"He has been captured by some Moravian peasants, who stripped him 

naked and emptied his pockets of more than fifty theorems.” 
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Enough of this for the moment. Let us go back to Maupertuis himself. 

Among his many scientific interests, Newtonian mechanics had always 

been prominent. In 1732, for instance, he had published a scientific 

memoir on the law of gravity, which had certainly been instrumental in 

his designation as head of the Lapland expedition. In 1744, just before 

leaving for Berlin, he published in Paris another memoir entitled 

Agreement between Several Laws of Nature Which until Now Had Seemed 

Incompatible. Under that pompous title, Maupertuis, after Descartes and 

Fermat, reopened the case of refraction. He dismissed both his predeces¬ 

sors, the first for being guilty of having likened light rays to material 

balls, the second for having assumed that light travels faster in air than in 

water, and he puts forward his own explanation: “After deeply pondering 

this matter, I have reached the conclusion that light, when it crosses from 

one medium to another, since it already abandons the shortest path, 

which is the straight line, may as well abandon the quickest one: for what 

precedence should there be between time and space? Since light cannot 

travel simultaneously the shortest way and the quickest one, why should 

it choose one rather than the other? So it follows neither; it takes a road 

which has a more real advantage: the path it travels is the one for which 

the quantity of action is least.’’ 

Note Maupertuis’ exasperating arrogance, which did little to make 

him popular among his peers. He goes on to explain what he means by 

action, or rather quantity of action. There is a real difficulty here, because 

that word has a familiar meaning that immediately jumps to mind, but 

which has nothing to do with the technical meaning Maupertuis has in 

mind: "When a body is carried from one point to another, some action 

is needed: this action depends on the velocity with which the body is 

moving, and the distance it is traveling, but it is neither the one nor the 

other, taken separately. The greater the velocity and the longer the dis¬ 

tance, the larger the quantity of action: it is proportional to the sum of 

distances traveled, each of which is multiplied by the velocity with 

which it is traveled.” 

In other words, if a body travels from point A to point B in a straight 

line, with constant speed v, the quantity of action for that motion will be 

the product mvl, where m is the mass of the body, v its velocity, and / the 

distance between A and B. If the path from A to B is no longer straight, 

but broken, consisting of straight portions traveled with constant 

speeds, the quantity of action for each portion much be computed 

according to the preceding formula, and they must all be added up to get 

the total quantity of action associated with the given motion from A to B. 

Maupertuis then shows that the sine law for refraction follows from this 
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formula: taking the refraction index n to mean that light travels n times 

faster in water than in air, and looking for the path of least action con¬ 

necting point A in air with point B in water, leads to the formula sin i-n 

sin r. Maupertuis concludes that “this quantity of action is what Nature 

is truly spending, and what it is trying to save as much as possible during 

lights travel.” 

For all of Maupertuis' crowing, Fermat was the one who was right: 

light travels faster in air than in water. If Maupertuis gets the sine law, 

although he made the wrong assumption, it is because he made an earlier 

mistake which, instead of compounding the second one, corrects it. In 

other words, his physics were doubly wrong, and he was lucky enough 

that it yielded the correct mathematical answer. In the tradition of 

Descartes, Maupertuis considers light to consist of massive particles, 

which accelerate as they enter water. But if their speed changes, so must 

their energy. A century later, Carl Jacobi would show that Maupertuis’ 

least action principle holds only in cases where the energy does not 

change during the motion (so-called conservative systems), so that the 

application Maupertuis made of his own principle to the refraction of 

light was illegitimate. That the end result was correct was just a fluke. 

There would be no more to say about the 1744 memoir, if it had not 

given its author the idea of a general minimum principle, applicable not 

only to light, but to all the problems of mechanics. In fact, Maupertuis’ 

closing words are that “all phenomena of refraction now agree with the 

great principle that Nature, to produce its effects, always acts by the 

simplest ways.” The next year, Maupertuis was in Berlin, and published 

a new memoir entitled The Laws of Motion and Rest Deduced from a 

Metaphysical Principle. This, in Maupertuis’ words, was the general prin¬ 

ciple that “the quantity of action necessary to cause any change in 

Nature, always is the smallest possible,” and was henceforth known as 

the least action principle. As an example, Maupertuis derived from this 

principle the motion of two bodies undergoing an elastic shock. Simul¬ 

taneously, the great Leonhard Euler published in Latin a book entitled 

A Method for Finding Curves Which Are Maximizing or Minimizing, with 

an appendix where he derived even more consequences of the least action 

principle. 

Maupertuis himself, leaving mathematics to better hands, waxed 

metaphysical and probed the deeper meaning of his discovery. In 1752, 

he published Essay in Cosmology, where he stated, with all due modesty, 

‘After so many great men who have worked on this matter, I am almost 

afraid to state that I have discovered a principle underlying all the laws of 

motion, which applies to hard bodies as well as elastic ones, from which 
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all motions of all corporeal substances depend.... Our principle, more in 

conformity with the ideas we should entertain about things, leaves the 

world in its natural need of the Creators power, and follows naturally 

from the use of that power.... How satisfying for the human spirit to 

contemplate these laws, so beautiful and simple, which may be the only 

ones that the Creator and Ordainer of things has established in matter 

to sustain all phenomena of this visible world.” As he saw it, the least 

action principle was Gods mark on his creation, and it fell to him, Mau- 

pertuis, to discover it by purely scientific means. God's operation in 

nature was now clear to the human eye: he always acts to spend as little as 

possible of that mysterious quantity mlv. This was indubitable proof of a 

divine purpose, and hence of the existence of a creator. Whoever finds 

that the laws of physics all tend to that single purpose of consuming as 

little as possible of that mathematical fuel will have to agree that these 

laws must be due not to chance, but to design. 

And what design could God have upon the world except to make it 

better? The actual world, ruled by the principle of least action, must be 

the best possible, and so it must be that the quantity of action somehow 

expresses the amount of good (or bad, rather, since God wants to make 

it as small as possible). In Maupertuis' words, still from his 1752 book, 

“Once it becomes known that the laws of motion are founded on the 

principle of the better, no one will doubt that they are due to an all- 

powerful and all-wise Being, who may have given bodies the power to act 

upon each other, or who may have used some other way which is even 

less known to us.” In fact, he claims a grand unification of his own, the 

unification of physics with metaphysics, and even with morals. In later 

work, he claims that a certain quantity of good (or bad) is attached to 

each of our actions, and that God has ordained the world so that, 

adding up the good and subtracting the bad, the balance will be found to 

be the greatest possible.8 In other words, this is the best of all possible 

worlds. From then on, thanks to Voltaire’s talent, Maupertuis is remem¬ 

bered as Doctor Pangloss, the incurable optimist of the novel Candide, 

who manages to find in minuscule consequences of major catastrophes 

evidence to reassert his steadfast belief that the good always outweighs 

the bad. 

This took some doing on Voltaire’s part. Maupertuis enjoyed a strong 

position, as president of the Berlin Academy of Sciences, and knew how 

to use it. The occasion was provided when Maupertuis got involved in a 

priority quarrel. In March 1751, a professor in the Netherlands named 

8. Essay on Moral Philosophy (1741). 
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Koenig, an old acquaintance of Maupertuis, published in the prestigious 

journal Acta Eruditorum a review of the least action principle, where he 

referred to a letter written by Leibniz in 1707. A copy of the letter was pro¬ 

vided as an annex to the paper, and it said the following: “The action is 

not as you had thought, time should enter into it, it is as the product of 

mass by distance and time. I have noticed that, in the modifications due 

to motions, it usually becomes a maximum or a minimum. One could 

derive from that several statements of great import; it could help to deter¬ 

mine the trajectories of bodies attracted by one or several others.” 

This looked like evidence that Leibniz had discovered the least action 

principle before Maupertuis. In itself it does not diminish Maupertuis' 

merit, the more so as Leibniz s letter (or rather, Koenig s copy) goes on to 

explain that he has given up working on dynamics, because his views 

have not been accepted. It is undoubtedly Maupertuis who introduced 

the least action principle to the scientific community, and who did the 

mathematical work Leibniz had barely sketched. Scientific discovery 

does not consist of stating ideas and leaving others to check whether 

they are correct or not. The gravitation law, for instance, is attributed to 

Newton, but he was not the first one to have stated it: Robert Hooke, for 

one, had done it before him. On the other hand, Newton certainly is the 

first one to have shown that all three Keplerian laws are mathematical 

consequences. There is no reference to Hooke in the Principia, but even if 

Newton had picked the idea of the inverse square law from someone else, 

there were very many other ideas lying around from which to pick. New¬ 

tons merit lies in choosing the right one, and in the wealth of conse¬ 

quences he derived from it with extraordinary mathematical skill and 

physical insight. 

Since Leibniz had not developed the idea of a least action principle, 

and had not even published it, Maupertuis could have let matters lie, the 

more so as Koenigs review was far from aggressive. Instead, he unwisely 

chose to accuse Koenig of forgery, and to bring the Berlin Academy to the 

rescue. Challenged to produce the original of Leibnizs letter, Koenig 

claims to have seen it at the home of a friend of his named Henzi, who 

unfortunately turned out to have been beheaded in Bern in 1749. No 

letter of Leibniz was found in Henzis papers, so on April 13, 1753, the 

Academy voted that “this fragment has been forged, either to disparage 

Monsieur de Maupertuis, or to exaggerate by a pious fraud the praise due 

to the great Leibniz.” It should be noted at this stage that another copy of 

Leibnizs letter was discovered in 1913, so that today there is little doubt 

as to its authenticity. No wonder that Koenig rose to the challenge: in 

September of the same year, he set forth his Appeal to the Public. After 
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that, Voltaire joined the fray. His book, Story of Doctor Akakia and the 

Native of Saint-Malo is a collection of pamphlets against Maupertuis, the 

general theme being that such a mass of nonsense had been published in 

recent years under the name of the respected president of the Berlin 

Academy of Sciences that it is simply not possible that they were authen¬ 

tic: they had to be the work of a young impersonator, whom Voltaire pro¬ 

ceeds to unmask. 

The opening lines set the tone: “The native of Saint-Malo9 had long 

fallen a prey to a chronic sickness, which some call philotimia10 and oth¬ 

ers philocratia.11 It went so strongly to his brain, and he had such 

strokes, that he wrote against medicine and against the proofs of God’s 

existence. Sometimes he imagined himself digging a hole to the center of 

the Earth, other times building a Latin town. He even had some revela¬ 

tions about the workings of the soul by dissecting monkeys. He finally 

got to the point where he thought himself to be greater than a certain 

giant of the preceding century, named Leibniz, although he was not quite 

five feet tall.”12 All these, of course, allude to ideas or experiments of 

Maupertuis, taken out of context. Later on, the impersonator is tried by a 

board of professors of wisdom, who rule that “it appears that this young 

author has taken but half of Leibniz’s idea; be it known that he never held 

a whole idea of Leibniz”—doubtless from lack of capacity. There is also a 

“memorable sitting” of an unnamed academy, where the president tries 

to support his ideas on biology by coupling a mule and a peacock, and 

germinating wheat spontaneously turns into fish terrines to feed the 

ladies. At the end, the young impersonator implores his pardon: “We ask 

God to forgive us for having claimed that there is no other proof of his 

existence than A plus B divided by Z, and we beg the gentlemen inquisi¬ 

tors not to judge us too harshly in this matter, which they do not under¬ 

stand any better than we do.”13 So much for Maupertuis view that the 

principle of least action shows Gods hand at work in nature. 

Voltaire's pamphlet was an instant success, and Maupertuis was 

ridiculed throughout Europe. He died in 1759 in Basel, a broken man. 

The final blow came after his death: it is Candide, Voltaire’s masterpiece, a 

satire of philosophical optimism which is read even today. Maupertuis is 

reborn as Doctor Pangloss, who professes that all is well that ends well 

in the best of all possible worlds.” Disasters continuously befall him. 

9. Maupertuis was born in Saint-Malo, on the northern coast of Brittany. 

10. In Greek, love of honors. 

n. In Greek, love of power. 
12. Voltaire, Histoire da docteur Akakia et da natifde Saint-Malo (Paris: A. G. Nizet, 1967). 

13.Ibid. 
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The beautiful castle where the Baron de Thunder-ten-tronckh entertains 

him as a professor of philosophy is destroyed and his benefactors killed. 

He wanders through Europe and South America, where he witnesses the 

horrors of war and of slavery. He is in Lisbon on November 1,1755, when 

an earthquake destroys the city and kills forty thousand. Nothing can 

cure Pangloss of his incurable optimism. At the end of the novel, medi¬ 

tating in his garden, he concludes that if all this had not happened, he 

would not be sitting there in the shade eating pistachios. Hardly a fair 

assessment of Maupertuis' science and philosophy. 

In scientific circles, however, life went on, and Maupertuis’ principle 

was subject to scrutiny. It states that, among all possible motions, nature 

picks the one with the least quantity of action. This seems like a simple 

statement, but it is not. It raises several questions. The first is how to 

define precisely the quantity of action, and we have seen how Maupertuis 

answered it. But there are others: what is meant by a “possible” motion? 

Since they do not occur, how are we to compare them with the actual 

motion, the only one we can observe? What would be meant by an 

“impossible” motion? In fact, the situation is so tricky that one century 

later, Carl Jacobi (1804-1851), in his celebrated Lectures on Dynamics, 

would declare that “this principle is stated in all treatises, and even in the 

best ones, those by Poisson, Lagrange, and Laplace, in such a fashion 

that, as far as I am concerned, it cannot be understood.” It fell to Leonhard 

Euler (1707-1783), Joseph-Louis Lagrange (1736-1813), William Rowan 

Hamilton (1805—1865), and finally Jacobi himself, to formulate Mauper¬ 

tuis’ ideas in a precise and workable way. 

The great Euler, prince of mathematicians, heads this list. In the 

appendix to his book of 1744, he applied the least action principle to sev¬ 

eral interesting examples, such as the free fall of a heavy body, or the 

motion of a body undergoing attraction to a fixed center. For that pur¬ 

pose, he introduced new ideas and methods into mathematics, thereby 

creating a new field, called the calculus of variations, which has been 

extremely active ever since. In addition, Euler extended Maupertuis’ defi¬ 

nition of the quantity of action, which was restricted to linear motions 

with constant speed, to much more general situations, where the body 

moves along a curve and the velocity changes with time. With Euler’s 

definition, the quantity of action can be computed for any kind of motion 

arising in Galilean mechanics or Newtonian physics. In fact, Euler's 

definition is so comprehensive, and the consequences he derives are so 

striking, that he might well have been considered the discoverer of the 

least action principle, if he had not wisely declined that honor. During 

the controversy with Koenig, Euler sided with Maupertuis; in 1753, he 
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published Dissertation on the Least Action Principle, where he refuted 

Koenigs criticisms and unequivocally gave the priority to Maupertuis: I 

will not comment here on the observation I have made that in the 

motion of heavenly bodies, and more generally in the motion of all bod¬ 

ies attracted by a center, if at any time one multiplies the mass by the dis¬ 

tance traveled and by the speed, the sum of all these products always is 

the smallest possible. Since this observation appeared in print only after 

M. de Maupertuis had exposed his principle, it cannot detract from its 

novelty.” 

"Euler, a truly great man, left the least action principle with the name 

it already had, and Maupertuis the glory of its discovery, but he turned it 

into something new, practical and useful.” This is how Mach, in his His¬ 

tory of Mechanics, summarized Eulers contribution.14 In 1754, a young 

mathematician named Lagrange, inspired by Eulers work, discovered a 

general method for solving problems in the calculus of variations. Cen¬ 

tral to his approach was a system of equations, now called the Euler- 

Lagrange equations, and in 1756, he showed how all of Galilean 

mechanics can be derived from the least action principle by a simple 

application of his general method. In Lagrange’s words, a principle is "a 

simple and general method for solving all imaginable problems in 

dynamics, or at least to write the corresponding equations.”15 If such a 

principle is not known, "one would always need a particular sleight-of- 

hand to unravel, in each problem, the forces which should enter into 

consideration, which made these problems exciting and competitive. 

On the other hand, once such a principle is known, the least action 

principle, for instance, it no longer requires creativity and ingenuity to 

solve problems: all one has to do is to apply the standard method, to v, it, 

the general principle. The excitement and competitiveness may be gone 

from the field, but it now is open to all, and problems can be solved 

much more efficiently; researchers have given way to engineers. After 

Lagrange, solving problems in mechanics, that is, finding the equations 

describing the motion of rigid bodies or systems of particles, will no 

longer require the genius of Galileo or Fermat; it will simply be a matter 

of having learned and understood the Euler-Lagrange equations. This is 

the essence of scientific progress. 

As Mach puts it, "Science itself can be considered as a minimum 

problem, consisting in accounting for facts as perfectly as possible, at the 

14. Ernst Mach, Die Mechanik in ihrer Entwicklung historisch-kritisch dargestellt (Leipzig: 

Brockhaus, 1883); English translation by Thomas J. McCormick, The Science of Mechanics. 

A Critical and Historical Exposition of Its Principles (Open Court, 1893). 

15. Analytical Mechanics (1788), 179. 
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smallest intellectual expense.” Lagrange summarizes half a century of 

work in his epoch-making treatise, Analytical Mechanics, first published 

in 1788, and in the introduction he proudly declares: “No pictures are to 

be found in this book. The methods I explain need neither construc¬ 

tions, nor arguments from geometry or mechanics, but only algebraic 

operations, carried out in an orderly and uniform fashion. All who like 

calculus will enjoy seeing mechanics becoming one more branch of that 

discipline, and will be grateful to me for having extended its domain.” 

With this declaration, one can see what degree of maturity had been 

reached by mechanics: there was no more need to imagine the physical 

system one was studying; one could write down directly the equations of 

motion. 

Lagrange s point of view, that mechanics is about writing down sys¬ 

tems of equations and solving them, was dominant until the end of the 

nineteenth century, when Poincare brought mechanics into geometry. 

Until then, Lagrange’s Analytical Mechanics remained the basic refer¬ 

ence, and its influence was pervasive in teaching and research. The first 

part of the book is devoted to explaining the four great principles of 

mechanics, among them the least action principle, which Lagrange 

states essentially as Euler did. However, for reasons we will go into later 

on, he will not use it in the rest of his treatise, preferring to rely on other 

principles of mechanics. As a result, he is rather sketchy in describing 

the least action principle, and leaves the reader with unresolved doubts 

and ambiguities. For instance, it is not obvious what the “possible” 

motions are which the real motion is to be compared with, or how the 

quantity of action is to be computed along these unreal motions. The 

least action principle states that, of all possible motions, only one will 

actually happen, the one that yields the least quantity of action, but giv- 

ing a precise mathematical meaning to this statement is not as easy as it 

seems. In fact, one had to wait for Hamilton and Jacobi to get a fully sat¬ 

isfactory account. 

The modern statement of the least action principle is formulated, not 

in the standard three- or two-dimensional space where motions take 

place, but in the so-called phase space, which is the main discovery of 

Hamilton. The basic idea is to record, at every instant, not only the posi¬ 

tion of the moving body or system under consideration, but also its 

velocity. The succession in time of positions and velocities defines a path 

which is no longer in the standard space, as it would be if only positions 

were taken into consideration, but in a phase space, with twice as many 

dimensions, and it is this path which should be considered when apply¬ 

ing the least action principle. I shall give details and examples in later 
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tion that light always picks the shortest path to travel from 

one point to another. 

chapters; suffice it at this point to say that, with the introduction of 

phase space, Hamilton and Jacobi found the right mathematical setting 

for the least action principle. And they also found out something more, 

namely that this principle is misnamed: the quantity of action is not 

made as small as possible (minimized), or as large as possible (maximized), 

it is made stationary. 

Early on, it had been pointed out that the quantity of action is not 

always minimized. In 1752, for instance, one Chevalier d’Arcy sent a 

memoir to the Paris Academy of Sciences, in which he studied the reflec¬ 

tion of light on the inside of a spherical mirror. Let us denote by P the 

point where light is emitted, and O the center of the sphere. Chevalier 

dArcy shows that the least action principle holds only if P is closer to the 

mirror than O; if it lies farther away, the ray of light starting from P and 

hitting the mirror perpendicularly is not the shortest one from P back to 
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P. Strangely enough, not only Maupertuis, but Euler and Lagrange over¬ 

looked this example, and held throughout their lives the conviction that 

actual motions always minimize the quantity of action among possible 

ones. Hamilton was the first to analyze the situation correctly, and to 

state that the quantity of action is actually made stationary. 

The concept of a stationary path really belongs to mathematics. It is 

like the sweet spot on a tennis racket: not apparent on inspection, but 

clear enough to the player. It means that, first, one will compare the 

actual motion, or the corresponding path in phase space, only to those 

paths which are close by, in fact as close as possible and even closer. Sec¬ 

ond, the quantity of action will be insensitive to changes in the underly¬ 

ing path: small changes in the motion will cause even smaller changes in 

the quantity of action. The situation is similar to a mountain pass sepa¬ 

rating two peaks and two valleys. Peaks correspond to maxima, points 

where the altitude is highest, but the passes correspond to stationary 

points. To see it as a mathematician, one should imagine a heavy fog 

lying over the scenery, so that one cannot see any farther than one’s own 

feet; the mountain pass is recognizable by the fact that the ground is 

9- a stationary poi nt The solid picture represents the graph ofa function of 

two variables xand y. There are two peaks (on the left and on the right), and 

between them a mountain pass separating two valleys (one in front of the pass 

and one behind it). This mountain pass is located at a stationary point Cofthe 

function. The other part ofthe picture shows the level curves (points of equal 
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horizontal. At every other point, there will be a definite slope, down 

which water will flow, but at a stationary point water will stay in unstable 

equilibrium, uncertain which way to go. A geometrical abstraction of that 

situation would be a saddle: the stationary point is the only point where 

one can sit vertically. It is neither a top (point of maximum height) nor a 

bottom (point of least height), but it is the only point where the surface 

of the saddle is horizontal. At every nonstationary point, the saddle is 

sloped in a certain direction. At a stationary point there is no slope: a 

marble put exactly on that spot would remain there. 

Note that a peak or a lake would enjoy the same property: at the top of 

the peak, or at the bottom of the lake, the ground has to be horizontal. So 

maxima or minima are particular cases of stationary points; there are 

other kinds of stationary points than these two, as the preceding exam¬ 

ple shows. General stationary points are not as easy to visualize as max¬ 

ima or minima. This is probably the reason why Maupertuis, Euler, and 

Lagrange overlooked them and did not question the fact that the laws of 

mechanics would minimize the quantity of action. In his Lectures on 

Dynamics taught in 1842.—1843* Jacobi says that when the principle of 

height), as they would appear on a geographical chart of the area. They rise toward 

the two peaks, located at Q and R, and sink toward the two valleys, located at 

O and P. At the stationary point C, two level curves cross. All the points on the 

dotted lines lie at the same altitude. 
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least action is stated... it is usually asserted that [the quantity of action] 

must be minimum or maximum, instead of saying that it is stationary. 

The mistake is now so common, that it can hardly be held against those 

who make it.” He then proceeds to give another example where the quan¬ 

tity of action is not minimized: it is the motion of a body gliding without 

friction (or gravity) on the surface of a sphere. If the principle of least 

action were true, the motion would always take the body from one point 

to another by the shortest path. But the motion is easy to figure out: the 

trajectory is a great circle on the sphere, and the moving body accumu¬ 

lates loops around that circle. Certainly, once it has gone several times 

around the sphere, it is no longer taking the shortest path: all the loops 

are extra, useless additions to the distance traveled. 

It is a rare pleasure in mathematics to find mistakes of ones predeces¬ 

sors, especially if they have the caliber of Euler or Lagrange, and Jacobi 

really rubs it in: 

One even finds, concerning the matter of the shortest paths, a remarkable 

quid-pro-quo in Lagrange and Poisson. Lagrange very properly states that 

the quantity of action can never be a maximum, for, however long one may 

draw a curve on a given surface, it is always possible to draw a longer one; and 

he concludes that this quantity must always be minimum. Poisson, on the 

other hand, who knew that in certain cases,16 when the motion occurs on a 

closed surface and the quantity of action becomes too large, its value ceases to 

be a minimum, concludes that in such cases it must be maximum. Both con¬ 

clusions are wrong. In truth — the quantity of action can never be a maxi¬ 

mum; it can be either a minimum, or neither a maximum nor a minimum.”17 

One century after Maupertuis’ first memoir, we finally have a fully cor¬ 

rect and comprehensive statement of the least action principle. Unfortu¬ 

nately, mathematical precision has come at the expense of intuition. Paths 

have to be plotted in phase space, not in the two- or three-dimensional 

space where the motion actually takes place, and the quantity of action is 

evaluated by a complicated mathematical formula. More importantly, it is 

no longer a minimum: real motions do not always make the quantity of 

action as small as possible; they may merely make it stationary, which is 

another mathematical subtlety. We are far from Maupertuis’ simplistic 

idea of God saving on the quantity of action he needs to run the world. 

This idea had been shared by Euler. In his book of 1744, he had stated 

that “since the constitution of the universe is perfect, and completed by 

16. The case of the sphere, which we just discussed. 

17. Lectures on Dynamics (1866). 
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an all-wise creator, absolutely nothing happens in this world which can¬ 

not be explained by some argument of maximum or minimum; this is 

why there is no doubt at all that all effects observed in the world can be 

explained from final causes, with the method of maxima and minima, 

with the same success as from efficient causes.”18 What Euler is saying 

here is that one can actually teach mechanics and physics by starting 

from the idea that God wants to minimize the quantity of action spent in 

running the world and deriving its consequences. Another great mathe¬ 

matician of that time, who wrote an important Treatise on Dynamics 

(1758), Jean d’Alembert, took the opposite view: 

It seems to me that this should help us evaluate the proofs that several 

philosophers have given for the laws of motion and which rely on the final 

causes principle, that is, on the purpose that the Author of nature must have 

set himself when establishing these laws. Such proofs cannot carry convic¬ 

tion unless they are preceded by, and rely on, direct proofs drawn from prin¬ 

ciples which are closer to our understanding; otherwise, they would fre¬ 

quently lead us into error. It is because he followed that direction, because 

he believed it was part of the Creators wisdom to keep constant the quantity 

of motion in the universe, that Descartes got the laws of collision wrong. 

Those who would imitate him would indeed run the risk [of] being mis¬ 

taken as he was, or to state as a general principle something which happens 

only in certain cases, or finally to consider a fundamental law of Nature a 

mere mathematical consequence of a few formulas. 

One of the basic survival rules for the young scientist is to avoid con¬ 

troversies. Lagrange wisely sidestepped the whole issue. In his Analytical 

Mechanics, he stated four different principles, each of which can serve as a 

foundation stone for mechanics, and among them the least action prin¬ 

ciple. But he chose another one as a basis for his own exposition. In his 

own words, “I regard [it], not as a metaphysical principle, but as a simple 

and general consequence of the laws of mechanics. One will see, in vol¬ 

ume 2 of the Turin memoirs, how I used it to solve several difficult prob¬ 

lems in dynamics. This principle, combined with the one of conservation 

of energy, and developed according to the rules of the calculus of varia¬ 

tions, gives directly all the equations which are necessary to solve every 

problem, and hence a simple and general method for treating questions 

about the motion of bodies; but this method itself is nothing but an off¬ 

shoot of the one I will describe in the second part of this work, and which 

18. Method to Find Carves Which Are Maximizing or Minimizing. 
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has the added advantage of being derived from the first principles of 

mechanics.” 

Hamilton, as we have seen, made the point that, contrary to what 

Maupertuis, Euler, and even Lagrange had believed, actual motions do 

not minimize the quantity of action. This efficiently stripped the least 

action principle (now recognized to be misnamed) of all pretense to 

metaphysics. Whereas one could envision the Creator saving the fuel the 

universe is running on, it is very difficult to imagine him going to similar 

trouble just to keep the quantity of action stationary; it takes a mathe¬ 

matician to know a stationary path, and the comparative advantage of 

such paths over others is far from obvious. Hamilton rightly concludes 

that “though the least action principle has now taken place among the 

highest of physics, its pretensions to express a cosmological necessity 

based on the thrift of nature are now generally rejected. And this rejec¬ 

tion seems justified by the simple argument—among others—that the 

quantity which is supposedly saved is in fact often spent with unbounded 

prodigality.”19 Though its metaphysical status was gone, the least action 

principle still kept, in Hamilton’s eyes, a prominent position among the 

laws of mechanics; not so with Jacobi who, as usual, drove the nail into 

the coffin: 

One can find, in Eulers book On the motion of projectiles, which we quoted ear¬ 

lier, an example where this principle is used. After having established it in 

the case when there is a fixed attracting center, he cannot extend it to the 

case when there are two mutually attracting free bodies, because he did not 

know the conservation of energy; he is then content with saying that in this 

latter case the calculations would be very long, but that the principle of least 

action must remain valid anyway, for the foundations of a healthy meta¬ 

physics require that in nature, forces must realize the smallest possible 

action (according to him, because of gravity in the bodies). But there is no 

question here of a healthy metaphysics, nor even of metaphysics at all, and 

actually the only reason Euler could have written that is because he had been 

misled by the name of “least action.” 20 

This spelled the end of the least action principle as a metaphysical 

tool. The clinching argument in this controversy was Hamilton's discov¬ 

ery that the quantity of action is not minimized, but made stationary. 

19. “On a General Method of Expressing the Paths of Light, and of the Planets, by the 

Coefficients of a Characteristic Function,” Dublin University Review 1833. 
20. Lectures on Dynamics. 
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From then on, the least action principle became a purely mathematical 

tool, the usefulness of was not fully understood until the twentieth cen¬ 

tury. Before that, there was another challenge to overcome. 

The first attack came from Jacobi, still in his Lectures on Dynamics. He 

stated that “the importance of this principle is due, first to the way in 

which it enables us to write the equations of motion, and, second, to the 

fact that it gives a function which becomes minimum if the equations of 

motion are satisfied. Such a minimum always exists, but in general it is 

not known where: in earlier times, an overblown importance was attached 

to the fact that such a minimum exists at all, whereas the true importance 

of the principle is that this minimum can be given a priori.” It is not per¬ 

fectly clear what Jacobi meant. Apparently he was saying that it is no mira¬ 

cle that there is a quantity which the motion will minimize; the real won¬ 

der is that one knows what it is, namely the quantity of action, so that one 

can write it down beforehand and derive the equations of motion. I would 

dispute that claim, but it was carried further by Jacobis followers, most 

notably Mach. In his History of Mechanics, already quoted, he stated that 

the least action principle is basically empty, thereby echoing the objection 

of Clerselier to Fermat two centuries before: “In every motion, the actual 

trajectory will always appear as distinctly apart from the infinity of possi¬ 

ble ones. But, analytically, it means nothing else than the following: it is 

always possible to find formulas the variation of which, equated to zero, 

yield the equations of motion, for the variation can only vanish when the 

integral takes on a value which is uniquely determined.” This is even less 

clear than Jacobi, but the import is clear: the least action principle tells us 

nothing, except that the universe is deterministic, that is, that the motion 

is uniquely determined by its initial conditions. 

It is very strange that Jacobi and Mach, always so ready to pounce upon 

the mistakes of others, should be so definite while making so little effort to 

explain their arguments or support them mathematically. For in fact, they 

are wrong: the least action principle, even if one discards the idea of mini¬ 

mizing and reverts to stationary paths, tells us something more than the 

simple fact that physical laws are deterministic. One could write down 

deterministic laws of motion which do not follow from a minimum princi¬ 

ple, or a stationary path principle. In fact, it is a very interesting mathemati¬ 

cal problem, known as the inverse problem in the calculus of variations, to 

find all deterministic laws which follow from a stationary path principle, 

and to this day it is not fully solved. That the laws holding sway around us 

are of that type is a challenging fact, which tells us something about the 

structure of the universe. We shall explore this structure in later chapters, 

and identify it with a certain geometry of the phase space. 
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But we will remain on purely mathematical ground. Maupertuis’ dream 

has died with him, and now we shy away from any kind of philosophical 

interpretation of scientific theories. It may be for want of culture: scientists 

today are narrow specialists of one tiny field of knowledge, and often have 

very little experience of life outside universities or laboratories. For all his 

faults, Maupertuis was a much broader personality; his scientific work 

extended from biology to mathematics, he was a friend of philosophers and 

kings, and his experience extended far beyond academia. It may also be for 

the sake of prudence: in this past century, we saw many ideologies come 

and go, although they called themselves scientific and claimed to rely on 

scientific methods. Science itself has undergone many revolutions, quan¬ 

tum physics and molecular biology being the two paramount examples, 

which have made us acutely aware of the transitory character of knowledge. 

Galileo, Descartes, and even Maupertuis, who were the first ones aboard, 

may have had the feeling of discovering eternal truths, but this is no longer 

the case for scientists today. 

We are much closer to Fermat, with his lawyer’s training, who refused 

to commit himself to the meaning of anything, including his quickest path 

principle. However, he pointed out that, to the best of his knowledge, it 

worked, and that was good enough. All one can ask of a mathematical 

model is that it accounts for all the facts that it is supposed to describe, and 

that it is thrifty in basic assumptions. As Mach put it, science has to 

“explain facts as accurately as possible, at the least possible intellectual 

expense’’; the idea that there is some ultimate truth to be reached, that all 

facts can be accounted for with one basic principle, or a few of them, he dis¬ 

misses as “theological, animistic, or mystical conceptions.’’ In his great 

History of Mechanics, he shows how difficult it was to get rid of these sur¬ 

vivals from a time when science did not exist, when humans had to face 

alone the hardships of nature, and he denounces remnants of these “prim¬ 

itive” conceptions even in the greatest scientists of the eighteenth century: 

When we see that the French Enlightenment philosophers believed them¬ 

selves to be very close to their goal, which was to account for all of nature with 

physics and mechanics, and that Laplace imagined some demon who would 

be able to predict the state of the universe at any time in the future if he were 

given, at some initial time, all the masses with all their positions and veloci¬ 

ties, not only does this enthusiastic overestimation of the physical and 

mechanical ideas acquired in the eighteenth century seem very excusable to 

us, but it also is a comforting sight, noble and elevated, and we can sympa¬ 

thize from the bottom of our heart with this intellectual joy, unique in his¬ 

tory. Now that one century has gone by, and that we have had the time of 
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reflection, this view of the world seems to us no more than a mechanical 

mythology, in contrast with the animistic mythologies of ancient religions. 

In Mach’s view, there may be no end to scientific progress because 

there is no goal to be reached. It is a road without an end, but it is worth 

traveling: “Science does not claim to be a complete explanation of the 

world, but understands it is working toward a future conception of the 

universe.” The vision may never be complete, the grand unification of 

knowledge may stay forever in the future, and we may have to be content 

with partial views, ever more detailed and ever more disconnected. This 

is not satisfactory from a philosophical point of view, but it is not a real 

question for the practicing scientist; that there may be no ultimate truth 

or meaning is no impediment for day-to-day progress in science. 

Henri Poincare, perhaps the greatest mathematician of the twentieth 

century, went the last step by stating that science is not about truth, but 

about convenience: science is just a compact way of stating the facts. 

Instead of recording the motions of the planet Mars in the starry sky, is it 

not more efficient to know that Mars and the Earth both move around the 

Sun on elliptical orbits, and to derive the apparent motion of Mars as seen 

from the Earth from purely geometric arguments? And is it not even more 

efficient to apply Newtons law of gravity, so that all the orbits with all their 

perturbations can be computed from masses, positions, and velocities as 

observed today? Certainly a similar result could be achieved by using other 

models, for instance by assuming that the planets and the Sun revolve 

around the Earth in complicated orbits, but such models would have to be 

much more complicated to account for the same facts. In a famous book, 

Science and Hypothesis, published in 1902, Poincare went so far as to state 

that “these two sentences: ‘the Earth orbits around the Sun and it is more 

convenient to assume that the Earth orbits’ have precisely the same mean¬ 

ing.” Catholic circles seized this statement as a posthumous vindication of 

the condemnation of Galileo, and Poincare had to clarify his thought. In 

his next book The Value of Science (1905), there is a chapter about science 

and reality," where he states, “It will be said that science is but a classifica¬ 

tion, and that a classification can only be convenient, not true. But if it is 

truly convenient, it will be so not only for me, but for all human beings; it 

will truly remain so for our descendants; and it is also true that this cannot 

be due to chance. To sum up, the only objective reality is the relations 

between things, whence this universal harmony. To be sure, this harmony 

could never be conceived outside some mind that conceives or feels [these 

relations]. But nevertheless they remain objective because they are, will be, 

or will remain, common to all thinking beings. 
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Twenty years later, Ludwig Wittgenstein will sum it up in lapidary fash¬ 

ion: "The world is the totality of facts, not of things.”21 We observe facts, and 

we do not know what lies behind them. What a change since the great 

precursors, Galileo, Descartes, or Newton! They saw the world as a well- 

designed machine, and they were looking for the blueprints. Mach and 

Poincare, on the other hand, see scientists as individuals trying to gather 

information and store it in the most compact fashion, without much regard 

to the question whether the consensus they reach has some deeper mean¬ 

ing. Poincare will not look beyond the layer of facts: "The exterior objects, for 

instance, for which the word object’ has been coined, are indeed objects, and 

not fleeting appearances, because they are not only groups of sensations, but 

groups of sensations related by a constant link. It is this link, and this link 

only, that constitutes the object behind the sensations, and this link is but a 

relation." To take an example, a very young child, when shown a bright ball 

or another interesting object, will lose interest if it is hidden behind a screen; 

only at a later age will she go or reach behind the screen for the object. In 

time, she will learn that there is a new ball behind the screen, and since it is 

always so, she will learn to identify it with the old ball, and simply call it “the 

ball”: an object has been born. 

We are a far cry from Plato, for instance, who taught that the objects we 

observe are but images, or shadows, of originals, the only true and real 

Objects, which exist in a world above our own, the world of Ideas. After 

death, the souls of people leave their bodies for that higher world, where 

they are rewarded or punished according to their deeds, and where they 

contemplate the true Objects, as well as the great Ideas: the Good, the 

Beautiful, and the Truth. Then they are sent back to Earth in another 

body, and they keep a dim memory of what they have seen; the pale and 

corrupted copies they see in this world make them yearn for something 

else. Science, then, would be part of the great effort of recovering the lost 

truth. Poincare points out that science does not need that kind of belief: 

there is no need for objects to exist in any other way than to relate our sen¬ 

sations with common experience. Clearly there is no more room for meta¬ 

physics: science can be concerned with relating only facts, not things. 

Quoting Wittgenstein again, "Whereof one cannot speak, one must be 

silent.” Much more would be said about the least action principle, and 

Poincare himself was a major contributor. But Maupertuis' dream of 

science showing a hidden purpose in nature is over. 

21. Tractatus logico-philosophicus (1921). 
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(chapter 4) 

From Computations to Geometry 

the combined efforts of Joseph-Louis Lagrange,William Rowan 

Hamilton, and Carl Gustav Jacobi succeeded in turning the physical in¬ 

sight of Galileo into a coherent and comprehensive mathematical theo¬ 

ry. Using the mathematical tools which were developed in the eighteenth 

century, they discovered a general method to write down the equations of 

motion for any conceivable mechanical system, submitted to a variety of 

forces and constraints. Their method is the mathematical foundation of 

classical mechanics: the equations of motion of any mechanical system 

(provided there is no dissipation of energy) always are particular cases of 

the so-called Euler-Lagrange equations. 

Neither Lagrange, nor Hamilton, nor Jacobi, nor any of their follow¬ 

ers laid much stress on the least action principle. It was a subject best 

avoided, and if it was mentioned at all, it was described as irrelevant or 

useless. Lagrange, for instance, stated that the least action principle was 

“a simple and general consequence of the laws of mechanics,” and went 

on to explain that it was a convenient way of teaching results which have 

been obtained by other methods. This was the prevailing position un¬ 

til Henri Poincare, one century later, set classical mechanics on a new 

course. But the old mistrust survives: even today, I would be hard put to 

mention a textbook or treatise on classical mechanics which gives more 

than passing mention to the least action principle. 

Lagrange, Hamilton, and Jacobi concentrated their efforts on solv¬ 

ing as many problems as possible. That is, for any given problem in 

mechanics, they wrote down the equations of motion, and then they 

tried to solve these equations. This is called the analytical approach 

to mechanics, in contrast to earlier methods which relied on geometrical 

drawings and special properties of curves, as in Newtons Principles. In 

his seminal work, called Analytical Mechanics, the first of many treatises 

by many authors in many years to come to bear that title, Lagrange gave 
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a general method, building upon earlier work by Euler, for writing down 

the equations of motion, taking into account the internal structure of the 

moving objects and the external forces and constraints, thereby fulfilling 

the first part of the program. 

The second part was left unfulfilled. Lagrange gave no general method 

for solving the equations of motion. To solve an equation means to com¬ 

pute the state (position and velocity) of the system at any future time 

from its state when the motion starts. This can be done either by a com¬ 

puter program (the result is then given as a set of numbers) or by hand 

calculation (the result is then given in terms of known functions). The 

former was not available in Lagrange’s time, and we are left with the lat¬ 

ter: expressing the values of the observable quantities in terms of their 

values in the beginning and after the elapsed time. Numerous exam¬ 

ples of this had been given in the years before Lagrange’s time, the most 

famous one being Newton’s solution of the two-body problem, so that 

Lagrange may well be excused for believing that this was a general fea¬ 

ture, and that the equations of motion could always be solved in this 

fashion, given sufficient ingenuity. In fact, this is not the case, as Poin¬ 

care showed a century later: there are only a very few problems in classi¬ 

cal mechanics for which the equations of motion can be solved. But this 

was far beyond the mathematical horizon of Lagrange, who may have 

hoped that the future would provide a general method for solving the 

equations which bear his name. Meanwhile, he solved as many problems 

in mechanics as he could, and left the remaining ones for others to 

tackle. 

Problems for which the equations of motion can be solved are nowa¬ 

days called integrable, in deference to the ancient usage, whereby one 

talks of “integrating” equations instead of solving them. The first inte¬ 

grable problem is of course the pendulum problem, either in its simple 

Galilean version, or in the more refined ones studied by Huygens. As we 

have seen, Huygens, and the other mathematicians working on such 

problems, such as the Bernoulli brothers or Newton himself, used geo¬ 

metrical methods. Their proofs rely on special properties of certain 

curves, such as the cycloid or the ellipse, and cannot be extended to other 

situations. Leonhard Euler was the first to consider the problem in full 

generality. His book A Method for Finding Curves Which Are Maximizing or 

Minimizing, published in 1744, was read ten years later by the young 

Lagrange, who devised his own method, for which he coined the name 

“calculus of variations,” and sent it to Euler in a letter dated August 12, 

1755 (it should be noted that Lagrange was nineteen at the time). Euler, 

always a generous man, adopted Lagrange’s method and terminology. In 
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the introduction of Eulers 1766 book, Elements of the Calculus of Varia¬ 

tions, we find an account of theses momentous events: 

All natural approaches to the problem should be free from any geometric 

consideration. And the greater the hope to open up a new field to calculus, 

the greater the difficulties to overcome to apply it to this type of problem. 

Even though I have devoted to this question much time and attention, and I 

have shared my hopes on this matter with many of my friends, it is this deep 

mathematician from Torino, Lagrange, who was the first to succeed, and to 

have reached by pure calculus the same conclusions I had obtained earlier by 

geometric considerations. In addition, his solution opened up a whole new 

chapter in calculus, whereby the domain of this discipline was increased 

substantially. 

Euler s book on the calculus of variations is a remarkable work, the 

first treatise on the subject, and it is quite appropriate that the funda¬ 

mental equations now are known as the Euler-Lagrange equations. There 

are two appendixes, which are of even greater interest. The first one stud¬ 

ies the equilibrium position of load-bearing beams. It is the first appear¬ 

ance in scientific literature of the phenomenon known as buckling: a ver¬ 

tical beam, on the top of which a heavy load is laid, will stay vertical if the 

weight it carries is less than a certain critical value. But if the stress 

crosses the threshold, then the beam suddenly bends sideways (and usu¬ 

ally breaks in the process). This phenomenon is much studied nowadays, 

and it is remarkable that Euler noticed it at such an early stage. In the sec¬ 

ond appendix, Euler studies the motion of objects in the vacuum, subject 

to gravity or other forces, and shows how Maupertuis least action princi¬ 

ple, combined with the newly discovered rules of the calculus of varia¬ 

tions, yields the equations of motion. It is the first time that the least 

action principle was used in full generality, Maupertuis himself having 

never applied it except to very simple cases. 

“The most important part of this book,” says Jacobi in a 1837 talk, “is 

a small appendix, where it is shown that for certain problems in 

mechanics, the trajectory followed by the moving body achieves a mini¬ 

mum (only plane motions are considered here). It is this appendix 

which gave birth to the whole of analytical mechanics. Some time after 

its publication, Lagrange, perhaps the greatest mathematical genius 

since Archimedes, came forward with his Analytical Mechanics. ... By 

generalizing Euler’s method, he discovered his remarkable formulas, 

which contain in a few lines the solution of all the problems of classical 

mechanics.” 
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Of course, Jacobi was overly optimistic, for Lagrange’s Analytical 

Mechanics contains the equations, not the solutions, as we pointed out 

earlier. It was nevertheless a tremendous intellectual achievement. Let 

us recall one more time Lagrange's proud introductory words: “No pic¬ 

tures are to be found in this book. The methods I explain need neither 

constructions, nor arguments from geometry or mechanics, but only 

algebraic operations, carried out in an orderly and uniform fashion. All 

who like calculus will enjoy seeing mechanics becoming one more 

branch of that discipline, and will be grateful to me for having extended 

its domain.” After Euler's and Lagrange’s work, no more pictures were 

needed, nor any knowledge of geometry; all problems of mechanics 

could be formulated and the equations written down in a systematic 

way. Analytical Mechanics proceeded to give examples, the most promi¬ 

nent one being the mechanics of rigid bodies. 

A rigid body cannot be assimilated to a point, because it has a certain 

shape. Its position is not given by its location only; one also has to tell 

how it is oriented in space: is it upside down, or turned sideways? Six 

numbers are enough to fully define the position of a rigid body, three for 

the location and three for the orientation. It follows that six more num¬ 

bers would be needed to specify the velocity: three to tell us how it is trav¬ 

eling through space, and three more to tell us how its orientation is 

changing. In contrast, three numbers only are needed to give the posi¬ 

tion of a point mass, and three more for its velocity, six numbers in all, 

against twelve for a rigid body. Describing the motion of a point mass 

was the basic achievement of Galileo and his followers, and Lagrange’s 

book gives a complete account. Next in the line of complexity is the 

motion of a rigid body, and it is certainly much more important, for point 

masses are mathematical fictions only (imagine a body which is infi¬ 

nitely small and yet carries mass). No wonder attention was turned to 

studying the motion of rigid bodies very early on. 

Unfortunately, that problem cannot be solved in full generality. We 

now know that one can solve the equations of motion for a rigid body 

only in very special cases; these are called the integrahle cases. These cases 

were discovered through the efforts of generations of mathematicians, 

and the search for more is going on even today. It may be worthwhile to 

give a brief account of this exploration. 

In his 1760 book Theory of Motion of Solid or Rigid Bodies, Euler 

showed that the motion of a rigid body can be understood as the sum of 

two independent motions: the center of mass moves as if it were a single 

point concentrating all the mass of the rigid body, and the orientation 

along the trajectory is the same as if the rigid body were moving freely 
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around its center of mass. So the general problem splits into two sub¬ 

problems: find the motion of a point mass subject to certain forces, and 

find the motion of a rigid body fixed at its center of mass and subject to 

certain forces. The first problem is well understood, and we are left with 

the second one. 

Euler solved it in the special case when the forces applied to the rigid 

body are nil—the case of so-called free motion. In that case, the equa¬ 

tions of motion can be solved. Eulers solution will tell us, for instance, 

how a rigid body will move in intergalactic space: it will travel in a 

straight line, since there are no forces acting on it, while rolling over itself 

in a way described by Euler s equations. It will not tell us how a rigid body 

would fall to Earth, for instance, for in that case there are forces acting, 

namely gravity. This problem cannot be solved in full generality, and 

solutions have been found only in special cases where the rigid body sat¬ 

isfies additional symmetry requirements. The first such case was treated 

by Lagrange himself: it is the case when there is an axis of symmetry (the 

center of mass then lies on that axis). Tops are usually built according to 

Lagrange’s requirement, and this is why textbooks on classical mechanics 

still feature detailed studies of spinning tops: not because of a special 

interest in outdated childrens games, but because it is one of the very few 

cases when the equations of motion can actually be solved. A century 

later, in 1888, Sofia Kovalevska found another (very special) case of com¬ 

plete integrability, and this is basically it. We cannot solve the equations 

of motion for rigid bodies under gravity, except for the integrable cases 

described by Lagrange and Kovalevska. 

Let me try to describe in more detail what I mean by this last state¬ 

ment. A solution of the equations of motion for a rigid body (the so- 

called Euler-Lagrange equations in a particular case) would be a set of 

twelve mathematical relations giving the position and velocity of the 

rigid body at any time in terms of the position and velocity when the 

motion was initiated (or when observations started) and elapsed time. 

Given any initial position and velocity, these relations define subsequent 

positions and velocities as functions of time, thereby defining the associ¬ 

ated trajectory of the motion. Such relations should, in addition, be com¬ 

putable: it is not enough that they exist; there should also be a practical 

way (an algorithm) of computing the position and velocity from the ini¬ 

tial data for any subsequent time and with any degree of accuracy. This 

will be the case, for instance, if these relations can be expressed in terms 

of standard functions, likey = x2 or y = sin x, and this is what Euler, 

Lagrange, and Kovalevskaya managed to do for some special cases, corre¬ 

sponding to integrable systems. 
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Unfortunately, as we stated before, these cases are really special. In 

general, the motion of a rigid body is a nonintegrable problem. This 

means that we cannot follow all the trajectories of the motion forever, as 

we could in the integrable case. As the saying goes, one can fool all of the 

people some of the time, and some of the people all of the time, but one 

cannot fool all of the people all of the time. Similarly, in a nonintegrable 

problem, one can follow all of the trajectories for some of the time and 

some of the trajectories all of the time, but one cannot follow all the of 

trajectories for all the time. For instance, nowadays we have ways of find¬ 

ing periodic trajectories in nonintegrable systems: such trajectories close 

upon themselves, which means that the underlying mechanical system 

indefinitely goes through identical positions and velocities at regular 

intervals. Periodic trajectories certainly can be followed all of the time, 

for they are simply repeating themselves, but even the neighboring tra¬ 

jectories, starting from nearby positions and velocities, may very quickly 

separate from the periodic one and run out of reach of our computa¬ 

tions. 

In classical mechanics, nonintegrable problems are the rule and 

integrable ones the exception. They are a very atypical and restricted 

class. This was not properly appreciated until the work of Henri 

Poincare, in the late years of the nineteenth century. All his predeces¬ 

sors concentrated on finding integrable problems, or on investigating 

mechanical systems which are close to being integrable. This probably 

was the best that could be done at the time, long before computers were 

invented, but the drawback of this line of research was that too much 

familiarity with integrable systems led to the idea that they were some¬ 

how typical, and that their properties gave some indication of what 

happened in more general situations. For instance, it was generally 

believed that physical systems obeying Newtons laws would have pre¬ 

dictable motions and exhibit long-range stability. Today it is well- 

known that such systems are much more likely to have chaotic behavior. 

It is a testimony to the power of education that classical mechanics 

could operate for so long under a mistaken conception. Teaching and 

research concentrated on integrable systems, each feeding the other, 

until in the end we had no longer the tools nor the interest for studying 

nonintegrable systems. 

Wrong as it was, this view of mechanics left a deep imprint in philo¬ 

sophical thought, so it is worthwhile to describe it in more detail. What 

are the main characteristics of integrable systems, and how do they 

extend to natural sciences at large? First of all, the equations of motion 

can be solved, meaning that all the trajectories can be computed to any 
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future time and any desired accuracy. As a consequence, any future state 

of the system can be fully predicted from current data. Not only are inte- 

grable systems predictable, they are also stable, which means that any 

small change in the state (position and velocity) of the system at any 

given time will lead to similarly small changes at all subsequent times. In 

other words, for such systems, effects are proportionate to causes: small 

perturbations, a butterfly flapping its wings for instance, will not develop 

into major turbulences, such as a tropical thunderstorm. 

As we shall see in the next chapter, both these properties, pre¬ 

dictability and stability, are special to integrable systems, and we will also 

see examples of mechanical systems which are unpredictable and unsta¬ 

ble. However, since classical mechanics has dealt exclusively with inte¬ 

grable systems for so many years, we have been left with wrong ideas 

about causality. The mathematical truth, coming from nonintegrable 

systems, is that everything is the cause of everything else: to predict 

what will happen tomorrow, we must take into account everything that 

is happening today. Except in very special cases, there is no clear-cut 

“causality chain,” relating successive events, where each one is the (only) 

cause of the next in line. Integrable systems are such special cases, and 

they have led to a view of the world as a juxtaposition of causal chains, 

running parallel to each other with little or no interference: here I am 

walking down the street, minding my own business, blissfully unaware 

that the wind is blowing over the rooftops. Why should I care? The wind 

belongs to another causal chain, developing independently from mine, 

according to different rules, and there are many others going on at the 

same time that I do not have to keep track of. Moreover, I expect that the 

world is predictable and stable: I will certainly reach the appointment I 

started out for, and if I am five minutes late now, I will arrive about five 

minutes late. 

But this view may be shattered by an unexpected event: the wind 

blows off a tile from the roof, and it falls on my head, canceling all 

future appointments. Two seemingly independent causal chains have 

turned out not to be independent after all, and this sad event is the 

result; it might be said to have two causes instead of one, my rushing to 

an appointment and a particular gust of wind. In the classical analysis 

which prevailed in nineteenth-century philosophy, this is the place left 

for chance in a world which is otherwise fully predictable and stable, 

two independent causal chains may cross each other, and at the inter¬ 

section we find events which could be predicted neither from one 

chain alone nor from the other, and which therefore are attributed to 

chance. 
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I have never shared this view of the world. In the preceding, classical, 

example, if one really wants to analyze it in terms of interfering causal 

chains, one will find not two, but many, perhaps infinitely many. For if 

that particular tile (not the one right beside it) fell at that particular 

moment (not before or after), there must have been a reason, which is 

part of yet another causal chain: it may have been poorly built, or poorly 

fixed, or someone might have displaced it by walking on the roof, each of 

these opening up new questions, so that that single event will be shown 

to be part of an intricately woven tapestry where the threads are causal 

chains. Why did I have that appointment in the first place? How were 

the time and place decided upon? Why did the bus driver wait for me as 

he saw me running to catch the bus? Why did that person stop me along 

the way to ask me for directions? Each one of these events, if it had 

turned out otherwise, would have resulted in the tile falling earlier or 

later, near me and not on me, and each one therefore qualifies for being a 

“cause” of my death. In fact, almost anything one can think of, provided 

it happened before the fact, can be connected to the accident by some 

causal chain, and I could build a case against the whole world for con¬ 

spiring against me. 

The world does not separate into causal chains, arranging events lin¬ 

early, each one being the cause of its successor and the consequence of its 

predecessor. Each event is like the trunk of a tree, plunging a network of 

roots deep into the past, and raising a crown of branches high into the 

future. There is never a single cause for any event: the deeper one delves 

into the past, the more antecedents one finds for any particular occur¬ 

rence. Nor is there a single thread of consequences: the farther one looks 

into the future, the wider each singular event casts its net. Blaise Pascal 

once remarked that if the nose of Cleopatra had been shorter, the face of 

the world would have been changed. Indeed, in a famous episode from 

Roman history, during the battle for power after the assassination of 

Julius Caesar, the main pretender, Mark Anthony, was so much in love 

with Cleopatra that he took her with him during a crucial sea fight 

against Octavius at Actium, in 31 BC. When she took fright and left the 

battlefield, Mark Anthony followed her with his own galley, leaving the 

fleet in disarray at the flight of its commander. After defeating his rival, 

Octavius went on to become Augustus, the first Roman emperor. If 

Cleopatra’s nose had been shorter, goes the argument, in a time when no 

aesthetic surgery was available, Mark Anthony might not have fallen in 

love, and, being much the better commander, he would have won the bat¬ 

tle at Actium and succeeded Julius Caesar. What the long-range conse¬ 

quences would have been is open to debate, but one should note that 
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it was Octavius who changed the institutions of the Roman Republic, 

turning it into an empire which did not disappear from the European 

scene until 1806.1 

So long-range history does not split neatly into well-defined causal 

chains, running parallel to each other; every small incident may turn out 

to have unforeseen consequences. This is in stark contrast to the mathe¬ 

matical theory of integrable systems. It can be shown (indeed, it is the 

major result of the theory) that such systems do split into independent 

subsystems, which never interfere with each other. These subsystems are 

extremely simple; in fact each of them behaves like a Galilean pendulum. 

So an integrable system is simply a collection of pendulums, oscillating 

independently of each other. In this case, the concept of the causal chain 

is perfectly adequate. Each pendulum represents a causal chain. If I 

perturb the motion of one pendulum now, the other ones will not be 

affected, but that one will be; any future change in its position or velocity 

I can rightly see as the effect of the initial perturbation. Conversely, any 

global change in the full system splits into a series of changes for each 

subsystem, each of which has its original cause in some earlier perturba¬ 

tion. These causal chains never interfere, meaning that each pendulum is 

independent of the others; there is no room for chance in an integrable 

system. In addition, small perturbations today lead to small perturba¬ 

tions in the future, so that if I want a big change in the future I must 

inflict a big change today. If the world were an integrable system, the size 

of Cleopatra’s nose could not have had such a disproportionate effect. 

Reality lies somewhere between integrable systems, with their orderly 

succession of proportionate cause and effect, and nonintegrable ones, 

where everything depends on everything else, and nothing is too small to 

be taken into account. It is mostly a matter of the time horizon: in the 

long run, the world is a nonintegrable system. In the short run, if one 

wants to predict the weather tomorrow, for instance, or the position of 

the Moon one thousand years from now, integrable systems provide an 

excellent approximation to reality. At that range, predictions are safe, and 

we will be told with quasi-certainty whether it will rain tomorrow or 

whether there will be a solar eclipse in the year 2100. In the long run, 

however, things are different: we are not sure what the weather will be 

like in a hundred years (witness the debate on global warming), or where 

the planet Mercury will be in several billion years (there is a possibility 

that it may have drifted away from the Sun). The difficulty about making 

i. When Franz II of Ftapsburg, Emperor of Austria, renounced the title of Roman 

emperor. 
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10. the circular billiard table These two pictures represent the circular 

billiard from two different points of view. The first one shows a single trajectory 

of a ball starting at M0. Successive impacts, M0, Mv Mv ... occur at regular in¬ 

tervals co, so that the nth impact Mn occurs at an angle nco from the initial one. 

Because ofthe circular shape, at each impact point the ball hits the boundary at 

predictions at that range is that there are more and more factors to be 

taken into account, so many in fact that one does not really know which 

ones will turn out to be important. This does not mean that long-range 

predictions are impossible. There is constant progress in understanding 

underlying physical, chemical, and biological interactions, and in sheer 

computational techniques, so that the horizon of meaningful predic¬ 

tions is constantly pushed farther into the future. But there will always 

remain an outer limit beyond which we cannot look, and in many impor¬ 

tant instances it is still uncomfortably close. 

As an illustration of this transition from integrable systems to non- 

integrable ones, and the progressive breakdown of linear causal chains, 

we will devote the remainder of this chapter to the simplest possible 

system in classical mechanics: the motion of a ball on a billiard table. 

We shall assume that the ball is perfectly round, the bounces perfectly 

elastic, and we shall neglect the friction of the air and of the felt on the 

table. Once started, the ball moves indefinitely with constant speed, 
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M0 M1 M2 M3 M4 

X CO X + 2co x + 3<» X + 4co 3€ 

the same angle y, and bounces back at the same angle y, but on the other side 

of the ray through Mn. 

Each impact is characterized by its position and angle. The latter is constant 

(equal to y), and the position of the nth impact is given byx+ mo, where x is 

the position of the initial impact. By plotting the successive points (x + mo,y) in 

a rectangle, the horizontal side ofwhich runs from o to 360 degrees, and the vertical 

one from o to 180, we get the second picture. The successive points lie on a hori¬ 

zontal line, at the height y from the lower side. If the trajectory closes up after 

N impacts, that is, if MNcoincides with M0, then there are only N points on that 

line. This is the case of periodic motion. If not, then the successive points dot 

the whole line. This is the nonperiodic case, which is the most general one. 

and its trajectory between bounces is a straight line. The bouncing rule 

is the standard one: the incoming angle (called the angle of incidence, /) 

is equal to the outgoing one (the angle of reflection, r). 

It is the shape of the table which will determine whether the ball's 

motion is integrable or not, and, as we will see, it makes a huge differ¬ 

ence, Standard billiard tables are rectangular, but that will not be the case 

here. The ideal billiard tables we consider will have neither straight edges 

nor corners. The edge (let us henceforth call it the cushion in the billiards 

tradition) shall be one continuous smooth curve. We shall, however, 

require that any two points A and B on that edge can be joined by a 

straight line, that is, that the ball can roll directly from ,4 to B without 

having to bounce off the cushion first. This property is called convexity; 

all our billiard tables will be convex. 

The simplest example is when this edge is a circle. The ball’s motion 

then is quite easy to follow. Bounces occur at regular intervals, separated 

by a constant angle, say (*). Measuring angles from the first bounce, one 
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will find the second one at an angle 2(0, the third one at an angle 3(0, and 

so forth. If (0 happens to be a true fraction of 360 (all angles here are 

given in degrees, and 360° is a full circle), that is, if (0 = 360 p/q for some 

integers p and q, then this particular trajectory closes upon itself after q 

bounces; it will then have gone p times around the table. We call such a 

trajectory periodic. If, on the other hand, (O is not a true fraction of 360, 

that is, if (0/360 is an irrational number, then the trajectory never closes 

upon itself: the ball goes around and around the table, without ever hit¬ 

ting the cushion twice in the same spot. 

One can represent this simple mechanical system geometrically. Con¬ 

sider a rectangle with sides 360 and 90, lying on its long side. Each point 

of this rectangle corresponds to a pair (x,y), where the first number x 

gives the position over the long side (it is called the horizontal coordinate), 

and the second one,y, gives the position along the short side (it is called 

the vertical coordinate). In other words, choosing a point in the rectangle 

is tantamount to choosing two numbers x andy, with x lying between o 

and 360 and y lying between o and 90. Let us now interpret* andy in a 

different way. Choose a point A on the cushion (the edge of the billiard 

table), and mark it with a notch or a touch of paint; all angles will be 

measured from A A pair (x,y) will then represent a bounce, complete 

with the location of the bounce and the values of the angles of incidence 

and reflection. The first number, x, gives us a point M on the cushion, 

namely the only point M where the angle AOM is equal to * (here O is the 

center of the circular table). This will be where the ball hits the cushion; 

for instance,* = o means that the bounce occurs exactly at A, and so does 

* = 360. The second number,y, gives the incoming angle:y = o means 

that the ball is glancing in tangentially to the cushion;y = 90 means that 

the ball is hitting the cushion perpendicularly (and bouncing back on its 

own track). 

A trajectory of the billiard ball is nothing but an infinite succession of 

bounces, each of which is represented by a point in the 360 x 90 rectan¬ 

gle. The first bounce is represented by a point with coordinates (x^), 

where *j gives the position of the impact on the cushion, and yx the 

incoming angle. And so on, the nth bounce being represented by a point 

with coordinates (xn,yn), and n ranging through all the integers. In this 

way, we have a second geometrical representation of the billiard table. 

Originally, we saw it as an infinite sequence of line segments folded inside 

a convex box. Now we see it as an infinite sequence of points in a rectan¬ 

gle. The rectangle is, of course, much easier to draw (the picture is less 

cluttered), and it lends itself much more easily to analysis. Indeed, the 

impact points are arranged at regular intervals along the circle, so that the 
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sequence of angles xn is given by the simple rule xn + , = xn + (0. At each 

impact point, the incoming angley^ is the same; by an elementary geomet¬ 

ric argument, we find that this angle is equal to (0/2. So we haveyn = (0/2 

for every n. Each point (xn,yn) of the trajectory is at the same height 0)/2 in 

the 360 x 90 rectangle. 

If we put all this information together, and if we draw the sequence 

(x ,y ) corresponding to a particular trajectory, we find that all these 

points are located on the same horizontal segment of the 360 x 90 rec¬ 

tangle, at the height y = (0/2. The behavior of the xn will depend on the 

value of 0). If (0/360 is a fraction, say (0/360 = p/q with integers p and q, 

then there will be exactly q possible values for xn, corresponding to q 

different points on the horizontal segment y = (0/2. The trajectory will 

run through these q points, and then run through them again, in the 

same order: it is periodic. If 00/360 is irrational (meaning that it is not a 

true fraction), then xn will be evenly distributed on the horizontal segment 

y = (0/2: if you use a computer, you will see that segment becoming pro¬ 

gressively darker as the swarm of impact points settles over it. 

Conversely, every horizontal segment in the 360 x 90 rectangle hosts 

a whole family of trajectories. They all have the samey, which is the 

height of the segment, say (0/2. If we go back to the other geometrical 

representation, the circular billiard table, this means that they all impact 

the boundary circle at the same angle (O. There is a whole family of them 

because they differ by the positions of the impacts: given the first onexx 

all the others follow by repeating the relation xn +1 = xn + (0. Going now to 

the second geometrical representation, we find that all the points (xn,y„) 

fall on the given horizontal segment of height 0)/2. 

If we now look at this system through the eyes of a philosopher, we 

see two distinct causal chains operating side by side, without interfering. 

From the initial impact (x^yj), all the others follow, so that this initial 

impact can rightly be called the cause of all the other ones. We can be 

even more precise in our analysis of causality. If we change only x1( other 

things (namelyy j) being equal, then only the xn change, while theyn stay 

unchanged. If we change onlyy1( other things (namely xt) being equal, 

then only the yn change, while the xn stay unchanged. In other words, 

horizontal motion (thexn) and vertical motion (theyn) do not interfere: 

we have two independent causal chains. If we knowxx, then we can pre¬ 

dict all the following xn; the initial value of the other variable,y1( is irrele¬ 

vant for that purpose. If we knowyx, then we can predict all the following 

yn; the initial value of the other variable, xx, is irrelevant for that purpose. 

There is no loss of information during the motion. If we make a small 

error, of magnitude h, say, on the value ofyx, then we will make the same 
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'’■the elli ptic billiard table Its great axis (the horizontal diameter) has 

a length of 2 units, and its small axis (the vertical diameter), 1 unit. Its two foci 

F, and F, have not been represented; they are located on the horizontal axis, on 

both sides of the center o, at a distance of 0.866. The figure also shows the first 

impact points of three different trajectories, all starting at the rightmost point, 

with different angles. Note that the angle of impact is no longer constant along 

each trajectory, as it was in the circular case. 

error on all subsequent values yn, neither more nor less. Indeed, they all 

stay on the same horizontal segment in the 360 x 90 rectangle, and our 

initial mistake simply means that we have misjudged its height. 

This is wonderfully transparent, and it is exactly what most people 

have in mind when they think about causes and effects. Let us now com¬ 

plicate the system a little bit: give the table the shape of an ellipse instead 

of a circle. A simple way to construct an ellipse is to tie a string to two 

points Fl and F2 (called the foci of the ellipse), and to move a pencil along 

this string while keeping it taut. If the two foci coincide, F1 = Fv then the 

ellipse is just a circle. As Fx and F2 move apart, the ellipse becomes more 

and more elongated; it has two diameters, one (along FT ) longer than 

the other. 

The geometry of the elliptic billiard table is different from the geom¬ 

etry of the circular one. Bounces still occur according to the standard 

rule that the incoming and outgoing angles should be equal, but it no 

longer follows that these angles should be constant along a given trajec¬ 

tory: each of the successive bounces has its own angle of incidence. Two 

exceptions are the diameters of the ellipse: if the ball is started along 

F^i for instance, it bounces perpetually back and forth along that line, 

hitting the cushion perpendicularly every time. Three examples are 

given in figure 11. Another remarkable set of trajectories consists of the 
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ones which go through the foci. If the ball starts from Fv it has to go 

through F2 after the first bounce, then though Fl after the second, and 

so on, oscillating perpetually between the two foci. If a room is built in 

the shape of an ellipse, anyone standing at Fl will hear distinctly what is 

being whispered at Fv a phenomenon due to the concentration at one 

of the foci of the sound waves emanating from the other, and familiar to 

the visitors of science museums. 

As we did in the circular case, we can represent each bounce by two 

numbers x andy, where x gives the position of the impact on the cush¬ 

ion and y the incoming angle. In this way, every trajectory of the ball 

corresponds to an infinite sequence of points (xn,yn) in the 360 x 90 

rectangle. It is no longer the case that these points are arranged on a 

horizontal line: they create more complicated curves, which slice 

• Seriesl 

12. THE ELLIPTIC BILLIARD TABLE IN THE POINT/ANCLE REPRESENTATION 

In this picture, each impact of the billiard ball on the boundary of the table is 

represented by its position and angle. The position of the impact is given by its 

angle from the horizontal axis, as seen from the center of the ellipse, and ap¬ 

pears here as thex-coordinate, which ranges from -180 degrees (the rightmost 

point on the ellipse) to 180 degrees (the leftmost point). The angle of the impact 

ranges from o (normal, or perpendicular impact) to 90 degrees (tangential, or 

glancing impact). The ellipse is the same one as before, and the three curves cor¬ 

respond to the three trajectories we plotted in the preceding figure. They all start 

from the rightmost point (x= o) with different angles: 45 degrees (lower curve), 

63.4 degrees, and 71.6 degrees (upper curve). The interpretation is straightfor¬ 

ward. The first trajectory, for instance, will impact almost all points of the bound¬ 

ary; whenever it comes close to the rightmost point (x= o), its angle will be 

close to 43 degrees, and whenever it comes close to the leftmost point (x = 180 

orx = -i8o), its angle with the horizontal will be close to 70 degrees. 
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through the 360 x 90 rectangle, as the horizontal segments did in the 

preceding case. Mathematicians call this a foliation of the rectangle, and 

they refer to these slices as leaves of the foliation. Three such leaves, cor¬ 

responding to three different trajectories, are given in figure 12. Leaves 

are piled upon each other, and each point of the rectangle belongs to 

one leaf only. The same analysis that we did for the circular billiard table 

can be transposed to the case of the elliptic one. Each trajectory of the 

motion stays on one leaf. Therefore, there are really two independent 

causal chains. The first one determines on which leaf the motion will 

occur, and the second one determines the motion on that leaf. There is 

no loss of information: a small error in the initial position just means a 

small error on the position of the leaf, and this will not change with 

time. 

The elliptic billiard table behaves almost exactly like the circular one. 

Forecasting, for instance, is easy. Suppose we observe the initial state 

(XiOfi): the position of the impact is given by x: and the angle byyr We 

then draw the leaf of the foliation going through the point (x^yq): we 

know that all subsequent impacts will lie on that curve. This information 

restricts considerably the future behavior: after all, a curve is a very small 

portion of the rectangle, and we know that (xn,yn) cannot be found else¬ 

where. To put this in perspective, imagine that we are told that a treasure 

is hidden somewhere in a rectangle 360 miles long and 90 miles wide. 

Wouldn’t it be much better to know that, in fact, the treasure is hidden 

along some railroad tracks which happen to cross that region? This is 

how we will proceed with our forecasting: we first identify the appropri¬ 

ate leaf of the foliation; that is, we find the railroad tracks. We then follow 

the motion on the tracks. 

Alas, all these are very special properties of ellipses (and of circles, 

which are particular cases of ellipses). As soon as the table has a different 

shape, the billiard ball behaves very differently. We can still represent any 

trajectory by an infinite sequence of points in the 360x180 rectangle; as 

before, each bounce corresponds to a pair (x,y), where x gives the position 

of the impact on the cushion, andy gives the incoming angle. But, in con¬ 

trast with what happened when the table was circular or elliptic, these 

points no longer lie on a well-defined curve: they form a cloud. Sometimes 

the cloud covers the whole rectangle, other times some regions are spared. 

In the latter case, the cloud does not taper off, there is no smooth transi¬ 

tion from a dense cover to a lighter one, and then nothing: the boundary is 

always sharp. Pictures like figure 13 would call to mind the effect of buck¬ 

shot hitting a target, or a handful of sand strewn upon the ground, if it 

were not for these strangely sharp boundaries. 
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This striking difference means that the system is no longer integrable: 

in mathematical terms, a nonelliptic billiard table is a nonintegrable sys¬ 

tem. The difference can be told at a glance, simply by comparing figures 

14a and i4d, both of which represent a single trajectory of the billiard ball: 

there is no mistaking an integrable system with a nonintegrable one. But 

it goes much deeper than simple appearances: everything we said about 

causality and prediction for the elliptic billiard table breaks down. Sup¬ 

pose, for instance, that a trajectory starts from a point (xpjq), which rep¬ 

resents the first bounce: what can we say about the nth bounce? Well, it 

lies somewhere in the cloud, and if the cloud covers the whole rectangle, 

this is no help at all: there are no railroad tracks to save us, as in the case of 

the elliptic billiard table. If we really want to know something about the 

nth bounce, for instance its position on the cushion, the best we can do is 

to painstakingly retrace the whole trajectory: from the first bounce 

(xjOh) figure out the second (x2,y2); from the second one, the third 

(*3Oh): fr°m the third one> the fourth (x4,y4); until we reach the particu¬ 

lar bounce n we are interested in. Note that the information does not 

split: even though we are interested only in xn, the position of the nth 

impact on the cushion, we need compute not only the positions x of the 

intermediary bounces, but also their incoming anglesy. 

It so happens that nonelliptic billiard tables are chaotic systems: not 

only do computational errors accumulate, they blow up. As we compute 

the second impact, (x2,y2), we have to do some rounding off. It is impos¬ 

sible, and not even physically meaningful, to give the values ofx2 andy2, 

as the mathematician would want them, with an infinite succession of 

numbers after the decimal point. There has to be a cutoff somewhere, 

and this is indeed what computers do. The higher the precision required 

by the user, the farther away the cutoff, but it is always there. But cutting 

off the mathematical value means that some error, however small, has 

been made deliberately. Not only will this error be carried over to the next 

(third) bounce, and then on to the fourth, the fifth, and so on all the way, 

but it will also compound at a large rate, perhaps doubling at every step, 

so that eventually it will dwarf everything else, except, of course, all the 

other rounding errors which are being made at every step and which 

grow at the same rate. Very quickly, after as few as ten bounces, the com¬ 

putations are completely drowned in background noise, and the results 

we get no longer have anything to do with reality. In other words (in con¬ 

trast, again, with what happens when the table is elliptic), long-term pre¬ 

dictions for such billiard tables are impossible. 

In another contrast, the system no longer splits into independent 

causal chains. We saw how, in the elliptic case, the 360 x 90 rectangle was 
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traversed by curves (we referred to them as railroad tracks), and that if 

a trajectory started on one of these curves it stayed on it forever. Finding a 

trajectory then naturally splits into two problems, which can be solved 

independently: finding the right railroad track, and then finding the 

motion along that track. There is nothing like that in the nonintegrable 

case. As we have seen, there is no other way of finding a trajectory than 

actually computing it, from the first bounce to the one we are interested 

in, and incurring considerable loss of information at every step. The infor¬ 

mation does not split: to compute either x2 or yv we need to know both x1 

andy j. There is no way of arranging the calculations in two separate chan¬ 

nels, each of which would compute one-half the information without 
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using the other half. In philosophical language, there are no longer two 

independent causal chains: everything matters to everything else. The sys¬ 

tem can only be understood globally. 

There is no greater contrast than between elliptic and nonelliptic bil¬ 

liard tables. On the one hand, a completely transparent system, fully pre¬ 

dictable, ruled by two independent causal chains. On the other, an 

unpredictable system, where no single cause can be found for a single 

event: everything, always, has to be taken into account. The first is typical 

of integrable systems, which have been explored by Lagrange, Jacobi, and 

all the founding fathers of classical mechanics. The second is typical of 

nonintegrable ones, which were first discovered by Poincare around 
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13. A GENERAL billiard table Figure 13a is the point/angle representation 

of 30,000 impacts of a single trajectory of a billiard ball, when the table is con¬ 

vex, but not elliptic (think of an egg-shaped table). The starting point lies at the 

rightmost point of the table, and the initial angle is about 56.3 degrees (x = o, 

y = 56.3). It is a good example of a nonintegrable system, and the motion is obvi¬ 

ously chaotic. This is very different from the situation of figure 12, when the 

motion was integrable. It is no longer true that when the trajectory comes back 

near x = o, the angle will be close to y = 56.3; as the figure shows, the trajectory 

comes back nearx= o a great many times, and the impact angles are all dif¬ 

ferent, ranging from y = o to y = 65. The trajectory explores a large fraction (but 

not all) of the (x, y)-rectangle. To give a sense of the speed of propagation, figure 

13b shows the initial 10,000 impacts ofthe same trajectory. To give a sense of 

the inner structure ofthe cloud, figure 13c gives a detailed picture ofthe region 

-40 < x < 40, 20 < y < 60. 
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14- four steps to chaos These four pictures describe 30,000 impacts of 

a single trajectory, always starting at the rightmost point of the table with an 

angle of 56.3 degrees, as the table changes from a purely elliptic shape to an 

ovoid shape. Figure (a) is the elliptic case, and it is integrable, as we have already 

observed. In figure (b), the table is no longer elliptic, but is still close enough 
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for the system to remain integrable; note that at every point of the boundary, 

there are now two possible impact angles, instead of one in the elliptic case. 

In figure (c), the table is further away from being elliptic, and chaos sets in. 

Chaos is fully developed in figure (d). 
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1900, and which would have remained uncharted territory if the inven¬ 

tion of computers had not given us the means to explore them. Which 

are closest to the real world? 

There is no doubt about the answer, for integrable systems are brittle: 

they break as soon as one touches them. If the billiard table deviates ever 

so much from being elliptic, the system is no longer integrable, and chaos 

sets in. The same thing happens if the table is not perfectly horizontal; 

the slightest bump, the most modest tilt are enough. The transition from 

integrable to nonintegrable systems is quite interesting to observe. See, 

for instance, figure 14, which depict four steps toward chaos. Each step 

depicts a single trajectory of the billiard ball, starting from the same ini¬ 

tial bounce, but on four different tables. We start from a perfectly elliptic 

one, and we deform it progressively. As we drift away from the elliptic 

case, we see the trajectory fattening up: in the first picture it is a neatly 

drawn curve, in the last one it has become a cloud, gathered around the 

initial curve, but covering a large section of the 360 x 90 rectangle. This 

means that the system has become nonintegrable, and chaotic, but there 

still remains some predictability: after all, there are some regions of the 

rectangle that the trajectory cannot enter. In the second picture, for 

instance, where the perturbation is quite small and the table is very close 

to being elliptic, we see that, even though the trajectory is allowed to 

leave the “railroad tracks” of the first picture, it cannot wander very far 

from them. It has to stay within a certain distance of the tracks, and the 

smaller the perturbation, the smaller the distance; if the perturbation is 

zero, that is, the table is elliptic again, then the trajectory is back on the 

tracks. If we travel in the opposite direction, and increase the perturba¬ 

tion, making the table less and less elliptic, the allowed band along the 

railway track will increase until it finally covers the whole 360 x 90 rec¬ 

tangle. Seeing the allowed region growing from a neat curve to the whole 

rectangle highlights a whole range of nonintegrable systems, drifting 

progressively into unpredictability and chaos. 

This is precisely when the least action principle—better referred to, 

after the work of Hamilton and Jacobi, as the stationary action principle, 

or, in honor of its discoverer, Maupertuis’ principle—comes into its own. 

As Lagrange pointed out, it is little better than useless if we are concerned 

with integrable systems, for in that case we can compute all trajectories to 

any desired accuracy up to any length of time, way up to infinity. Anything 

we would ever want to know shows up in the calculations; there is nothing 

left for the stationary action principle to tell us. At best, it enables us to 

explain known results in a different way. But when the systems under 

investigation are not integrable, computations quickly break down, and 
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there is very little they can tell us about trajectories. As we shall see, 

Maupertuis’ principle then enables us to pinpoint some of these trajecto¬ 

ries and to follow them with mathematical accuracy. 

Nonintegrable systems, nonelliptic billiard tables for instance, do not 

have general solutions; this means that there is no direct way to compute 

their state at time t from their state at time o. There remains always the 

possibility to compute their state at time t by actually following the tra¬ 

jectory of the motion between o and t, but this procedure is fraught with 

rounding errors which accumulate over time, and which fairly often are 

amplified by the system. For integrable systems, there are shortcuts 

which give the result directly, and which avoid these pitfalls. But in the 

nonintegrable case, there is no shortcut, and one has to compute each 

trajectory individually; as a consequence, our range of investigation is 

quite limited. At the end of the nineteenth century, the path opened by 

Lagrange, Hamilton, and Jacobi had been fully explored, and yet the 

long-term dynamics of most mechanical or physical systems remained 

shrouded in mystery. 
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(chapter 5) Poincare and Beyond 

the great french mathematician Henri Poincare (1854— 

1912) was the first one to investigate successfully the long-term dynam¬ 

ics of planetary systems. This is known in mathematics as the three-body 

problem: two planets, one large and one small, gravitating around a star. 

The star is supposed to be large enough to be insensitive to the attraction 

of the two planets, and the large planet is supposed to be large enough 

to be insensitive to the attraction of the small one. The large planet then 

moves around the star in an elliptical orbit, according to the three laws of 

Kepler, and the whole problem then consists in determining the motion 

of the small planet. It was a very old problem, and a very important one, 

since it was the first step away from the two-body problem, which was 

completely solved by Newton. In addition, solving this problem would 

help astronomers understand the motion of the Moon: neglecting the 

attraction of the other planets on the Sun/Earth/Moon system, and the 

attraction of the Moon on the Earth, yields a three-body problem. 

In 1887, Oscar II, King of Sweden and Norway, under the influence 

of the Swedish mathematician Gosta Mittag-Leffler, created a one-time 

mathematics prize to celebrate his sixtieth birthday. This competition at¬ 

tracted much attention in the scientific world, and Poincare won it by 

submitting a memoir on the three-body problem. In this memoir, he es¬ 

sentially proved that the three-body problem was amenable to the old 

methods of Lagrange, Hamilton, and Jacobi, and that the long-range 

dynamics were quite regular. After the prize had been awarded, a young 

mathematician named Edvard Phragmen was assigned to proofread 

the prize-winning memoir and prepare it for publication. He found a 

mistake in the proof of the main theorem, and went to Mittag-Leffler 

for clarification. Mittag-Leffler wrote to Poincare, and after a while, 

Poincares answer came back: not only was the proof wrong, the result 

itself was wrong! Of course, Poincare was devastated, and worked night 



and day to completely rewrite his memoir, getting opposite results from 

the one he had found before. But by this time, the first memoir had gone 

to press. Mittag-Leffler recalled all the copies that had been sent around 

the world, and the memoir was reprinted in its new version at Poincares 

expense and resent to the subscribers of ActaMathematica in 1890. 

To circumvent the difficulties he had missed the first time around, 

Poincare had to introduce completely new mathematical methods. Later 

on, he developed them in his famous three-volume book, The New Meth¬ 

ods of Celestial Mechanics, published between 1892 and 1899, which 

remains to this day a classic of mathematics, especially the last volume, 

which lays down the foundations of modern chaos theory. 

One of the new ideas Poincare introduced was to use the stationary 

action principle to find closed trajectories of nonintegrable systems. 

These trajectories are the ones which close back upon themselves, mean¬ 

ing that if they have gone through a certain state, they will come back to 

it at regular intervals, like the hands of watch. The common length of 

these intervals is called the period, and the corresponding motion is 

called periodic. The trajectory of the Earth around the Sun, for instance, is 

approximately periodic, with a period of one year. If there were no other 

object than the Earth to gravitate around the Sun, then this trajectory 

would be exactly periodic, and all Kepler s laws would hold. But the pres¬ 

ence of the Moon, and of other planets as well, distorts the beautiful 

Keplerian motion in various ways, so that the resulting motion fails to be 

periodic. 

The New Methods of Celestial Mechanics is entirely devoted to the so- 

called three-body problem, which consists in describing the possible 

motions of three objects (say a sun and two planets, or a sun, a single 

planet, and its moon) attracting each other according to Newtons law 

of gravity. Although three objects only are involved, it is already an 

extremely complicated problem, and there are very many possible 

motions, most of which are not periodic. Why, then, go to all that trouble 

to find periodic motions? Why would such rare, and nontypical, trajecto¬ 

ries be interesting? In the opening pages of his book, Poincare asks the 

question with characteristic frankness, and gives a poetic and oft-quoted 

answer: “The reason the periodic solutions are so precious to us is that 

they are the only opening by which we can enter this hitherto inaccessible 

fortress.” 

The fortress he is alluding to is the long-term behavior of nonintegrable 

systems. Ever since Newton, mathematicians and astronomers had been 

trying in vain to have a theory of the Moon, for instance, which would 

enable them to predict eclipses much farther ahead than the few measly 
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centuries they could reach with their calculations. But the attraction of 

the Sun on the Moon turned this into a three-body problem, and one ran 

quickly into all the difficulties of making long-range prediction in nonin- 

tegrable systems. What Poincare is pointing out, in this famous quota¬ 

tion, is that periodic motions are the only ones which can be figured out 

completely, without fearing that the computational errors would accu¬ 

mulate or amplify, drowning the exact solution in background noise. 

Indeed, since these motions are periodic, they go through the same 

states at regular intervals, as a swinging pendulum comes back to the 

same position with the same speed. A periodic motion will come back 

exactly to its initial state, once (after one period has elapsed), twice (after 

two periods), three times, in fact, indefinitely: it never stops. So, if we 

have been able to figure out the initial state with an accuracy of 1/1000, 

say, there is no question that, ten billion periods later, the system will 

come back to the very same point, which is still known with an accuracy 

of 1/1000: the error does not grow with time. 

A beautiful argument, no doubt. But how is one to know a priori that 

the motion is periodic? Are we not running into the same computational 

problems which have been plaguing us for so long? If for instance we 

merely follow a certain trajectory, and the computer tells us that it closes 

upon itself after a certain time, this is not good enough to conclude that 

the corresponding motion is periodic. For the computer makes rounding- 

off errors, and all it can actually tell us is that the initial and final states 

coincide up to the first sixty (say) decimals. It can tell us nothing about 

the remaining decimals, which may very well be different, and that slight 

difference may increase with time, so that after going round a hundred 

times, say, the trajectory drifts away from its initial state, and is seen, in 

fact, not to close upon itself. 

The stationary action principle pinpoints periodic motions geometri¬ 

cally, without recourse to computations. By doing so, it avoids the pitfalls 

we have described, and has now become one of the most useful tools in 

the investigation of nonintegrable systems. We will show how it works by 

applying it to a simple example. Let us go back to the billiard table and 

find out its closed trajectories by a general geometric method, applicable 

to any kind of table, elliptic or not. 

We will start with the simplest periodic motions of the billiard ball, 

those where it bounces back and forth between two points. An example 

is provided by the segment AB in figure 15: the ball hits the cushion at 

A, bounces back along AB, hits the cushion again at B, bounces back 

along BA, and so forth. For this motion to be true to the laws of reflec¬ 

tion, the incoming angle must be equal to the outgoing one, which 
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implies that the segment AB must be perpendicular to the cushion at its 

extremities A and B. Any segment with this property is called a diameter 

of the billiard table. If the table is circular, any segment going through 

its center is a diameter, and all diameters are equal. If the table is ellip¬ 

tic, there are exactly two diameters, one larger than the other. We will 

prove that any convex table still has two diameters, and so that the cor¬ 

responding billiard ball has two periodic motions, with exactly two 

bounces per period. 

The large diameter is easy to find. Put on the billiard table two points 

Mx and Mv and try to push them as far away from each other as possible. 

There is exactly one position where the distance between them is 

greatest (exchanging M1 and M2 gives another one, but we do not count 

it as different). Denote this position by AB: this is our large diameter. It 

is intuitively clear, and it can be proved mathematically, that AB is per¬ 

pendicular to the edge of the table at its extremities. 

C 

15. diameters A table is convex if from every point on the boundary one can 

go to every other point in a straight line without hitting the boundary in between 

Such a table always has two diameters, a great one (AS) and a small one (CD). 

The points A and B are the two points on the boundary which are the farthest 

apart. Is there a similar characterization for C and D? 
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Finding the small diameter is quite another matter. Looking at figure 

15, it is intuitively clear that there must be another position of M1M1 

where it is perpendicular to the edge of the table. But how can we find it? 

The first idea which comes to mind is to minimize the distance between 

Mx and M2 instead of maximizing it, in other words, to find a position 

where Mx and M2 are as close as possible. Such a position is easy to find, 

and there are many of them: just put M1 and M2 together, Mx =M2. Then 

their distance is zero, and this is as small as it gets. The segment MXM2 is 

just a point, instead of the diameter we were looking for. So this argument 

does not work. 

We need something else. What we need, in fact, is a theorem which is 

quite typical of modern mathematics,1 and which we will state in every¬ 

day language: in an island with two peaks (or more) there must be one 

mountain pass (or more). This is known as the mountain pass theorem. 

One way to see why it is true (although we are still far from a mathemat¬ 

ical proof) is to imagine a path crossing the island between the two 

peaks. Over the centuries, this path will have evolved to lie as low as 

possible (no one wants to climb high into the mountain if it can be 

avoided). The path climbs up the slope, reaches its highest point, and 

then goes down the other side of the mountain. That highest point has 

to be a mountain pass. 

We can do even better: we can relate very precisely the number of 

passes with the number of peaks. This may seem strange: an island with 

three peaks can have either two or three passes, so it would seem that the 

number of passes is unrelated to the number of peaks. The key, however, is 

to observe that in the first case the three peaks are aligned, so that water 

can flow directly down the slope of the mountain into the sea, while in the 

second one the three peaks surround a region out of which water cannot 

flow, so that a lake forms. The formula we are looking for relates the num¬ 

ber of passes to the number of peaks and the number of lakes, namely:2 

Number of passes = Number of peaks + Number of lakes -l. 

As an example, there are islands consisting of a single peak jutting out 

of the sea. Sure enough, these islands have neither passes nor lakes, and 

the formula then reads o = o. As another example, an island with three 

peaks and no lakes has two passes, but if it has one lake it must have 

three passes and if it has two lakes it must have four passes (please try to 

1. This theorem goes back to the pioneering work of the Russian mathematicians L. A. 
Lyusternik and L. Schnirel’man. 

2. This formula has a long history, starting with Euler and ending with Morse. 
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i6. ISLANDS On the top island, there are two peaks A and 6. Between them, 

there must be a mountain pass: this is the point where the level lines cross. On 

the bottom island, there is a single peak, so there cannot be any mountain pass. 
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17.the euler formula This is a more complicated island: two peaks, A 

and 6, and an interior basin F. The Euler formula calls for 2 + i -1 = 2 passes, 

and they are represented at M and N. 

imagine the island; the fourth pass lies between the two lakes). The more 

lakes there are, the more passes you get. 

The reason why such passes are of interest is as follows. They are not 

of maximum height (the peaks lie higher), nor are they of minimum 

height (they lie way above sea level), but they share with maxima and 

minima a special property: at every mountain pass, the ground is hori¬ 

zontal, as it is at the summit of a rounded peak or at the bottom of a 

rounded pit. Ideally, if a ball is put precisely at the pass, then it will stay 

there, in equilibrium; if it is shifted ever so slightly, or if a gust of wind 

pushes it, it will start rolling down one side of the mountain. But at the 

pass itself, it stays, as if it could not make up its mind in which direction 

to fall. This is the geographical equivalent of a stationary point:3 a math¬ 

ematician would express the above properties simply by saying that a 

mountain pass is a stationary point of height (whereas a peak is a 

maximum point of height). 

3. See the preceding chapter for a definition of stationary points. 
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So finding stationary points of the action amounts to finding passes 

in certain mathematical mountains, and this is why the mountain pass 

theorem is very useful when one tries to apply Maupertuis' principle. In 

the case of the convex billiard table, for instance, one can construct a 

certain island with two peaks, the first one corresponding to the large 

diameter AB, and the second one to the same diameter, taken in the 

other direction BA. As we have seen, there must then be a mountain pass 

somewhere on the island. It corresponds to a position of M1 and M2 such 

that MxM2 is perpendicular to the edge of the table, that is, to the small 

diameter of the table. 

The precise argument, for the mathematically inclined, is put forward 

in appendix 1. The main point here is that it is purely geometrical: there 

are no computations at all, no algebraic calculations, just an argument 

about the general shape of islands. It is “soft” geometry, meaning that 

nothing in the argument relies on some distance being precisely equal to 

another one, or some angle assuming a certain value, or some line being 

straight. The classical, “hard,” geometry of Euclid, on the other hand, is 

all about circles and triangles, and its results rely crucially on certain 

sides or certain angles being equal. Here, making the peaks higher, 

rounding them or shifting them around will not make the mountain pass 

disappear. This change from hard to soft geometry is very typical of mod¬ 

ern mathematics, and it was heralded by Poincare in his great treatise on 

celestial mechanics: the “new methods” he is alluding to in the title are 

soft, qualitative, geometrical, methods, as opposed to hard, quantitative, 

computational ones. 

So, using the mountain pass theorem, we have found the small 

diameter we were seeking.4 It corresponds to a periodic motion, with the 

ball bouncing back and forth along that diameter. Other periodic 

motions can be found by the same method. If, for instance, we arrange 

three points MVM2, and along the edge so that the perimeter of the 

triangle is the greatest possible, then there is a closed trajectory 

which bounces three times during every period, once at Mv then at Mv 

and finally at My Again, in each case a closed trajectory will be found by 

4. We may have found more than we were looking for. Indeed, the mountain pass theo¬ 

rem tells us that there must be at least one pass on the island, but, as we saw, there may be 

several. In that case, each of these passes corresponds to a position of M, and /Vf2such that 

M, M2 is perpendicular to the edge, that is, to a small diameter of the table. Thus there may be 

several small diameters with different lengths, corresponding to the heights of the different 

passes. For that matter, there may be more than two peaks on the island; in that case, each of 

them corresponds to a large diameter of the table. So there may be several large diameters 

with different lengths, corresponding to the heights of the different peaks. Think for instance 

of a lozenge rounded off at the corners: it has two large diameters and two small ones. 
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maximization, but there will also be a second one, which has to be found 

by a mountain pass argument, and which corresponds to a stationary 

point of the total length. The final result is that, for every prime number 

p, and every number q, there are two closed trajectories which, during 

every period, bounce exactly p times off the cushion and go exactly 

q times around the billiard table. 

Admire, again, the power of this method. It can be applied to any kind 

of billiard table, provided only that it is convex, that is, that any point on 

the cushion can be hit directly from any other point. It requires no com¬ 

putation, and there is no fear that any initial mistake we made in locating 

the initial bounces will accumulate or amplify with time. This is all the 

more remarkable because, as we mentioned before, nonelliptic billiards 

are chaotic systems, and the periodic solutions themselves are unstable. 

If we do not start precisely on the periodic solution, but ever so close 

away from it, the corresponding motions will drift apart, slowly at first, 

then faster and faster, and will end up having no relation with each other. 

Finding such unstable periodic solutions is a real tour de force, which 

shows all the strength of the stationary action principle. 

In the case of the billiards, the action, as defined by Maupertuis, is 

just the length of the trajectory. What about more complicated systems, 

with a more complicated definition of the action? Can the stationary 

action principle still be used to find periodic motions? Imagine for 

instance that the billiard table no longer is flat, but strewn with bumps 

which the ball has to climb and pits down which it speeds. Imagine that 

it is surrounded by a rounded wall, as in skateboard rinks, so that the ball 

does not bounce off the wall but scales it before falling back on the table. 

Trajectories will no longer be straight lines bouncing off at sharp angles; 

they will be smooth curves, turning away from the bumps and into the 

pits, and swerving back into the field as they reach the boundary, very 

much like a skateboarder. The speed will no longer be constant; the ball 

will speed up downhill and slow down uphill, and the faster it goes the 

higher it will climb on the limiting wall. 

Finding periodic motions in such cases is much more difficult than in 

simple billiards. There are two main difficulties. The first is that one now 

has to take into account the speed of the ball: it is no longer the case that 

if you send the ball in the same direction with two different speeds you 

get the same trajectory. The speed will not affect the way the ball bounces 

off the cushion, but it certainly will affect the way it comes out of the 

limiting wall. In the case of simple billiards, every trajectory could be 

fully described by giving the position of the first bounce on the cushion 

and the direction of impact: these are two numbers. In the second case, 

no 



there are no more edges to bounce from, just a rounded wall on which the 

ball climbs, so giving its initial position now requires two numbers, one 

to tell in what part of the wall the ball is, and the second to tell how high 

it has climbed. In addition, to fully specify the motion, we need to give 

the direction and the speed of the ball, two numbers again. Two numbers 

for the initial position, and two for the initial velocity—this means that 

we now need four numbers to specify the initial state, as opposed to two 

in the case of the simple billiards. The equations of motions will correlate 

these four numbers. In other words, going from the simple billiards to 

the complicated one brings us from two dimensions to four. Really com¬ 

plicated mechanical systems can have many more dimensions; four is 

enough, however, to deprive everyone but the trained mathematician of 

the help of intuition. 

The other main difficulty is that we no longer have an inkling of what 

closed trajectories look like. In the case of simple billiards, we knew that 

these trajectories were just line segments connecting the points of 

impact on the cushion. There is nothing like that in the more complicated 

case, where the ball no longer moves in a straight line nor bounces off a 

cushion. This means that trajectories will be much harder to describe: 

one can no longer be content with finding the impacts on the cushion. 

All closed curves drawn inside the billiard table are possible candidates 

for the trajectory, and one has to discover which one or ones satisfy the 

stationary action principle. 

In Poincares time, these difficulties could not be overcome. Today, 

about one century later, the requisite mathematical tools have been 

developed, so that we now can apply the stationary action principle to 

very general systems. In the meantime, however, there were unexpected 

consequences, the most striking of which was the discovery by Michael 

Gromov, in 1980, of an uncertainty principle in classical mechanics. 

Heisenbergs uncertainty principle in quantum physics is well known, 

but no one had ever suspected that there was a similar principle for 

classical physics. It is still too recent to be known outside a small circle of 

specialists, but once it diffuses into the scientific community, I am sure it 

will attract as much attention as its predecessor in quantum physics. 

Anyway, it is a success story for modern geometry and the stationary 

action principle, and it is well worth relating. 

We will set out the theory using billiards. Take a convex table with a cush¬ 

ion along the edge, a single ball bouncing off the cushion. As we saw before, 

any trajectory is then completely specified by two numbers x andy, where 

x gives the position of the impact on the cushion, andy the incoming angle. 

Starting from the initial bounce (x^y^, we deduce the second one (x2,y2), 
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then the third (xyy}), and so forth, so that a single trajectory reduces to an 

infinite sequence of points in the 360 x 90 rectangle; this is what we called 

the second geometric representation earlier in chapter 4. 

But now we introduce a new idea. The initial xl andjq cannot be 

measured with infinite accuracy: however precise we are in our measure¬ 

ments, there is a limit, depending on the instruments we use, below 

which we cannot go. So the true initial position x and incoming angley 

are not thexx andyx we recorded, but can be any values in some interval 

around Xj andj/r Denote by Axx andzijq the lengths of these intervals. 

If we now represent the pair (x,_y) by a point in the 360 x 90 rectangle, 

then the true value (x,y) lies within a small rectangle, of length Ax^ and 

width Ayv centered at (xvy1), which we will refer to as the uncertainty 

region around the measured value (x^jq). The smaller the uncertainty 

region, the more accurate our measurement has been. It is natural to 

consider the area of this region, that is, the product Ax1Ay1 as a meas¬ 

ure of this accuracy; we shall refer to this number as the uncertainty on 

the measured value (x^jq). 

No further measurements will be made, and we will merely compute 

the trajectory of the billiard ball. We will assume that we can perform 

these computations with infinite accuracy. As we saw earlier, this is not 

possible in practice, because computers cannot process infinitely many 

digits, and have to round off decimals at some point. But let us conduct a 

thought experiment, imagining for instance that the good Lord has lent 

us for the occasion his own computer which performs all calculations 

with infinite precision at every step. This being so, the only possible 

source of error is the one we made in our initial measurement: that one 

we will have to carry throughout the computation. 

To be precise, starting from the measured values Xj and y 1; we find the 

position x2 and the angley2 at the next step. Since the actual values of (x,y) 

for the first bounce are not exactly (x^jq), but are located in the uncer¬ 

tainty region around this point, the actual values of (x,y) for the second 

bounce will not be exactly (x2,y2), but will be located in some uncertainty 

region around this point. There is no reason why this second uncertainty 

region should be a rectangle, even if the first one is: its shape will usually 

be deformed, stretched in one direction and compressed in another. 

However, it is a remarkable fact, first discovered by the French mathemati¬ 

cian Joseph Liouville in the nineteenth century, that the area is unchanged. 

Although the shape of the uncertainty region around (x2,y2) is no 

longer a rectangle, we will still denote its area by Ax2Ay2, and refer to it 

as the uncertainty on (x2,y2). Note, however, that the numbers zlx2 and 

Ay2 no longer have any meaning by themselves. Liouville s discovery then 
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can be expressed as the simple equality AxxAyx = Ax2Ayr This mathe¬ 

matical relation expresses the fact that the uncertainty is carried over 

from the first bounce to the second; there is no improving the initial 

information, nor does it decay (bear in mind that we are still using this 

divine computer which does not need to round off infinite sequences of 

digits after the decimal point). Uncertainty will also be carried over to the 

third bounce, the fourth, and so on: at every step n, the relation Axl Ayx - 

AxnAyn will hold. The uncertainty stays unchanged throughout time, 

unless, of course, we make a new measurement, using better instru¬ 

ments, thereby diminishing AxnAyn. Let us express this fact, somewhat 

loosely, as follows: 

First uncertainty principle in classical mechanics: information cannot be 

created. Only measurement, not computation, can reduce uncertainty. 

Let us investigate some consequences of the first uncertainty principle. 

For instance, it is impossible to design a billiard table that would focus 

the ball, that is, that would allow us to predict its future position and 

direction with greater precision than we had at the start. A simple way to 

see this is to note that the uncertainty Axn Ayn is pegged at its initial value 

AxxAyx = u. If we devise a table so that, at some future stage n, the posi¬ 

tion xn of the impact can be predicted extremely accurately, so that Axn 

becomes very small relative to u, then, to keep the product AxnAyn con¬ 

stant, Ayn must become very large relative to u, and the prediction on the 

incoming angles must be very poor. 

Unfortunately, this argument, although quite convincing, is incor¬ 

rect, because there is no reason why the uncertainty region around (xn,yn) 

should look like a rectangle, and therefore it is not clear what meaning to 

attach to Axn and Ayn. We can salvage it by imagining a pocket around 

(xn,yn) in the 360 x 90 rectangle, for instance a rectangle with length Ac? 

and width A b, so that its area is u - AaAb, and a player trying to send the 

ball into it. His initial shot should be (xj^j), which reaches (xn,y), in 

the middle of the pocket, after n bounces. Unfortunately, the player, 

although he knows (x^), cannot manage that shot exactly, only some 

approximation of it. The uncertainty AxxAy^ = s around that initial shot 

measures the players skill: the smaller the uncertainty, the more skilled 

the player is. 

After n steps, the uncertainty region around the predicted value (xn,y) 

still has areas, to be compared with the area of the prescribed pocket, u. If 

s is smaller than u, that is, if the player is not skilled enough, there is no 

way of fitting the uncertainty region entirely inside the pocket: it is sim¬ 

ply too big. So part of that uncertainty region around (xn,y) must remain 

outside the pocket, meaning that the corresponding shots will miss the 
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target. The player himself cannot tell the difference between these shots 

and those that reach the target: they all start within his uncertainty 

region. He hits all shots the same way, but only a certain percentage of 

them succeed: he cannot consistently hit the target. 

This argument does not depend on the shape of the billiard table, 

and so we are led to our conclusion: there is no designing a table that 

would focus the ball toward a prescribed target. In other words, the first 

uncertainty principle tells us that no table will compensate for lack of 

skill. 

Let us now go one step further and imagine not one but several 

balls moving on the same billiard table. Say there are AT of them, mov¬ 

ing merrily about. It is not true any more that the trajectories of each 

ball, between two collisions on the cushion, are linear, and that the 

speeds are constant: they can collide with another ball in the middle of 

the table, whereupon each of them proceeds in another direction with 

another speed. Directions and speeds after the collision are fully deter¬ 

mined, just as they are after a bounce on the cushion, so that the entire 

trajectories of the N balls are fully determined by their initial positions 

and velocities. 

These initial positions and velocities are not known exactly: for each 

of them, there is a certain region of uncertainty around the measured 

values. The area of this region is called the initial uncertainty, as before. 

The initial uncertainty on the nth ball, for instance, will be denoted by un, 

and has the same interpretation as before: the smaller un, the more 

accurate the measurement of the initial position and velocity. 

The first uncertainty principle applies not to each un individually, but to 

their sum, ux + u2 + • • • + uN, which we denote by U, and which we call the 

total uncertainty. More precisely, it is the total uncertainty at the initial time, 

t - o, when the motion starts; but, according to the first principle, this quan¬ 

tity is pinned on its initial value, so that it is equal to U at every future time t. 

It is a remarkable feat—again—that U would remain constant even 

though the motion is now much more complicated; imagine all the colli¬ 

sions that will occur when many balls are moving simultaneously on the 

table. But it raises a subtle hope: U has to be constant, but the individual 

un does not. All of them could vary—in fact all of them do vary. It is 

required only that they always add up to the same number U. In other 

words, they have to make up for each other: if one of them decreases, 

some other one has to increase. Suppose now we are not interested in all 

the balls that are on the table, but just in one of them, say the first one, 

which is black, while all the other ones are white. Would it be possible to 

devise a billiard table that would decrease the uncertainty on the white 
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ball, uv while increasing the uncertainty on the black ones? So ux would 

decrease while u2, u^, . . . ,wN would increase, keeping the total uncertainty 

u l + u2 + • • • + uN pegged to its initial value U. We would end up knowing 

less about the white balls than in the beginning, but we would not care, 

since we are only interested in the black one, perhaps because it is the 

one we have to sink in a pocket. 

This is a tempting way to get around the first principle: transferring 

information from the white balls to the black one. Unfortunately, this 

cannot be done. This is essentially the content of the second uncertainty 

principle, which was discovered by Gromov: 

Second uncertainty principle in classical mechanics: Information cannot 

be transferred. Given the initial uncertainty regions for all N balls, there 

is a number r such that the uncertainty region for the black ball can never 

be enclosed within a circle of radius r. 

Some comments are in order. First, the number r which appears in this 

statement depends on the initial uncertainty regions: the smaller these 

regions (so that the positions and velocities of every ball on the billiard are 

known more accurately), the smaller this number (so that better predic¬ 

tions can be made on the position and velocity of the black ball in the 

future). Gromov s principle does not tell us that there is a general limit 

below which our instruments will never reach. It simply tells us that, 

depending on the quality of our initial observations, there is a limit to the 

accuracy of the predictions we can make on the future behavior of the black 

ball. There is no way to devise a system that would indefinitely increase our 

knowledge of the position and velocity of that ball, while losing track of all 

the other ones. 

It could be the case, however, that the uncertainty ux on the black ball 

decreases indefinitely, and becomes eventually smaller than any prescribed 

number. This does not contradict the second principle, because the number 

u j, which is the area of the uncertainty region, tells nothing about its shape. 

We can have—in fact, we do have—regions which have very small area and 

which cannot be contained within a small circle. Imagine for instance a 

region shaped like a very thin and very long ribbon. We can make its area as 

small as we wish, just by making it thinner, and it can take up as much space 

as we want, just by stretching it. If we stretch it to length L and make it 

straight, for instance, then we will need a circle of radius L/2 to box it in. 

So the uncertainty region of the black ball may remain too large to be 

enclosed in a circle of radius r, while ux decreases to zero. 

The first principle tells us that we cannot build a billiard table that will 

correct the game of a poor player. The second principle tells us that we 

cannot put other balls on the table so cunningly and accurately that they 
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will correct the game of a poor player. Both principles extend to much 

more general situations: all systems in classical mechanics are subject to 

the two uncertainty principles. Both are closely related to the stationary 

action principle. However, the argument becomes quite technical, and we 

will refer the interested reader to appendix 2. Let us just conclude by 

pointing out how remarkable it is that the final triumph of Maupertuis 

views in mechanics comes as his metaphysical views have been so utterly 

defeated. 



(chapter 6) Pandoras Box 

the grandiose views of Maupertuis have been laid to rest. The 

laws of physics, as he understood them, were striving to minimize the 

expenditure of a miraculous quantity, called the action. Maupertuis saw 

this as definite proof of intelligent design: the laws of physics were sim¬ 

ply expressing Gods purpose in his creation. Unfortunately, as we found 

out, the principle of least action is a misnomer; it should really be called 

the principle of stationary action. There go the metaphysics: there is no 

ready interpretation for a stationary action principle, as there was for the 

least action principle. Maupertuis could write eloquent volumes about 

this marvelous quantity, the action, which was obviously so precious that 

the whole order of nature was directed toward preserving it as much as 

possible. It is very difficult to say anything of that kind when it turns out 

that nature is not minimizing the quantity of action it uses, but is just 

trying to make it stationary. What is so important about stationary 

points? They are like mountain passes; they are neither high points 

(maxima) nor low points (minima). 

The fact that light, for instance, does not take the fastest path from 

one point to another shows up very simply when it reflects on a mirror. 

Going back to figure 5, we have seen that the path AOB is shorter than 

any other path hitting the mirror, such as AMB, and we have concluded 

that the light ray going from A to B follows AOB because it is the shortest 

path. But this is clearly Wrong: if the ray of light, or whoever is setting its 

course, were really intent on minimizing the time of travel, it would go 

directly from A to B, and there would be no reflection on the mirror. What 

if we put a screen between A and B, so that A cannot shine directly on B? 

If the principle of least action, as stated by Maupertuis, were true, the ray 

of light would take the shortest path from A to B, and that by no means 

reaches the mirror: it goes directly from A to the bottom of the screen, 

and up again to B. We know this does not happen in nature. There are 



C
H

A
P

T
E

R
 

S
IX

 

two rays reaching B from A, the direct one AB, and the reflected one AOB, 

and that is why B sees A itself and a copy, which is its image in the mir¬ 

ror. If a screen is put between A and B, only the reflected ray remains, and 

B sees A only through the mirror. The ray AOB, which subsists in both 

cases, never is the shortest path. 

We have seen, however, that even though the least action principle is 

dead, the stationary action principle is alive and well, and in the preced¬ 

ing chapter we have described many of its uses. So there is still a mystery 

to be explained: how does the light know which path to follow? How 

come it knows about stationary points while we don’t? Do photons figure 

out the action along every possible path and pick the right one? In the 

present chapter, we shall try to explain the mystery. This will lead us to 

realize that the stationary action principle holds only at a certain scale. 

Quite different principles rule the world at the scale immediately below 

and immediately above. 

Where does the stationary action principle come from? Can it be 

explained from basic physical principles, or are we to assume some mys¬ 

terious sense of purpose in nature? This is the question that Clerselier 

asked and that Fermat evaded in 1662. Already in 1677, Huygens had an 

answer. Most people at the time, including such luminaries as Descartes 

and Newton, believed that light consists of small, hard particles traveling 

through empty space, and that the rays are merely the individual trajecto¬ 

ries of these particles. Huygens, on the other hand, thought that space is 

not empty, but filled with an invisible medium, and that light consists of 

vibrations which propagate in space much as waves travel on water. 

If you throw a stone into a pool, you will see circular waves emanating 

from the impact, propagating on the surface and being absorbed or 

reflected by the banks. This pattern does not arise from a global design, 

but from local interactions. Once the disturbance created by the stone at 

O has reached some point in the water, say P, it functions as a new source 

of disturbance, and sends waves in all directions. If we put a screen 

across the pond, with a hole at P, so that all the disturbances emanating 

from O are shut out except those which reach P, we see a new pattern of 

circular waves emanating from P, as if a new (smaller) stone had been 

thrown in at P. If the screen is removed, this pattern disappears, because 

it has to be superimposed upon similar patterns emanating from all the 

other points at which the water has started vibrating. The end result is 

the original pattern of circular waves emanating from the center O. It 

arises not because the waves sent by O travel across the water without 

disturbing it, but because the disturbances they create along the way can¬ 

cel out except in one single direction. The waves leave a multitude of new 

118 



sources behind them, but these sources interact and, at the global level, 

the only one we see is the initial one at O. 

This is the fundamental difference between waves and particles. Parti¬ 

cles always add up: if you put two particles into a box, there will be two 

more particles in that box. Waves do not always add up: if you send two 

waves into a box, you will have a single, more complicated, wave in that 

box. You may even get nothing: the two waves could just cancel out. 

Working out the interaction rules, Huygens found that, in the case of an 

initial disturbance arising at a point O, as when a stone is dropped into 

water, the resulting waves propagate in straight lines emanating from O. 

In the case of light, these would be the rays. The mathematical reason 

why these rays are straight lines, as it arises from computing the interac¬ 

tions, is that they are stationary points for the length. In many cases they 

are even better; they are minimum points of the length. That is, any other 

path with the same extremities will have greater length, although this 

fact is not important in itself. Only stationarity matters. We are really 

comparing every path to neighboring ones; if the difference in length is 

small enough, the path is stationary, regardless of whether that differ¬ 

ence is positive or negative. All paths with that property qualify as rays of 

light. This is precisely what happens in the case of light reflecting on a 

mirror, where light reaches the same point by two different routes, the 

direct one and the reflected one. 

Huygens turned out to be correct. Light does consist of vibrations, the 

different wavelengths corresponding to the different colors, and his 

explanation provides solid physical ground for the fact that rays follow 

stationary paths. But what about classical mechanics? Why should the 

stationary action principle hold for solid bodies? Surely billiard balls are 

not waves? The great Richard Feynman, in the mid-twentieth century, 

came up with a bold idea, very characteristic of his way of thinking: solid 

bodies pick their paths at random. This randomness is observed for very 

small bodies, like electrons, and the reason it is not observed for larger 

bodies, such as billiard balls, is due to cancellations, very similar to the 

cancellations which occur in wave propagation. 

Think of a massive body, a small one like an electron, or a large one 

like a billiard ball, starting from A and ending up at B. What path did it 

take? The answer we get from classical physics, in the absence of any 

external forces, is: a straight line. Feynmans answer is: every path from A 

to B is possible, from the straight one to the most crooked you can imag¬ 

ine, but they are not equally likely. To find out how likely a given path is, 

one has to compute the action (yes, the classical action, as defined by 

Maupertuis, Euler, Lagrange, Hamilton, Jacobi, the old crowd) along that 
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i8. Feynman’s principle According to Feynman’s interpretation of the 

laws of subatomic physics, a particle going from A to B is not constrained 

to lie on the straight line AB, as in classical mechanics. Any curve connecting 

A and B is possible—but they are not all equally likely. Along each of these 

curves, the classical action is computed, and divided by h, a very small number. 

The result is a very large number, which is interpreted as an angle. The picture 

gives six of these possible paths, and the associated angles. It paths are 

close to the straight line AB (the three upper paths in the picture), the angles 

are almost the same. If they are not (the three lower paths), the angles are 

different—the difference being proportional to the mass ofthe particle. In 

Feynman’s interpretation, one computes the probability of any given path by 

adding up the angles associated with neighboring paths: in the first case, 

all the contributions are in the same direction, so they add up, while in the 

second, they go in different directions, and so they cancel. So, for massive 

particles, and all macroscopic objects, the only paths which have a significant 

probability of occurring are the ones near the straight line. This is what 

happens in classical mechanics. 
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path. However, the probabilities do not add up, as in classical probability 

theory; they interfere, as in the theory of wave propagation. The most 

likely paths are those with the least interference from their neighbors. If 

one goes into the mathematics, one finds that they are precisely the ones 

that make the action stationary, that is, those that classical mechanics 

would indicate. 

In Feynmans theory, all paths are possible; the classical paths are just 

more likely than the others. One more factor comes in: Planck’s constant 

h, which is an extremely small number. The probability that a nonclassi- 

cal path occurs, that is, that the body follows a path that does not con¬ 

form to classical mechanics, behaves like h/m, where m is its mass. In 

other words, this probability becomes significant only when m is very 

small, which puts us firmly inside the subatomic range. There is no 

chance of ever observing anything bigger than an atom disobeying the 

laws of classical mechanics. On the other hand, an electron is very likely 

to be away from the classical paths, and there are by now numerous 

experiments to show it. In fact, the path of an electron cannot be pre¬ 

dicted. The best that can be done is to compute the probabilities of the 

various possible paths, according to the Feynman rules. The theoretical 

values of these probabilities have been checked experimentally to a very 

high degree of accuracy. 

We end up explaining one mystery by another. Clerselier s question 

has been answered: neither light nor stones choose the path that will 

make the action stationary. Massive bodies, be it atoms or stones, pick 

their paths at random according to certain probabilities, which can be 

computed before the fact. Now why it should be so is a new mystery. Why 

draw lots? According to Einsteins famous dictum, God does not play 

dice—at least, he should not be caught doing so. But what we are saying 

here is that the path of an electron cannot be predicted, even if one 

knows precisely the state of the world and has unlimited computational 

power; the best we can do is to compute the probabilities for the electron 

to go one way or the other. Beyond that we cannot go; the reason, if any, 

why it goes one way rather the other, is hidden from us. 

This effectively kills Maupertuis’ vision of the real world as the best of 

all possible ones. We are no longer saying that there is a quantity, called 

the action, which all natural motions strive to minimize, or to make sta¬ 

tionary. We are merely saying that natural motions occur at random, 

according to certain probabilities. Certainly there is no idea of optimality 

there, no reason why the real world, that is, the set of all events that actu¬ 

ally occur, should be better than other possible ones. When randomness 

rules, when events occur without definite causes, there is no meaning to 
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be sought. If there is a God, he has left no tracks in the laws of physics; or 

if he has, he has covered them up very well. 

Strangely enough, randomness also appears at a much higher scale, 

namely our own. It is a different kind of randomness, connected with 

chaos theory: we do not deal with events without apparent causes, as 

when an electron travels one path rather than another, but with events 

with minuscule causes, as when a rolling die falls on one side rather than 

the other. In this way, classical mechanics (including the stationary 

action principle) appear to be valid only in a thin layer of reality, trapped 

between the subatomic scale, which is ruled by quantum mechanics and 

the Feynman probabilities, and the human scale, which is ruled by ther¬ 

modynamics and decaying entropy. 

Indeed, at our own scale, the laws of classical mechanics are highly 

idealized. There is little resemblance between the idealized billiards of 

the preceding chapter, with the ball moving indefinitely around the 

table, and real billiards, were the ball cannot afford more than a few 

bounces before slowing down and stopping. Galileos idealized pendu¬ 

lum, which swings forever, without losing energy, is a fiction. At best, 

under very careful and controlled conditions, one can keep the motion 

alive for a few hours, but eventually it is stopped by various kinds of fric¬ 

tion on the swinging parts. In fact, it is very difficult to turn a real-life 

pendulum into a practical instrument for measuring time; Galileo him¬ 

self did not succeed, and Huygens was the first one to build a clock on 

this principle. 

Most differences between the laws of classical mechanics and our 

own experience of nature can be brought under one common heading: 

the irreversibility of time. Most of the events that occur around us hap¬ 

pen in a certain order, which cannot be reversed. We grow older, and 

there is no way we could get younger. If we are shown two pictures of the 

same person, we can tell which is the most recent. Suppose we are shown 

two movies, showing a spoon stirring a cup of coffee. In the first one, a 

drop of milk which is dropped into the coffee spreads around, in the sec¬ 

ond, a brown mixture separates into a black liquid and a white drop 

which finally jumps out of the cup. We know very well which movie has 

been run backward; we also know that, in real life, once we have mixed 

the milk with the coffee, we can never separate them again. This irre¬ 

versibility (which the late Stephen Jay Gould refers to as time’s arrow) 

does not occur in classical mechanics. Nothing is easier than to reverse 

the motion of a billiard ball on the idealized tables we have been playing 

on: just send the ball back along the direction it came from, and it will 

nicely retrace its whole trajectory. 
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Here we have a new mystery: how can we reconcile our basic experi¬ 

ence of life, which is that clocks do not turn back, with the laws of classi¬ 

cal mechanics, including the stationary action principle, which make no 

such distinction? 

To make the contradiction more apparent, let us perform a thought 

experiment; call it Pandoras box. Pandora has been given a hermetically 

sealed box, under strict orders not to open it. She does not know it, but 

the box contains a certain very rare gas, called imaginum. Imaginum, like 

all other gases, consists of a huge number of molecules with different 

speeds, moving about, colliding with themselves and bouncing off the 

walls. Pandora, curious to know what is in the box, opens it; to her dis¬ 

may, the imaginum, which is a nice blue color, immediately flows out. She 

jumps to the door and closes it, so that now the room is sealed, and she 

starts wondering how to get the imaginum back into the box. 

Just to make things simpler, suppose there is no air in the room, so 

that the imaginum just flows out into empty space. Then there will actu¬ 

ally be some imaginum left in Pandoras box: the flow stops when the 

pressure in the box and in the room are equalized. If we look at what is 

happening to the molecules, those which are near the top when Pandora 

opens the box have a good chance to be pushed away by the others, and 

they will run into the room. Once they are there, it is not likely that they 

will go back into the box, since there are no molecules in the room to 

push them back. More molecules will follow them, and the whole process 

will go on until the pressures in the box and in the room are equal, that 

is, until the molecules on top of the box are equally likely to be pushed up 

into the room or down into the box. 

From then on, there will be equilibrium; that is, there will be no further 

changes. Molecules will still move around, sometimes with great speed, and 

they will find their way from the box to the room and vice versa, but the pres¬ 

sure of the imaginum will remain constant, because it is a statistical average. 

At least, that is what common sense tells us. There is no way Pandora 

can get the imaginum back into the box. What she has done cannot be 

undone, and she has to prepare herself for the consequences; this is 

exactly what time s arrow is all about. However, mathematics tells us a 

different story. According to a famous theorem by Poincare, the imag¬ 

inum will eventually go back into the box by itself. All that Pandora has to 

do is to be patient enough, wait until all of the blue gas is back into the 

box, and then snap the lid shut. There could be no clearer contradiction. 

On the one side, irreversible time: the past is lost forever. On the other, 

cyclical time: eventually, things revert to what they were. What is the 

basis for such a claim? 

123 

P
A

N
 D

O
 R

 A
’S
 

B
O

X
 



C
H

A
P

T
E

R
 

S
IX

 

Although Poincare's theorem runs counter to our intuition, the rea¬ 

son why it is true is easy to understand. Imagine that, to start with, the 

pressure in the box is really very low, so low in fact that there are just a 

few molecules knocking around. Suppose first there is only one, and the 

room is quite small; after leaving the box, the molecule will wander aim¬ 

lessly, exploring every corner in the room, so aimlessly in fact that even¬ 

tually it will find its way back into the box. This is a bit like a drunkard 

walking at random and knocking at every door he goes by: he will eventu¬ 

ally find his way back home. Now increase the number of molecules. Sup¬ 

pose there are ten knocking about in the box when Pandora opens it. 

They all start going back and forth, like the first one did; they all spend 

some time back in the box; and it is to be expected that at some future 

moment they will all be together again. It is also to be expected that, at 

some other moment, there will be just one of them in the room while 

nine are back in the box. In fact, anything can happen, and will happen if 

one just waits long enough. Now, instead of ten molecules, let us put one 

hundred, then one thousand, increasing until we reach 1023, one fol¬ 

lowed by twenty-three zeroes. This is about how many molecules a half 

liter of air would contain in normal conditions. The same arguments 

hold: it is to be expected that, eventually, all the molecules will be back in 

the box. So Pandora just has to be patient. 

The key to the paradox, of course, is the time involved. To see the 

imaginum flow back, Pandora must be prepared to wait much, much 

longer than the expected duration of the universe. In any shorter time, in 

anything that can be counted in mere billions of years, nothing like this 

is remotely likely to happen. For mathematicians, of course, this makes 

no difference, but for human beings, especially for Pandora, who will 

have some explaining to do rather soon, it does. Poincares theorem is 

true, but it does not help us. Time s arrow appears at our scale because the 

objects we deal with are large aggregates, and they will disappear long 

before they can exhibit any tendency to retrace their past history. 

So this is the first source of irreversibility. There is one more. Let us 

play billiards once more, this time with three balls. As we pointed out ear¬ 

lier, this system apparently is insensitive to time s arrow. If we want the 

three balls to retrace their paths, all one has to do is to reverse their veloc¬ 

ities and send them back along the directions they came from. They 

should then retrace their steps, that is, travel backward in time: if nothing 

stops them, one minute from now they will be exactly where they were one 

minute ago. 

This is not the case: there is no way one can retrace the paths the balls 

followed, or find out where they were one minute ago. The key to the 
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mystery lies in the word “exactly”: it belongs to mathematics, not to 

physics. No physicist can guarantee that two quantities are “exactly” 

equal. All the values he gives are the results of measurements, and they all 

come with a margin for error, which depends on the instruments he uses. 

It is not feasible to send back the billiard balls exactly in the directions 

they came from, with exactly the same speeds. The best that can be done 

is to send them back almost in the directions they came from, with 

almost the same speeds. Is that good enough? 

The answer is no, because of a special feature of billiards, which it 

shares with many other systems, and which is at the core of chaos theory. 

Small initial errors get amplified very quickly with time, mainly because 

of the collisions between balls. As a result, any maladjustment we made 

in sending the balls back (there is bound to be one, and even if by 

extreme luck there were none, how would we know?) will veer it off 

course, so that the trajectories we observe after a few collisions will have 

nothing to do with the original ones. In fact, the system is so sensitive 

that even Newtonian attraction will influence it. Surprising as it may be, 

already after nine collisions, the presence of people around the table will 

modify the trajectories. If we wanted to go beyond that, and to follow tra¬ 

jectories for one full minute, we should have to take into account people 

walking in the streets or airplanes flying in the air. This means that there 

is no hope of ever reconstructing past trajectories: for all practical pur¬ 

poses, the system is as random as a game of dice. 

In both examples, Pandoras box or the billiards, it is still true that the 

present state of the system contains all the information necessary to 

reconstruct its past history and predict its future trajectory. However, this 

information is irretrievable, and this is what creates time’s arrow. 

As another example, consider the so-called baker s transformation. 

Start with a sheet of dough, knead it down with a rolling pin to about 

half its height, and fold it back over itself. We now get a new sheet, with 

the same height as the first one, but consisting of two layers, the right 

half above the left one. We now incorporate dark chocolate into the 

upper layer, so that it is now black while the lower one remains white. 

Knead it down again, cut in half, and stack one half on top of the other. 

We get a four-layered sheet, with black and white alternating. Do it 

again, and again, and again. After n steps, we get a sheet of the same 

height as the original one, with 2" layers of alternating colors. 

Note that this transformation is reversible. One can peel off the sheet 

and restore the original height by putting the top layer beside the bottom 

one.; repeating the procedure enough times, 2" to be exact, will restore 

the sheet to its original state (with its right half black and the left one 
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19. the baker’s transform at ion These are the three initial stages. The 

square on the left is flattened (its height is divided by two while its width is 

multiplied by two), yielding a rectangle. The rectangle is cut in two and its right 

side is put on top of its left side. This yields the square in the middle. The 

same procedure is repeated, flattening, cutting and putting on top, and this 

yields the third square. The points A and B are brought to A' and B' by the first 

step, and to A" and 8" by the second. As the transformation proceeds, the 

white and black stripes become thinner. 

white). Better still, one can compute the original position of any point in 

the sheet from its position at the nth step. For instance, if a point lies in 

the lowest sheet (white), at a distance d from the left side, its original 

position was at a distance d/2" from the left side. If it lies in the upper¬ 

most sheet (black), at a distance d from the right side, its original posi¬ 

tion was at a distance d/2" from the left side. 

If a point does not lie on the upper or lower side of the sheet, but 

inside the dough, the question becomes more difficult to answer. We first 

have to find out whether it lies in a black layer or in a white one; in the 

first case, its original position must have been in the right side of the 

original sheet, in the second it must have been in the left side. But by 

now, after n steps, the layers are 2" times thinner than the original sheet; 

if n = 10 the height has been divided by one thousand, and if n = 20 by 

one million. Certainly, by n = 10 we will not be able to distinguish the 

layers with the naked eye, all we will see is a uniform grey. By n = 20, we 

will be worrying about the limits of the instruments we are using to 

measure the positions, and by n = 30 we will be way beyond them. By 

this time, even though the information is there, we will be unable to 

retrieve it. 

In theory, no information has been lost along the way, since the sys¬ 

tem is reversible. In practice, the information is too fragmented to be 

recovered. The system dilutes it progressively until if falls below the 

threshold of observation. Once this has happened, the best we can do is 

to say that any point in the dough has a 5 o percent chance of being black, 

and a 50 percent chance of being white. Randomness raises its head 

again, but it is of a different kind than the one we found at the subatomic 

level. This time, it arises not because there is a source of randomness 
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somewhere in the system, but because the power of our instruments is 

limited. To distinguish it from the first, we will call it chaos. 

Chaos cuts with two edges. We have seen how it is impossible to 

retrieve past history from current observations. We will now show that is 

impossible to predict future states from current observations. Indeed, 

suppose we apply the baker s transformation a large number of times, say 

n, and we want to know whether a point which started off somewhere 

inside the sheet will end up in the lower or upper half. Denote by Mx the 

initial position, and by Mn the position after n steps. Remember that, at 

each step, the dough is stretched to twice its length and cut and stacked, 

the right half above the left one. If one works through the mathematics, 

one finds that, to answer the question, one has to know Ml with an 

accuracy of about 1/2"; if one makes an error of that size in locating M1 

horizontally (its height does not matter), one will end up on the wrong 

side. Again, the precision of our instruments is limited, so that for large n 

it is impossible to know the initial position with the required accuracy. 

The best we can do is to say that there is a 50 percent chance of Mn ending 

up on the top, and a 50 percent chance of its ending up in the bottom. 

We have lost a great deal, but we are not entirely empty-handed, for 

this kind of probabilistic prediction can be greatly generalized. Suppose 

we are interested not in the top and bottom half, but in the left and right 

half of the sheet. The chances of ending up in either, after a large number 

of steps, are also 50 percent: they do not depend on the shape of the 

halves, but only on the fact that they are halves; that is, they occupy 50 

percent of the total volume. Suppose now we divide the sheet into two 

parts, a large one, A, occupying 99 percent of the volume, and a small 

one,£; then the chance of ending up in A is 99 percent. At that stage, we 

can predict, with some amount of confidence, that the final state Mn will 

lie in A. This is by no means certain, for Mn may well end up in B. But the 

probability of its doing so is less that 1 percent, so it is not very likely. Pre¬ 

dicting that the final state will lie in A is a safe bet, and it becomes even 

safer if the size of A increases. If for instance A occupies 99.99 percent of 

the total volume, then there is only one chance in ten thousand of our 

prediction failing, and it becomes an almost sure bet. 

There are situations where the probability of our bets failing is zero, 

or so low as to be zero for all practical purposes. This is what happens in 

the case of Pandoras box. Once pressure between the box and the room 

has equalized, will the imaginum flow back from the room into the box? 

In other words, can the gas spontaneously go from a situation where it is 

evenly spread around to a situation where it is concentrated in a small 

region of available space? 
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Call A the first situation. From the point of view of the molecules, A 

covers a lot of different cases. Saying that pressure is equal in the box and 

in the room tells you that there are about the same number of molecules 

in each, and that the distribution of velocities is about the same, but it 

does not tell you which molecule is where and what is its velocity. There 

are many ways to achieve this global situation; for instance, it makes no 

difference to the observer that a certain molecule of imaginum, rather 

than another one, is in the box. One can look at all the possibilities and 

derive a probability for A. 

It turns out that this probability is so close to 1 that we can safely bet 

that situation A will prevail forever. If we did so, and someone bet against 

us, he would have to wait billions of billions of years before observing 

anything that would give him even some hope of winning. We should not 

bet with God, for he is patient, and can afford to continue waiting after 

this universe ends, but with mere humans we are perfectly safe. It is a 

practical certainty that imaginum will never flow back into Pandoras 

box. Time is irreversible at our scale. 

We are more or less at the end of the road. We have found random¬ 

ness at the subatomic scale, and chaos at our own scale, with the station¬ 

ary action principle caught somewhere in the middle. Nothing much is 

left of Maupertuis’ dream. If not in physics, where are we to find the best 

of all possible worlds? Perhaps in biology? Lets give it a try. 
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(chapter 7) May the Best One Win 

statements like “This world is the best of all possible ones” or 

“This student is the best in his class” have the same logical structure: 

they are comparisons between a given object or person and others. For 

such sentences to be meaningful, one must define the class of objects or 

persons with which the given one is being compared, and the criterion 

of “goodness” which is being used to rank them. For instance, there are 

many ways to rank students. Some may be better in music or science, 

others in English or athletics; John may have been the best one last year, 

but may now be falling behind. Different criteria give different rankings, 

and unless Jack consistently outshines Jill in every field of human en¬ 

deavor, it is always possible to find a criterion which will put Jill ahead 

of Jack, and still another one which will put Jack ahead of Jill. Stating 

that “Jill is the best of her class” means that a certain weighted aver¬ 

age of all grades has been defined, and that, according to that criterion, 

Jill comes out on top. 

These statements translate mathematically into an optimization prob¬ 

lem: a certain class (of objects, persons, situations, and so forth) has been 

delineated, and a numerical criterion (for instance a grade) has been de¬ 

fined for ranking its members. Solving the problem means finding the 

top-ranked element (in mathematical terms, maximizing the criterion), 

which is then referred to as the optimal one, or simply the optimum. In 

some cases, one would rather minimize the criterion instead of maximiz¬ 

ing it, that is, find the least-ranked element instead of the top-ranked one, 

but this is of no consequence, and one will still call the result optimal. 

Maupertuis’ fundamental intuition is that our world is optimal: it is 

the one which uses up the least quantity of action. The class of com¬ 

parison consists of all “possible worlds, and the criterion is the quan¬ 

tity of action, which turns out to be minimized instead of maximized. In 

the preceding chapters, we showed that Maupertuis was mistaken. The 
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quantity of action is not minimized, nor is it maximized. In addition, the 

laws of nature are different at different scales, and if there is a unifying 

principle to be found, which I personally find very unlikely, we have no 

idea what it will be, and there is no reason why it should turn out as an 

optimization problem. 

On the other hand, there is a definite sense of progress in the way we 

think about the world, if not in the physical sphere, at least in the biological 

and historical spheres. We often think of humanity as rising from the 

dark ages, when tribes of hunter-gatherers were eking out a miserable 

subsistence from a hostile environment, to the affluent societies which 

arose from the industrial revolution. Moving farther on in time, it is hard 

not to qualify as progress the evolution from the first anthropoids to 

modern man, or from unicellular forms of life to multicellular ones. In 

fact, the history of life on Earth has often been seen as directed toward 

bearing forth its most perfect form, namely ourselves. The tree of evolu¬ 

tion is then pictured as a ladder, rising from inert matter to more and 

more complex forms of life, from bacteria to humans, standing on the 

last step. It is also quite common to think of evolution as continuing 

beyond humans toward higher and better forms of life, perhaps even 

achieving some kind of divinity; although the latter idea has become 

unfashionable nowadays, it is quite a natural way to reconcile the basic 

requirement of Christian theology (our salvation) with the basic fact of 

biology (evolution). 

The vision of evolution driving progress is a dynamic version of 

Maupertuis vision of God creating a perfect world once and for all. It is no 

longer claimed that the world is the best of all possible ones; rather, it is 

getting better every day: it is not optimal, but it is continuously improving. 

The process at work is no longer the benevolence of a rational Creator, but 

the blind forces of evolution. All living creatures are permanently engaged 

in a struggle for scarce resources, such as space, sunlight, food, and sexual 

partners while fighting off enemies such as parasites and predators, or in 

the case of humans, other members of their own species. This “struggle for 

life” results in the “survival of the fittest,” while the losers are to be sought 

in the fossil, prehistoric, or archeological records. 

One way to think about this situation is to see it as an optimization 

problem, where the criterion is “fitness.” By definition, fitter is better, 

and nature, by letting only the fitter ones survive, solves an optimization 

problem. As a logical consequence, whatever survives has shown itself, by 

the mere fact of still being around, to be better than what it has replaced. 

Transposing this idea into history, one gets arguments to prove that 

Neanderthal man was an inferior species, that the European settlers were 
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better than the various American, African, or Asian people they extermi¬ 

nated, displaced, or enslaved, and more generally that might is right. 

This is the basic claim to superiority of Western civilization: we have an 

overwhelming military advantage, which enables us to take land and 

resources away from others and put it to our own use, so our way of life 

must be the best one. The white man's burden is to bring Western civi¬ 

lization to all peoples, not to the extent, however, of letting them have 

the same weapons that we do, for that would be surrendering our moral 

superiority. 

The optimization approach is wrong. On the one hand, “fitter” means 

more adept at survival, but not “better” in any reasonable sense: more 

complex, more intelligent, or more moralt. The great success story of 

evolution are the bacteria, which have shown their ability to survive over 

3.5 billion years, with very little change in the basic blueprint, and even today 

are populating the most extreme environments on Earth, such as the ther¬ 

mal vents on the ocean bed, where some species prosper in temperatures 

as high as 400°C and pressures of up to 300 atmospheres. On the other 

hand, fitness is not a criterion which applies to the world as a whole, and 

which would allow us, for instance, to compare the Jurassic world, where 

dinosaurs roamed the primitive continents, with the present one, which is 

almost entirely taken over by humanst. Fitness is a relative criterion, relat¬ 

ing a species, an individual, or a gene to its environment, that is, to the 

world it lives in. If the environment changes, the fitness criterion changes; 

polar bears are certainly fitter than rattlesnakes for life in the Arctic, while 

the opposite is true in the Mojave Desert. Dinosaurs and people cannot be 

compared; one cannot be declared fitter than the other, because they never 

shared the same environment. 

In Darwins own words, the way the struggle for life operates is “descent 

with modification”; the word “evolution” is not his, but Spencer s, and 

Darwin never liked it. Each generation of individuals produces another, 

much more numerous in general than would be required for preserving 

the species if the survival of each offspring was guaranteed. All of the 

new individuals are born different, from each other and from their 

parents, and will transmit the modifications to their own offspring.1 

They immediately fall into a hostile environment, and those who have 

benefited from favorable modifications have an edge in the struggle for 

life. It is a probabilistic effect: the advantage may be slight, and make 

little difference for any given individual, but accumulated over many 

i. Nowadays, we have material support for this assertion that Darwin did not have, 

namely random mutation in the genetic material. 
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individuals and many generations, it is enough to shift the whole species 

in one direction, or even result in a new species. This does not mean that 

the new species will be better than the old one in any absolute sense; it is 

just better adapted to its environment. Note that it may be a new envi¬ 

ronment, different from the one the original species lived in; the climate 

may have changed, or the mutation may have occurred in individuals 

who had migrated. 

The case of the Galapagos finches is famous: Darwin noticed that there 

were many different species of these birds, all with different beaks—short 

and sturdy ones to crack nuts; thin, needle-like ones to suck blood from 

larger animals—and he concluded that they all descended from a single 

species of mainland finches, which had adapted to the different sources 

of food available on the islands. Parasites provide another instance of 

extremely specialized adaptation. The tapeworm, hooked into the intes¬ 

tines, deprived of any organ for locomotion or perception, is well fitted to 

its environment, but it would not survive under any other conditions. In 

fact, parasites are so helpless outside their host that one can hardly see 

them as winners in the struggle for life, unless one understands that the 

world the parasite evolves in is its host, and that it cares as little about 

other possible worlds as we do. 

These are simple situations: finches competing for stable sources of 

food, or a parasite adapting to its host. Most species occupy ecological 

niches in a food web, which is a complex system of predator-prey rela¬ 

tionships. We now enter a very complex situation, for the environment of 

each species is constituted by all the others. In other words, the world 

against which the fitness of species A has to be measured is nothing 

but the set of all species alive at that time, including A itself. The process 

of descent with modification is supposed to change species A so as to 

improve its fitness against that particular world, that is, against species 

B, C, and all the others. But the same process is simultaneously at work in 

species B, and changing it as well, not to mention species C, D, and all the 

others. As a result, all the species are evolving together, so that every 

species finds that its environment is changing, and has to adapt itself to 

the new conditions. This is a much more complicated process than 

straightforward optimization, and one may well ask what the overall 
effect might be. 

Off the West Coast of South Africa, the waters of Malgas Island are 

dominated by seaweeds and rock lobsters that prey on mussels and 

whelks. Nearby Marcus Island is similar in every respect, but its waters 

have extensive mussel beds and whelks at high density, lobsters and 

seaweed being notably absent. Local fishermen relate that, around 1965, 
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there were lobsters on both islands; so, in 1988, they tried to reintroduce 

lobsters on Marcus Island. In a famous experiment, one thousand lob¬ 

sters were transferred from Malgas to Marcus.2 To the experimenters’ 

amazement, the whelks overwhelmed the much larger creatures, crowd¬ 

ing on them and eating them up, so that within a week there was not a 

single lobster left. The lesson to be learned from this example is that 

there is a feedback loop between the individual species and the global 

environment: on the one hand, the environment determines the behav¬ 

ior and evolution of every species; on the other, the environment is noth¬ 

ing but the set of all species living together in that ecological system. 

Even such a basic relationship as who preys on whom depends on the 

environment: on Malgas, lobsters prey on whelks; on Marcus, whelks 

prey on lobsters. 

This drives home our basic point: fitness is a relative thing, and survival 

of the fittest does not lead to any kind of overall optimum. Lobsters are 

on top of the food chain on one island, and on the other they are unfit for 

survival. Malgas and Marcus offer two different biological answers to the 

same set of geological and geographical conditions. It is hard to see why 

one should be called better than the other; certainly, fitness to the 

environment does not provide such a criterion. Darwin himself was well 

aware of this, and points it out with his usual care in the Origin of Species: 

“Natural selection tends only to make each organic being as perfect as, 

or slightly more perfect than, the other inhabitants of the same country 

with which it has to struggle for existence. And we see that this is the 

degree of perfection that is attained under nature. The endemic produc¬ 

tions of New Zealand, for instance, are perfect compared to one another; 

but they are now rapidly yielding before the advancing legions of plants 

and animals imported from Europe.”3 

So Maupertuis’ great vision finds no more support in biology than in 

physics. It is not the case that evolution drives the world toward an opti¬ 

mum. The best the Darwinian process of descent with modification can 

do is to lead an ecological system to some kind of equilibrium, where 

every species is adapted to all the others it lives with. Such equilibriums 

are complex, and depend on all the species that interact: once the lob¬ 

sters have disappeared from one island, as was the case on Marcus, there 

is no reintroducing them. The old equilibrium has been destroyed, and 

the ecological system has found a new one, where there is no room for 

lobsters. 

2. A. Barkai and C. McQuaid, "Predator-prey role reversal,” Science 242 (4875) 

(October 1988): 62-64. 
3. The Origin of Species (London: John Murray, 1859), chap. 6. 
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It would also be wrong to imagine that the struggle for life will ever 

end in some kind of general equilibrium. The past history of life on Earth 

seems to have been driven by random events, which jolt the environment 

out of the state it had settled in and start afresh the whole process of 

descent with modification. In the case of Marcus, the original reason 

why the lobsters disappeared, be it overfishing, sickness, or some other 

natural disaster, is not known, but it certainly switched its biological 

future onto another track, while Malgas stayed on the same path. At a 

much larger scale, 65 million years ago, the dinosaurs disappeared from 

the Earth and left it free for mammals to occupy. Another mass extinction, 

225 million years ago, wiped out 96 percent of all species living in the 

oceans at that time. It is thought nowadays that such mass extinctions 

were triggered by catastrophic changes in the environment, due to a large 

meteor hitting the Earth, gigantic volcanic eruptions, global warming or 

cooling. 

This puts randomness squarely at the center of the picture. On the 

one hand, our future seems to depend on a mass of objects orbiting the 

Sun, some of which may end up falling down on us, or on largely 

unknown processes unwinding miles below our feet, and which may 

result in huge amounts of magma seeping out of faults in the Earths 

crust. On the other hand, if such an event happens (or rather when, for it 

is bound to happen sooner or later), the final outcome will be no less 

random than the process itself, for the catastrophe will quite likely burst 

out upon a totally unprepared world. Millions of years of descent with 

modification will have resulted in an equilibrium where species are well 

adapted to conditions which have very little to do with the ones that 

suddenly prevail. Suppose, for instance, that a gigantic dust cloud, blown 

up by a meteoric impact or a volcanic eruption, shuts out sunlight for 

several years; most existing species will not be prepared for such an 

ordeal. It would be as if two football teams were suddenly called upon 

to play water polo: it would be very hard to predict the outcome of such 

a contest, based on the players' previous performances. It would be 

decided by the ability to swim, which is so irrelevant to the basic training 

of professional footballers as not even to be recorded, but which would 

suddenly become much more important than the ability to run. Likewise, 

the fact that diatomeae, for instance, have survived the mass extinction 

of 65 million years ago, while other algae species did not, is attributed to 

their ability to change into spores, a quiescent and hardy form of life 

which may have been developed to resist seasonal fluctuations in their 

food supply, and which may have enabled them to survive the great night 

that extended over Earth. 
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The major events in the history of life on Earth have not all been mass 

extinctions. As Stephen J. Gould was fond of recalling, there was also a 

mass explosion, 570 million years ago, which gave birth to the first 

multicellular animals with hard body parts. The Burgess shale remains 

as a witness to this remarkable period, and has preserved a few of the 

species that appeared at that time.4 Eight of them do not belong to any of 

the animal phyla alive today—sponges, corals, annelids, arthropods, 

mollusks, echinoderms, and chordates, the latter including vertebrates. 

There are arthropods as well in the Burgess shale, but most of them cannot 

be classified in the four great groups we know today, three still living and 

one, the trilobites, exclusively fossil. There is an astonishing creativity in 

the Burgess fauna, as if life had been trying out the widest possible range 

of forms, and left it to the evolutionary process to sort out. There were 

no more similar episodes; the Cambrian explosion was the first and last 

of its kind. After each mass extinction, the ecological niches which were 

freed were occupied by species descending from the survivors. This 

means that the old blueprints were used: there was no more room for 

experimenting with new ones. 

As Gould points out in the epilogue of his book Wonderful Life, there 

is a single chordate in the Burgess fauna: it is Pihaia, “a laterally com¬ 

pressed ribbon-shaped creature two inches in length.”5 The Burgess 

fauna is teeming with life, and there is nothing in this single modest 

individual to set it apart from the others. And yet, this is the blueprint 

for most animals we can name, fishes, birds, and mammals, not to 

mention ourselves. Why did this particular blueprint survive until 

now, while most of the other species and phyla in the Burgess fauna 

disappeared long ago? Most probably, there is no single compelling 

reason, and the answer combines several degrees of randomness, from 

the impact of large-scale events such as mass extinctions or continen¬ 

tal drift, to genetic mutations giving certain species at certain times an 

overwhelming advantage in the struggle for life. As Gould puts it, “The 

survival of Pikaia was a contingency of just history. I do not think any 

‘higher’ answer can be given, and I cannot imagine that any resolution 

could be more fascinating. We are the offspring of history, and must 

establish our own paths in this most diverse and interesting of con¬ 

ceivable universes—one indifferent to our suffering, and therefore 

offering us maximal freedom to thrive, or to fail, in our own chosen 

”6 
way. 

4. A Wonderful Life (New York: W. W. Norton, 1989), chap. 3. 

5. Ibid., epilogue. 

6.Ibid. 
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All this holds true in human history as well. Of course, the time span 

is much shorter. Recorded human history does not stretch farther than 

4000 BC, when writing was discovered in Mesopotamia. Between the 

early Sumerians and the present time, when the last remnants of their 

activity are being destroyed by looters in the wake of the 2003 invasion, 

there are no more than six millennia, a bare flicker in the 4.5 billion years 

of geological time. But at this much smaller scale, we find that human 

history mirrors the history of life. Human societies are engaged in a per¬ 

petual struggle for space and resources, as are species. The agent of 

change is no longer descent with modification, but the cunning of 

human beings, though the playing field is largely shaped by events outside 

their control. Volcanic eruptions, floods and droughts, parasites and 

plagues, have all taken their toll. 

There have been many attempts toward a scientific theory of history, 

comparable to the theory of evolution. In my opinion, the ones who have 

come closest to such a theory are Thucydides (460 BC—395 BC) and 

Francesco Guicciardini (1483—1540). The first wrote the history of the 

Peloponnesian War, which pitted the sea empire of Athens against cities of 

mainland Greece, led by Sparta. The war began in 431 BC and ended twenty- 

seven years later with the defeat of Athens, but Thucydides’ account covers 

only the first twenty-one years. The second wrote the history of the wars 

which ravaged Italy between 1492 and 1534, and which ended with the 

Hapsburg emperor Charles V beating the French for supremacy over the 

peninsula. Thucydides was an Athenian, Guicciardini from Florence, both of 

them held high positions during the wars, and they both saw the war end in 

disaster for their own side. Their beloved cities, Athens and Florence, had to 

submit to a foreign power, which imposed on it a new constitution; along 

with their independence they lost their traditional freedoms. 

Both their accounts are structured in the same way. At certain times, a 

crossroads is reached in the course of events. An important decision is 

to be taken: should Sparta declare war on Athens? Should Venice grant 

the emperor and his army free passage from Austria into Italy, through 

its territory? The decision-making body assembles, one person rises and 

advocates one course of action, with convincing arguments, then another 

person rises and advocates the opposite, with equally compelling argu¬ 

ments. The assembly then chooses which advice to follow, and the action 

runs its eventful course again, on a road which usually turns out to be full 

of accidents and surprises, until a new crossroads is reached. The conse¬ 

quences of the decision can be very far from what its advocates forecast, 

either because the original advice was bad, or because unexpected events 

threw the action off course. 
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As a typical instance, consider the beginning of the Peloponnesian 

War, as Thucydides describes it.7 The Corinthians came to Sparta to 

complain of the many encroachments by the Athenians, and urged the 

city to declare war. Their basic argument was that it was now or never: 

every day the Athenians were chipping away at Sparta’s allies, and if they 

waited any longer, they would find themselves isolated and facing a 

much stronger enemy. Then Archidamus, king of Sparta, spoke against 

declaring war. He argued that this was a war that could not be won. 

Athens drew its power and prosperity from the sea, and most of its allies 

lay on islands or in Asia Minor, on the other side of the Aegean. Spartans 

had no fleet. There was no hope of taking Athens by force, since the city 

was fortified, nor by starvation, since everything it needed came through 

the harbor. The best they could do was to plunder the neighboring territory, 

which might inconvenience some landowners but would not bring the 

city to its knees. It is much better, said Archidamus, to keep our options 

open, and try to contain the Athenians by diplomacy, while building up 

our strength. 

In fact, his advice was not followed, and the Spartans declared war 

and invaded Athenian territory. Everything then followed as he had 

predicted. The Athenians did not fight the invasion, but retired behind 

their walls, from which they watched the Spartan forces plundering the 

fields and burning the houses. 

Meanwhile it was business as usual: ships went in and out of the har¬ 

bor, bringing into the city food and silver, and carrying troops on military 

expeditions. Almost every year of this long war saw the return of the 

Spartan forces, destroying the crops around Athens, until the countryside 

finally lay deserted. Meanwhile the real war was being waged elsewhere, 

Athens was assembling more power and wealth by subduing more 

islands, until a wholly unexpected event took place: the great plague of 

Athens. 

Athens was a very large city for its time, and it was certainly a health 

hazard to have so many people, citizens and refugees alike, crowded 

within the walls, but an epidemic of this virulence and magnitude was 

unheard of at the time. It is estimated that one-third of the population 

died of the plague, and even today, it is not clear precisely what disease it 

was. The plague dealt a terrible blow to Athens and hit much harder 

than anything the Spartans and their allies could have done. It is cer¬ 

tainly the main reason why the ultimate outcome of the war was not 

7. Thucydides, History of the Peloponnesian War, trans. Charles Forster Smith, Loeb 

Classical Library (Cambridge: Harvard University Press, 1956-1959), 1.67-87. 
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what Archidamus, sound as his advice was, had predicted. Another rea¬ 

son was the ill-fated expedition which Athens sent to Sicily and which 

was utterly destroyed. Here again, an unforeseen event played a crucial 

role. After suffering several defeats around Syracuse, the remaining 

Athenian forces planned to sail home, but on the night scheduled for 

departure there was an eclipse of the Moon, so that the priests ordered 

the troops to stay for twenty-seven more days in order to placate the 

gods. This gave the enemy plenty of time to get reinforcements. The 

Athenian fleet was destroyed, the troops captured and left to rot in 

the quarries. 

Many great failures and many great successes are due to chance and 

not to human folly or ingenuity. In his Ricordi, the notes he kept through¬ 

out his life, Guicciardini writes, “Pray God always to be found near to vic¬ 

tory, for you will be given credit even if you have had no part in it; 

whereas whoever is found near to defeat is accused of infinitely many 

things of which he is totally innocent.”8 He also stresses the importance 

of another kind of chance, due not to events which lie outside human 

control, but to the unexpected consequences of actions which are below 

the threshold of attention: “Small events that would hardly be noticed 

are often responsible for great ruins or successes: and this is why it is well 

advised to consider and weigh every circumstance, no matter how 

small.”9 Do we not hear an echo of chaos theory? How would the 2000 

presidential election in the United States have turned out if there had 

not been butterfly ballots in Florida, or if the voting machines had func¬ 

tioned properly? 

Chance, of course, is not everything: there is also human decision¬ 

making. As an example, let us consider the situation the Venetians found 

themselves in when, in 1507, the Hapsburg emperor Maximilian asked to 

be allowed free passage with his troops through their territory. The 

Venetians were at that time allied with the king of France, and it was 

clearly the emperor s objective to attack the king in northern Italy, once 

his army had safely crossed the Alps. When all was said and done, there 

were two courses of action open for the Venetians: to refuse the request, 

and run the risk of the emperor seeking an alliance with the king against 

them, or to reverse alliances and join the emperor in fighting the king. 

In the first of the two speeches that are delivered in the Venetian 

Senate on the occasion, an important point was made: what they actu¬ 

ally wanted to do was not as important as what the others believed they 

8. Ricordi (1512-1530), ed. G. Masi (Milan: Mursia, 1994), 176. 

9. Ibid., 82. 
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wanted to do. Even though they wanted to be faithful to the alliance 

with France, the king might believe that they wanted to switch, either 

because he himself was treacherous and judged others to be like him, 

or because he suspected that the emperor was making the Venetians a 

more advantageous offer than he actually was. If that was his belief, he 

would find himself better off seeking an alliance with the emperor, and 

in sharing with him the spoils of the likely defeat of the Venetians. 

Worse still, even if the king believed that they wanted to remain faith¬ 

ful, as indeed they did, he might think that they suspected him of being 

in doubt and of preparing this kind of preemptive strike, so that they 

might throw themselves into the arms of the emperor out of suspicion 

and not of greed. In the end, the only safe way to proceed was to accede 

to the emperor s demand, for if they did not, the king would proceed as 

if they had, and they might as well reap the benefits for their own 

safety. 

This was really a very modern analysis. It shows what an important 

role beliefs play in conflict situations. Of particular importance are the 

beliefs about other peoples beliefs, and since these can never be fully 

ascertained, the whole situation is driven by mutual suspicion. In certain 

circumstances, it may even have a stabilizing effect. This was the case in 

Italy until the death of Lorenzo the Magnificent in 1492; the peninsula 

was until then divided into five major states, of about equal importance. 

None was powerful enough to prevail against the others, and all under¬ 

stood that ganging up against one of them would create a dangerous 

precedent which would imperil their own existence. In Guicciardinis 

words, “Everyone was watching the actions of the others carefully, check¬ 

ing any move that would have enabled one of them to increase his power 

or reputation; this did not make the peace less assured, but rather made 

all of them eager to put out immediately any small spark which could 

have started a new fire.” This carefully crafted equilibrium was finally 

destroyed when the Duke of Milan called the French into Italy, the first 

of the many incursions which would ruin the country over the following 

forty years. 

We now have a formal model for these situations. It is called game 

theory. The mathematical foundations were laid by John von Neumann 

and John Nash around 1950, and in the remainder of the century it has 

proved itself to be a versatile tool for analyzing economic and social 

situations. The model consists of individuals or groups, called agents, 

or players, each of whom has to decide on one course of action. Once 

all decisions have been made, a global situation results, which affects 

every agent in a different way. The problem each player faces is that he 
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wants to get the best possible situation for himself, while knowing full 

well that the final outcome will depend not only on what he does, but 

also on what the others do. This makes it very different from simple 

optimization, where the outcome would depend on the agents own 

actions only. A situation which is optimal from Jack’s point of view may 

be very bad or very good from Jill’s; in the first case, Jack and Jill will try 

to outguess each other, in the second they will try to coordinate their 

actions. This is strategic behavior, and we need a new concept to 

account for it. 

An equilibrium is a situation where each agents actions turn out to be 

the best reply to everyone else’s. It is a situation of stable mutual adjust¬ 

ment: everyone anticipates everyone else’s behavior, and all these antici¬ 

pations turn out to be correct. In other words, it is a set of self-fulfilling 

prophecies that players formulate about each others actions. Such situa¬ 

tions are central to social life, because they are the only stable ones. Not 

to be in equilibrium means that some anticipations turn out to be wrong, 

so that some actions turn out to be inappropriate to the actual situation. 

This will lead the concerned individuals or groups to revise their antici¬ 

pations and adjust their actions, thereby creating new discrepancies to 

be corrected at the next stage, so that the whole situation is destabilized, 

and the system starts oscillating wildly. In equilibrium, on the other 

hand, all anticipations are confirmed by experience, and every acquired 

behavior turns out to be appropriate in every situation, so that they 

become more ingrained as time goes by, and eventually solidify into 

social norms. 

Basic features of social organizations, such as trust, or power, simply 

express some underlying equilibrium. Power is nothing but the illusion 

of power, the universally held belief that a certain person will be obeyed, 

that certain orders will be followed. It is self-fulfilling, for if I am given an 

order by such a person, I will follow it for the simple reason that if I don’t, 

someone else will, and it will probably be worse for me. Trust is the belief 

that others will comply to certain rules, and every time I myself comply to 

those rules I strengthen the general feeling of trust. Note that distrust is 

self-supporting as well. If I distrust you, and you distrust me, I will take 

every due precaution to protect myself against your anticipated behavior, 

giving you good reason to distrust me a little bit more. Trust is an equilib¬ 

rium, distrust is another. In the first one, everyone trusts everyone else, 

and is right to do so; in the second one everyone distrusts everyone else, 

and is right to do so. A situation where some are trustful and the others 

take advantage of them would not be stable, for one kind would learn 

from the other. Either the crooks will tnend their ways and enjoy the 
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many advantages of a society where everyone is trustworthy, or the oth¬ 

ers will be taught the hard way not to be gullible, and trust will disappear 

as a facilitator of social interchange. 

Many rules which we assume to be universal are in fact relative to 

some equilibrium. If the lobsters on Malgas Island were able to think, 

they would believe it a basic rule of nature that lobsters prey on whelks, 

whereas just the opposite is the case one island away. This illusion preys 

on humans as well: we are born and bred into an equilibrium, the real 

extent of which we do not know, but which we tend to think of as the 

only natural or reasonable one. Think for example of the emancipation of 

women. In a society where women are confined to a domestic role, while 

public life is taken over by men, it is easy to think of this separation as 

being due to some inherent differences between men and women, rather 

than to some temporary organization of society. Acting upon this belief, 

one will educate girls differently from boys, so as to prepare the former 

for domestic chores and the latter for public roles, so that indeed they 

become different as adults, all satisfied with the characters they have 

been trained to play. It is an equilibrium, and it is very hard to break out 

of it; in fact, the emancipation of women in our society has been a slow 

process, still going on, which requires not only creating opportunities for 

women, but also changing minds through education. 

An equilibrium is not always an optimum; it might not even be good. 

This may be the most important discovery of game theory. 

Imagine, for instance, that there is a common task to be accom¬ 

plished, and that every member of the group may either cooperate in the 

effort or shirk. This is the choice we face when we develop an interest in 

social or political issues: we can either do the hard work of lobbying for 

them, by showing up at meetings and taking part in the chores of organ¬ 

ization, or we can simply skip it and wait for others to do the work for 

us. Let us put in some cash values. Say the group is lobbying for a tax 

rebate. Participating in its lobbying effort entails a personal cost of $n. 

If n members of the group participate, the tax rebate will be $n for every¬ 

one in the group, whether they have participated or shirked. Each time a 

new person participates, everyone receives $1 more. This means that 

participating entails a personal net cost of $10, while shirking gives a 

free ride on future benefits. The tension is between a small benefit 

which accrues to everyone against a large cost to the individual who 

chooses to participate. 

Say there are one hundred members in the group. If everyone partici¬ 

pates, each member of the group will pay $11 herself and receive a $100 

tax rebate. This looks like an excellent opportunity of earning $89, and 

141 

M
A

Y
 

T
H

E
 

B
E

S
T
 
O

N
E
 

W
IN

 



C
H

A
P

T
E

R
 

S
E

V
E

N
 

the total earnings of the group are then $8,900: let’s just go and do it! 

The problem is that this requires everyone to cooperate, whereas there 

are additional rewards for shirking. If I decide that I had rather keep my 

$n, and I am the only one to do so, my earnings jump to $99, while the 

earnings of the others drop to $88 each. Not a big difference perhaps, 

except for me, and I may do it without too many moral qualms, but the 

problem is that I may not be the only one to think in this way. If, for 

instance, there are fifty like me, then I and the other free riders will earn 

$50 from the rebate, and the others will each make $39. Note that I am 

still better off shirking than cooperating, because throwing in my $11 will 

not bring me anything more; it will instead cut my earnings to $40. In 

fact, whatever happens with the others, I am always better off shirking 

than cooperating. In other words, the only equilibrium in that situation 

consists of everyone shirking, so that everyone earns $0, thereby forgo¬ 

ing a possible gain of $89. 

This seems extremely strange: here is a crowd of people who could 

earn $89 each, and who choose not to do so. But it does make sense: 

imagine for instance that there are ten thousand people in the group, but 

the cost of participation is raised to $1,000. This would increase poten¬ 

tial benefits enormously, up to $9,000 per person, and yet it would make 

cooperation even more difficult. Indeed, just to recoup the cost of partici¬ 

pation, one would need to find a thousand other people willing to bet 

$1,000 that they will not be the only ones; unless there is some bond 

between the participants, or some means of ensuring compliance, such 

people will be extremely hard to find. A general agreement on what is to 

be done is not enough: one needs the means to enforce the agreement. 

This may be called the principle of belling the cat: the advantage of hav¬ 

ing the cat belled is obvious, but no mouse is going to risk doing it unless 

compelled to do so. In fact, this may be the founding principle of modern 

states. According to the famous definition of Max Weber, the state is 

characterized by the fact that it has a monopoly on the legitimate use of 

violence. What should it be used for, except for coercing people into 

keeping their word in situations where the temptation to shirk would be 

too great. In the above example, if the ten thousand members of the 

group agree to be shot if they do not contribute $1,000 each, and if they 

appoint a person for the express purpose of carrying out the threat if they 

renege on their word (contributing perhaps $1 each for the policemans 

pay), then they will have to comply, thereby earning $8,999 each, and the 

policeman will get $10,000 for doing nothing: his mere presence is 

enough. This is one reason why well-organized states need effective law- 

enforcement agencies. 
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The principle of belling the cat has wide applicability, especially in 

volunteer organizations, which have no means of enforcing compliance 

and rely exclusively on the goodwill of their members: after the initial 

enthusiasm, a few dedicated individuals end up doing all the work, while 

the vast majority barely bother to turn up at meetings. Trade unions face 

a similar problem, at different levels. To begin with, unionizing a firm or 

shop requires a majority vote; even if a majority of the workers feel that it 

would be to their benefit to unionize, it is quite another matter to step 

out, require that a vote be organized, and campaign for the issue, in the 

full knowledge that if it fails, you will suffer the backlash. Even if you are 

willing to take the risk, you are not sure that others will; the best strategy 

is then to wait for others to start the train, and to jump on when you feel 

there are enough persons on board. But this is a catch-22: if everyone 

waits for a clear majority to develop before joining, there can never be a 

majority. If, in addition, any advantage the union gets in collective bar¬ 

gaining is also available to nonunion workers, as is the case in France, 

then the benefits of joining are even less. If a union is ever established, it 

will have a hard time keeping up the membership; why pay the dues if 

one gets the benefits anyway? This may be why, in the United States, 

there are "closed shop” clauses, stating that only union workers may be 

hired, while in France unions try to provide their members with fringe 

benefits, unavailable to nonmembers, such as reduced rates for certain 

events or extended travel services. 

Building an organization is a complicated story, and there are many 

more issues to worry about. We did say, for instance, that because of the 

principle of belling the cat, states need effective law-enforcement agen¬ 

cies. But what about collusion or corruption? In the last example we 

described, how are we to prevent one hundred of the ten thousand citi¬ 

zens to get out of paying their share by bribing the policeman, at a cost of 

$100 each? He gets away with $19,900, and each of them makes $9,900 

(the $10,000 tax rebate, minus the cost of the bribe). We need police¬ 

men, but who will police the policemen? The answer may be an agency 

overseeing the police, which will raise the same problems on its own, or 

perhaps another police force, which will be kept at odds with the first 

one, so that each holds the other in check. 

Humans are complicated beings. They are one branch in the tree of life 

on Earth, a particular result of the ongoing Darwinian process of descent 

with modification. They also see themselves as capable of intelligent 

behavior, whereby each individual seeks to further his own interests, while 

making informed predictions about the actions of others. There is no rea¬ 

son to believe that the dynamics of descent with modification or those of 
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strategic behavior will by themselves lead human society to some kind of 

desirable outcome. In this chapter, we have reviewed much evidence to the 

contrary. In the struggle for life, or in the struggle for power, there is no 

reason why the survivors should be better than the dead, no reason why 

their victory would make the world better than it was. There is no invisible 

hand guiding these processes, dealing out victory to the most deserving. 

Chance is their true leader. 
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(chapter 8) The End of Nature 

nature is indifferent. There is no one out there to watch over 

us. We are an animal species like so many others which have appeared 

and disappeared on Earth, and our Sun is a star like countless others 

in the universe. There is no hint in the laws of physics or biology of any 

special provision to take care of us. We are at the mercy of a cosmic ca¬ 

tastrophe, perhaps a collision with one of the numerous celestial objects 

which gravitate near the orbit of the Earth, or of a biological one, such as 

a large-scale epidemic. Both have happened in the past, and will certainly 

happen again. Worse still, we are at the mercy of our own malice. 

It is tempting to believe that, in spite of our individual failings, of 

which we are too aware, there will always be something to protect us from 

major catastrophes, as if some invisible hand would pull humanity back 

to safety at the last minute, as it teeters on the brink of extinction. As an 

extreme example of this way of thinking, some people claim that there is 

no need to worry about global warming, because God will not allow it. 

Closer to rationality, it is often claimed that a nuclear war is impossible 

simply because it is “unthinkable,” that is, because the use of strategic 

nuclear weapons on a large scale would have such far-reaching conse¬ 

quences that the survival of human life, not to mention countless other 

living species, would be put at risk. Why would human beings willfully 

destroy their planet, like passengers sinking their ship in the middle of 

the ocean? Well, if that was the case, why did the United States and the 

Soviet Union spend enormous resources to prepare for a nuclear war 

over half a century? During all that time, and even now, thousands of 

intercontinental missiles, each carrying several warheads, have been held 

ready to fire at a moments notice. No ingenuity has been spared to make 

sure that they reach their target: as I write, they stand ready in the depths 

of the ocean, on board flying aircraft, or in fortified bunkers. This is a tre¬ 

mendous organization, which can be activated within a few minutes, and 
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if these weapons are intended never to be used, it would be a tremen¬ 

dous waste of resources. 

The truth of the matter is that they were used (the two first atomic 

bombs ever built were dropped on Hiroshima and Nagasaki), they were 

always intended to be used (in case the other fellow used them first), 

and they came very close to being used again (during the Cuban missile 

crisis). Even now, in 2004, in the absence of any real challenge, the U.S. 

Energy Department has budgeted $6.5 billion for the nations nuclear 

arsenal, 35 percent more in real terms than it spent in the years of the 

cold war, and on a par with the boom years of defense spending during 

the Reagan era. Not only will the old weapons be maintained, but new 

ones will be developed, “mini-nukes” or “bunker-busters,” which will 

blur the distinction between conventional weapons and nuclear ones. It 

is not even clear that there is strategic thinking behind these develop¬ 

ments: as usual, the technology is developed because it is available, and, 

by the same token, the weapons will be used because they are there— 

who knows by whom and in what circumstances? 

History is replete with catastrophes caused by human action, and 

nuclear war would be just one among many. We have never seen any regu¬ 

latory mechanism stepping in to prevent dangerous policies from devel¬ 

oping and steering humankind back onto a safer course. It seems clear by 

now that Easter Island once was a lush place, and that it was turned into 

the barren place we know as a result of infighting: someone, over there, at 

some time, cut the last tree. Mesopotamia, the region between the Tigris 

and the Euphrates, was not always the desert we see today. In fact, it is the 

place where humans developed agriculture and invented writing, the cra¬ 

dle of our civilization. Either through overexploitation of the land, or 

through wanton destruction of the irrigation canals, Mesopotamia is now 

barren. Today, we are rushing toward similar catastrophes on a planetary 

scale. Global warming is the most striking example: even if we stopped 

producing any more carbon dioxide today, hundreds of years would elapse 

before its atmospheric concentration returned to its preindustrial level of 

280 ppm. It is right now at 370 ppm, and it is expected to reach 745 ppm 

in 2100. By this time average temperatures will be higher than they are 

today, the estimated range being 37 to 41 degrees Fahrenheit, leading to 

some melting of the polar ice caps, so that the sea level will increase by an 

estimated half a foot to three feet, which is enough to wipe out some 

islands and countries like Bangladesh. There is always the hope that such 

dire predictions might turn out to be wrong, and this is an argument often 

put forward not to face the problem, but it should be kept in mind that 

there are two ways to be wrong: one can err on the good side as easily as on 
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the bad side. In other words, the actual scenarios may turn out to be worse 

than expected (in fact, this seems to be happening), so that uncertainty 

actually strengthens the argument for doing something right now. 

We no longer live in a “natural” world, but in an artificial one; we no 

longer adapt to our environment; we adapt our environment to us. The 

primeval forests are disappearing; so are the fish in the sea, and the 

ozone layer. Temperatures are rising, and there is no longer any place on 

Earth which does not carry some trace of human activity: even in the 

remotest places, one finds human-made pollutants, which make their 

way up the food chain. We are even becoming able to engineer our own 

species. We can seriously envision a time when it will be in our power to 

clone a given individual, or to choose the genes of our children, or to cre¬ 

ate chimeras, part human, part animal. These new possibilities strike at 

the root of all kinship relations, which have been from time immemorial 

the cement of our societies. Will we actually do these things, and what 

will the consequences be? 

The possibilities which open up before us are not wholly without 

precedent, although they have to be sought in mythology as much as in 

history. Perfect doubles are not unheard of: nature produces twins once 

in a while, and stories of gods or demons taking on the identity of men, 

to enjoy their wives, for instance, are frequent. Choosing ones children 

has been done for a long time, by the simple device of discarding those 

one believed were imperfect; many primitive tribes, and the classical 

Greeks and Romans as well, killed newborns who exhibited some visible 

defects, and even in China today, baby boys suspiciously outnumber 

girls. Chimeras are revivals of centaurs, mermaids, sphinxes, harpies, and 

much of the bestiary of antiquity. 

History and mythology hand down stern warnings against tamper¬ 

ing with such things. The most famous one comes down from classical 

antiquity. It is the story of Oedipus, who becomes king of Thebes by 

killing the former king and marrying the queen. A great plague then 

befalls the city, and it is finally revealed, to him and the people, that he 

has killed his father and married his mother. Kinship relations have 

been tampered with; the tragedy then swiftly concentrates on Oedipus’s 

children, who no longer know whether he is their father or their 

brother, and whether they are their own aunts or uncles. Collective and 

individual disaster follows. Oedipus blinds himself and becomes a 

vagrant, his mother/wife kills herself, his sons fight for the kingship and 

kill each other in battle, the city suffers a plague and a siege. 

At a turning point early in the story, Oedipus meets a chimera, the 

Sphinx, a creature traditionally depicted with a woman’s head and a 
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lion's body. This is a dangerous encounter, since the Sphinx always ends 

up killing and eating his or her opponents, but this time Oedipus wins 

an apparent victory and kills the Sphinx. After this feat, he enters 

Thebes as a liberator, becomes king, and marries the widowed queen. 

The end of the story shows that it would actually have been much better 

for him to have died at that point, before the truth was revealed, and 

spared himself, his kin, and his city the disasters which he was to bring 

upon them. This is a clear warning that if one taboo is breached, namely 

the human/animal distinction, then others will follow, such as the 

mother/wife distinction, and the whole natural order will fall apart, 

with dire consequences for humanity. 

Are such warnings valid for the modern world? We do not know. My 

point here is that we have to confront such choices, and there most 

probably is no turning back. We cannot pretend that the new possibili¬ 

ties offered by genetic engineering do not exist. There are many other 

technologies around, each of which has the potential to transform our¬ 

selves or our environment. Possible worlds are now crowding our 

doorstep. They are no longer purely virtual possibilities, which God 

envisioned and discarded in favor of the present (better) one. They are 

“clear and present dangers,” or at least clear and present opportunities, 

which we can seize right now, and the effect of our actions will be felt for 

generations to come. For instance, one very real possibility is a warmer 

world, a planet where the environment has been profoundly altered by 

the greenhouse effect. The climate has changed, and so have dominant 

winds and currents; the northern ice cap has melted; the sea level has 

risen everywhere, swallowing islands and lowlands and bringing the 

coastline deep inland. We could also have continents without forests, 

seas without fish, savannas without game. We could, in fact, destroy our 

environment, simply by launching the thousands of missiles we main¬ 

tain at great expense. The radioactive fallout will make vast regions 

uninhabitable, and the dust raised by the explosions will circle the 

Earth for many years, blotting out the light of the Sun and creating a 

nuclear winter in which many animal and plant species will perish. 

Again, such an event may be unthinkable, but it is not impossible: there 

are several examples in history of human societies destroying their envi¬ 

ronment, even though it meant destroying themselves. In the case of 

Easter Island, the destruction of the environment, notably the forests, 

through warfare and overexploitation took place over a very short 

period, probably two centuries, so that the people must have been well 

aware of what was going on. When the first Europeans arrived in 1722, 

they noticed that there were many wooden artifacts on the island, but 
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no trees tall enough to make new ones. Someone, at some point, must 

have cut or burned the last tree, in full knowledge of what he or she was 

doing. 

Which of these possibilities will become the new reality is our decision 

to make. This decision is urgent, for changes in the current environment 

are quickly becoming irreversible. In other words, we have to shape a new 

world, and to do it now. What a change since the time of Leibniz! In his 

view, the choice between all possible worlds had made once and for all, by 

God himself, at the time of Creation. Now this choice is ours to make. This 

is no longer a moral or theological problem; it is a matter of survival, not 

only for us, but for many other living species on Earth. The question is no 

longer one of the individual reaching peace of mind by recognizing God 

in his works and coming to terms with the presence of evil in the world. It 

is a question of human society today (or rather, a very small fraction of it) 

shaping the biological and social environment its descendants will have 

to live in for centuries to come. The first question is at best a moral one, 

and can be settled at leisure, while the second one is pressing. We are 

already experiencing the first effects of global warming, and by 2050, 

when the children born today will be middle-aged, it will be in full swing. 

And there is no one except ourselves we can turn to for the answer. 

According to the famous dictum, “If not us, who? And if not now, when? " 

The lesson of Stoic philosophy was “to change ones thoughts rather 

than the order of nature.” It may well be adapted to times when human¬ 

ity was confronting natural forces immeasurably stronger than itself, 

but no longer now, when human activity is interfering with the geogra¬ 

phy and the climate and driving many species to extinction. One can 

doubt that there still is such a thing as the order of nature, at least at a 

scale that concerns humans: many of the phenomena that our ancestors 

would suffer blindly, as “acts of God,” we can now control, influence, or 

predict. We can cure infectious diseases, direct ships out of the way of 

storms, build dams and dikes to prevent floods; we have cut forests and 

practically eliminated large animals from the face of the Earth, the few 

remaining specimens being closely monitored. There is very little now 

that could happen to us without our being able to do something about 

it. One could still envision humankind being destroyed by a natural 

event, but it would have to be at a planetary scale, such as the impact 

from a large asteroid. But even this is not quite a hopeless situation. 

Right now, the space around Earth is being monitored for large objects 

which could be on a collision orbit, in the hope that if such an event is 

predicted long enough in advance, some effort could be made to deflect 

it from its course, or to destroy it before the impact. 
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This active attitude toward nature is typical of humankind. Ever since 

the species Homo sapiens appeared on this planet, it has been making and 

improving tools and weapons, and it has been trying to harness the 

forces of nature to its own ends. The human is first and foremost an 

engineer, Homofaber, rather than a philosopher, Homo sapiens. Certainly, 

if an alien observer were looking at our planet, he would be struck by our 

technology rather than by our intellectual activity. Our African ancestors 

are known to us more by the tools and weapons they wielded than by the 

songs they sang and the myths they told. The technology gap that sepa¬ 

rates our modern nuclear plants from the primitive fire camps is tremen¬ 

dous, but we are speeding down the same path our forefathers started 

on. The pace has been accelerating throughout the journey, because we 

now have at our disposal resources in energy and scientific knowledge 

which our ancestors would not even have dreamed of, but we are still 

building tools and weapons, in the hope that they will help us live longer 

and better. 

It has always been a mystery to historians why the development of 

science in classical antiquity did not trigger technological progress. Tech¬ 

nologies remains pretty much the same all during that period, which cov¬ 

ers roughly one thousand years. Science flourished during that period, at 

least during the first half, but this development does not seem to have 

spilled over to technology. A famous exception is Archimedes, who is 

reputed to have kept the Romans at bay during the siege of Syracuse by 

setting fire to their ships with mirrors and by devising all kinds of myste¬ 

rious machines. Since he was killed by a Roman soldier when they finally 

stormed the city, that story was mostly understood as a lesson: scientists 

should worry about observing stars and not about winning wars. In 

other words, the scientist was seen as a philosopher, seeking knowledge 

for the sake of knowledge, far removed from the ways of the world, and 

with little social responsibility or impact. 

The situation changes drastically at the time of the Renaissance. From 

then on, science went hand in hand with technology. Scientists prided 

themselves on being engineers, and engineers learned science to apply it. 

The measurement of time was the first example of a scientific discovery 

changing the technology. No conceivable improvement of the clepsydra or 

of the weights clock could lead to Harrisons chronometer, or to a modern 

quartz watch. A true discontinuity, a change of technology, was needed to 

exploit Galileos theory of the pendulum. As we described it in the first 

chapter, Galileos original theory turned out to be slightly wrong, and it 

took another technical improvement by Huygens, again built on theoreti¬ 

cal ground, to build the first reasonably accurate pendulum clock, which 
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set the stage for all subsequent developments. The notebooks of Leonardo 

da Vinci, that father of all engineers, are filled with drawings showing 

wonderful machines which would work for humans, transport them in 

the air or under the sea, feed them and protect them. Science was seen as a 

way of enhancing our powers, of putting more resources at our disposal, 

and thereby improving our lot. Scientists were no longer seen as mere 

stargazers: they were expected to contribute to the general welfare. Of 

course, I am oversimplifying the whole story. Galileo, for instance, drew 

more prestige from having discovered the five satellites of Jupiter and ded¬ 

icated them to the Medici family than for his failed attempts at clock mak¬ 

ing. But it certainly is true that from that time on, scientists displayed an 

interest in concrete, even mundane, problems that they had not before. 

The great Pascal, for instance, built the first mechanical computer to assist 

accountants in making calculations. 

Again, from a historical perspective, it is not clear what triggered the 

close association of science and technology that has prevailed ever since. 

One distinct possibility is that technological progress had already 

started on its own, and that scientists just boarded the train as it started 

moving. The Renaissance was also the time of the Italian wars, when 

French and Spanish armies fought for dominion over the peninsula, 

and, in the beginning at least, the technological superiority of the French 

in guns and artillery was so overwhelming that their opponents had to 

adjust very quickly. This created a great interest for the study of ballistics, 

and a very favorable context for Galileo’s work on falling bodies. In 

the same vein, field glasses were first developed for military use before 

Galileo had the idea of turning them to the night sky. Whichever came first, 

technology or science, the end result is undisputed: modern science gets 

some of its inspiration from technological problems, and technology 

benefits from scientific discoveries. This alliance is well displayed in 

Diderot’s Encyclopedic, which records in minute detail the science and 

technology of the late eighteenth century. It was a fully coherent body of 

knowledge, and all who prided themselves as cultured were supposed to 

be aware of it, not only scientists and engineers, but also gentlemen and 

“femmes du monde.” 

When Euler, Maupertuis, and Lagrange invented and developed the 

calculus of variations, their aim was not only to lay solid mathematical 

foundations for classical mechanics, but also to devise the best possible 

solutions to a series of technological problems. The mathematical meth¬ 

ods they devised are now used to find curves, or more generally shapes, for 

which a prescribed criterion is stationary. If we take as a criterion the least 

action principle, thereby putting ourselves in God’s shoes, as Maupertuis 
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believed, the calculus of variations will enable us to recover all the laws of 

classical mechanics. But the same techniques apply to engineering, and to 

any situation where the aim is to build machines or devise processes 

which have to function in the most efficient way possible. This will be 

done by defining a suitable criterion for performance (the higher the 

numerical value of the criterion, the better the performance), and to seek 

the machine or the process that will maximize that criterion. 

The moment when the scientists became engineers was a historical 

turning point. Knowledge was longer sought to understand Gods ways 

and the wonders of his works. It was used to build machines that could 

assist human beings in their works and endeavors. The difficulties that 

beset us in earlier chapters disappeared. The least action principle had 

appeared shrouded in mystery, and we had been left to wonder about its 

deeper significance. But when the engineer or the designer picked his 

own criterion, so as best to represent the technological problem at hand, 

away went the metaphysical discussions, and the subtle distinctions 

between stationary points and maxima. No longer interested in station¬ 

ary points, engineers wanted solutions which truly maximized the per¬ 

formance. Alternatively, if we think in terms of cost rather than perform¬ 

ance (which is just the flip side of the coin), they were looking for 

cost-minimizing solutions. To convey the idea of minimizing or maxi¬ 

mizing, and that they were not interested in stationary points, they said 

that they were optimizing. 

Fermat’s proof of the law of refraction really consists in solving an 

optimization problem, namely to find the quickest path between two 

given points. Maupertuis considered the whole world as an optimization 

problem, but, as we have seen, he was wrong. The first scientist to solve a 

technological problem by optimization was, again, Newton. In his Prin- 

cipia, after establishing his celebrated results on the inverse square law, 

he turns to a much more mundane question: what is the best shape for a 

bullet? what shape should we give an object in order to minimize air 

resistance? Newton begins by giving a mathematical expression for air 

resistance, no small feat at the time. He then restricts attention to objects 

which have a symmetry of revolution, that is, the profile of which is not 

altered by rotating around an axis. The shape of such an object is entirely 

defined by its profile. Newton then finds, for any prescribed height and 

surface area, the symmetrical object which minimizes air resistance. In 

other words, given the length and bore of the bullet, he finds the most 

efficient symmetrical object. 

The shapes Newton found were unexpected: the tips of his bullets 

were flat. One would have expected a sharp tip, in the idea that any 
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frontal area would slow down the bullet. The explanation lies in the 

particular expression Newton gave for air resistance. He derived it by 

considering air as a multitude of independent particles, each of which 

slows down the solid when it hits it: air resistance to the motion is 

nothing but the resulting sum of these elastic shocks. By so doing, 

Newton neglected the interaction between particles and the fact that 

shocks are not elastic, so that his formula is valid only for slow speeds, 

and strangely enough, for very fast speeds (several times the speed of 

sound). In other words, it is better suited for designing spacecraft than 

for designing bullets. 

One can only marvel once more at Newtons genius. There he was, 

finding an optimal shape, at a time when Euler and Lagrange, the 

founders of the calculus of variations, were not even born. To put his 

2 

20. n ewton’s problem of minimal air resistance Newton asked 

what shape a bullet (or any object moving through air) should have to minimize 

air resistance. This is the solution he found in the case that the bullet was 

supposed to be as wide as it was long. If the bullet is allowed to be longer, the 

flattened part at the tip disappears. If it is supposed to be shorter (as is the 

case for a space shuttle), then the flattened part widens. 
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achievement in perspective, let me point out that today, more than three 

centuries later, we still do not know which is the shape which will mini¬ 

mize air resistance (as given by Newtons mathematical formula). What 

Newton found was the optimal profile when it is assumed that the solid 

is symmetrical around an axis, but it has been proved recently that there 

are nonsymmetrical solids which offer less air resistance, although it is 

not known which is the optimal one. 

Ten years after the Principia, we encounter the brachistochrone 

problem, which we have described earlier, and which engaged Jacob 

and Johann Bernoulli, the two brothers from Basel, in a long quarrel 

about priority. Let us recall that the problem consisted in finding the 

profile that will bring a sliding body down from a given height in the 

shortest possible time. Clearly, this had no more than academic inter¬ 

est, and it is difficult to understand why the glory of having solved it 

would lead two brothers to feud, unless one realizes that it was really 

about conquering new territory, much like an explorer who is the first 

one to land on a sandy beach unfurls a flag and claims the whole conti¬ 

nent for his king. Over the next century, the methods developed to 

solve particular problems would be systematized and consolidated by 

Euler and Lagrange into a new branch of mathematics, called the cal¬ 

culus of variations. At the end of the eighteenth century, the general 

equations were known, together with a wealth of examples, and scien¬ 

tists were familiar with the idea that there were mathematical tools 

which could help them find curves (and, more generally, shapes) which 

would maximize a given criterion. 

According to the spirit and knowledge of the times, solving a problem 

in the calculus of variations meant writing down the Euler-Lagrange 

equations in the particular case at hand, and then finding their solu¬ 

tions. As we noted in earlier chapters, the latter can be done only in the 

case of integrable systems, which are a very small fraction of all possible 

systems. The founding fathers of the calculus of variations were not 

aware of this situation, and much time was spent identifying the very few 

problems which could be solved in that fashion (as opposed to the very 

many that could not) before the underlying mathematical problems were 

tackled, toward the beginning of the twentieth century. 

Here there appeared an important difference from classical mechan¬ 

ics, in which the emphasis lies on the equations of motion, for which a 

general solution is sought. In the calculus of variations, however, one is 

not interested in finding all the solutions of these equations, but only the 

particular one (or ones) that will satisfy additional conditions. For 

instance, in classical mechanics, one is interested in finding the motion 
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of a point that is not subject to any force at all. It turns out that such a 

point would move with constant velocity, along some straight line. On 

the other hand, in Euclidian geometry, one is interested in finding the 

shortest path between two given points. This path lies on a very particu¬ 

lar straight line, the one joining^ and B, and is in fact the segment 

between them. My point here is that one may conceivably solve the sec¬ 

ond problem without solving the first one, even though, in this deliber¬ 

ately simple example, both can be solved so easily that it is difficult to dis¬ 

tinguish them. In other words, there is a difference between finding all 

possible trajectories of the motion, as classical mechanics requires, and 

finding the unique trajectory starting at a given point and ending at 

another. 

In classical mechanics, one is interested in solving the equations of 

motion, that is, in finding all possible trajectories of the system for all 

possible initial conditions. If these equations are not integrable, this 

does not mean that the corresponding trajectories do not exist: it simply 

means that we do not know how to compute them efficiently. From this 

point of view, as Lagrange pointed out, the least action principle is not 

central to classical mechanics. It is a just a concise way of writing down 

the equations of motion, and of finding out whether the system is inte¬ 

grable or not. In the calculus of variations, on the other hand, it is the cri¬ 

terion which is central: the whole point of the problem is to maximize it 

(or to minimize it, if it is a cost). This means that the solution must sat¬ 

isfy not only the Euler-Lagrange equations, but also some boundary con¬ 

ditions, such as joining two given points, which will distinguish it 

among all the other solutions of the Euler-Lagrange equations. It is not 

even clear that such a solution would exist: some kind of compatibility is 

required between the equation and the boundary conditions. These diffi¬ 

culties, which were glossed over at the beginning of the theory, became 

more and more evident and embarrassing. In 1900, David Hilbert listed 

the most important unsolved problems in mathematics at that time. That 

list of twenty-three problems has been extremely influential in the devel¬ 

opment of mathematics in the twentieth century, and among them we 

find the question "whether the problems in the calculus of variations 

have solutions or not, the notion of solution being interpreted in a broad 

enough sense.” 

Most of Hilbert s problems have been solved by now, including this 

one. Thanks to the work of the Italian Leonida Tonelli (1885—1946), and 

of the Frenchman Henri Lebesgue (1875-1941), we have an almost com¬ 

plete theory of the calculus of variations, which enables us to say whether 

a given problem does, or does not, have a solution. In the second half of 
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the century, powerful numerical methods have been devised to compute 

such solutions, when they exist. There remain, however, some unsolved 

problems. Classical mechanics dealt with rigid bodies; this is unrealistic, 

for in practice a solid body will deform when forces are applied to its sur¬ 

face, and this deformation will generate stress in its interior, possibly 

leading to rupture. Very little is known, on the other hand, when we are 

dealing with deformable bodies. This is the realm of continuum mechan¬ 

ics, which can be formulated as a problem in the calculus of variations, 

but for which there is as yet no satisfactory theory. 

Looking away from these difficulties, it is fair to say that the calculus 

of variations has firmly established optimization as a central concept in 

modern mathematics. To optimize is to find, among all possible solu¬ 

tions to a given problem, the one which will maximize the performance, 

as defined by a suitable criterion. The first historical example is probably 

Newtons shape of least air resistance. Since then, engineers have learned 

to build structures, such as bridges, boats, buildings, or airplanes, at min¬ 

imal cost for prescribed performance, or at maximal performance at pre¬ 

scribed cost. Nowadays, we have a continuous stream of design problems 

resulting from technological advances; we have the theory which enables 

us to phrase them as optimization problems; and we have the computers 

which will help us find the solution. The scope of optimization theory 

has also extended far beyond engineering, into economics, management, 

and finance. 

The turning point probably occurred during WWII, when the logis¬ 

tics of producing and distributing equipment, ammunition, and food 

for millions of soldiers scattered over the planet strained the manage¬ 

ment capacities of the human brain. The idea of formulating these 

problems in mathematical terms, and of using optimization theory to 

solve them, then took hold, leading to the birth of a new field of knowl¬ 

edge, called operations research. Fifty years later, the continuing 

progress in numerical methods and in computer technology has put 

solutions to many optimization problems within easy reach of engi¬ 

neers and managers. 

As a typical example, consider the problem an airline faces when 

rotating planes and crews. For each flight, a plane and a crew must be 

made available at a prescribed time and place. There are numerous con¬ 

straints to be satisfied: no pilot can fly more than so many consecutive 

hours, or fly more than so many hours a month, or stay away from home 

more than so many days on end. Planes must be maintained after so 

many hours in flight and undergo a complete overhaul every year. Even 

so, there are occasional failures, and backup crews and planes must be 
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available as soon as possible. The problem is to find a schedule which 

will accommodate all these constraints, at the lowest possible cost in 

terms of fleet and labor, typically an optimization problem. As a second 

example, consider the problem of sending a spacecraft to Mars. This is 

not a question of steering directly to the goal, with the gas pedal down 

until it is reached: there is not enough fuel on board for that. The reac¬ 

tors are switched on during the launching period, and back again 

toward arrival, in order not to crash on landing. For the remainder of 

the flight, they are turned off, and it is inertia, compounded with gravi¬ 

tation, which propels the spacecraft. If it veers off course, the reactors 

are switched back on to put it back on track, but these should be short 

episodes. Of course, Mars is moving while the spacecraft is on its jour¬ 

ney, which may last quite a long time. Hence a beautiful optimization 

problem: what is the trajectory to follow (or, in what direction is the 

spacecraft to be steered away from the Earth) in order for the trip to 

Mars to require the least possible fuel? This is the criterion of least con¬ 

sumption. Others are possible, such as the least time criterion: given a 

certain amount of fuel, which is the trajectory to follow in order to reach 

Mars as soon as possible? 

Note the difficulty here, which is central to the calculus of variations: 

whatever the criterion, be it least consumption or least time, we will 

know its actual value only at the end of the journey, when we land on 

Mars. As long as we are on our way, we do not know that final value 

which is to be optimized, although we have some idea, which becomes 

more accurate as the destination gets closer. To steer the spacecraft effi¬ 

ciently, we need some instructions about what to do right now, not what 

the overall trajectory should look like when we have reached the end. 

This is precisely what the calculus of variation will do for us, at least in its 

modern form, discovered by the Soviet mathematician Lev Pontryagin 

(1908—1988), and formulated as a principle which bears his name. 

Applying Pontryagin's principle tells us what to do at every moment of 

the journey, whether to turn on the engines, and if so in which direction 

to steer. 

As a final glimpse into present-day optimization theory, let me 

mention problems with inherent uncertainty. It is not always the case 

that the state of the system is known with absolute certainty: measure¬ 

ments are never wholly accurate, and to position a spacecraft, for 

instance, one must take into account several observations, all affected 

by background noise. This is particularly important during takeoff, 

when there is great instability, and any slight deviation has to be 

spotted at once; otherwise it amplifies and becomes unmanageable. 
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Steering optimally with noisy observations is called filtering, and it is 

an essential part of aircraft and space engineering. There are also many 

situations where there is uncertainty about the payoff. In finance, for 

instance, no one knows what a portfolio that is worth $1,000 today 

will be worth one year from now, and yet there are many investors out 

there, professionals and amateurs, trying to make money out of the 

market: they are trying to solve an optimization problem with uncer¬ 

tain payoff. To solve these problems, the classical methods of the calcu¬ 

lus of variations combine with the more recent tools of probability the¬ 

ory, resulting in a very active field of applied mathematics, called 

stochastic control. 

Looking back at the sophistication which optimization techniques 

have reached today, one wonders whether they could be used to solve not 

only industrial and managerial problems, but some economic and social 

ones. Certainly, the way society distributes wealth and power is at least as 

important for our everyday life as the way it organizes industrial produc¬ 

tion and distributes consumer goods. Could our governments use the 

concepts and methods of optimization theory to assist them in their 

task, as engineers do? Could one try to organize society efficiently, as one 

organizes an industrial system? 

Of course, trying to construct a theory of society, let alone to apply it, 

is much more ambitious than trying to construct a theory of the uni¬ 

verse. But mathematical modeling has been so successful in the natural 

sciences that one may hope for some measure of success as well in apply¬ 

ing the same method to the social sciences. Before we do that, there is a 

question to be answered: is it possible to alter the organization of society, 

or to build a new one, as we repair a broken-down machine or build a 

new one? 

This is not obvious. Who will do it, why, and how? In certain soci¬ 

eties, living very close to the edge of survival, and under very strong 

constraints from their environment, there is practically no room for 

change. I am thinking, for instance, of the Inuits, who have to survive 

the long Arctic night, or the Alakalufs and Oonas, who spent their 

lives on canoes roaming the inhospitable waters of the Magellan 

Strait, until they were hounded down and exterminated. In richer 

societies, where subsistence is not such a pressing problem, there are 

other constraints, of a social and psychological nature, which have 

become a fact of life to their members. They are born and bred into a 

certain social organization, and they would no more think of chang¬ 

ing it than changing the color of the sky. In France, for instance, at the 

time of the monarchy, the king was seen to be God's own representative 
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on Earth, as his father and his ancestors were before him. Religion 

supported that view, as it supported the Inca in Peru, the Son of 

Heaven in China, the sultan in Turkey. But then came the French Rev¬ 

olution. It showed that the social order can indeed be changed, and 

the hopes it raised have been with us ever since. In the words of the 

philosopher Richard Rorty, “About two hundred years ago, the idea 

that truth was made rather than found began to take hold of the 

imagination of Europe. The French Revolution has shown that the 

whole vocabulary of social relations, and the whole spectrum of social 

institutions, could be replaced almost overnight. The precedent made 

utopian politics the rule rather than the exception among intellectu¬ 

als. Utopian politics sets aside questions about both the will of God 

and the nature of man and dreams of creating a hitherto unknown 

form of society.”1 

One might argue that the actors of the French Revolution were far 

from having such a radical position as the one we describe. They were 

believers, not in the Christian god, but in some kind of natural order, and 

they thought they were merely restoring the natural order of society. 

But there have been too many revolutions since for us to entertain any 

more the belief that there is a natural order of society. The Constitution of 

the United States, and the several constitutions of the former Soviet 

Union, have regulated the lives of millions of individuals according to 

widely different principles. They are a testimony that social organizations 

are malleable, and that political systems are provisional. They do not 

reflect some celestial or natural organization; they are products of history, 

like works of art and scientific knowledge. 

The fact that political systems are human creations had been 

known in classical antiquity and had been forgotten, until the Italian 

Renaissance brought it back to light. The Greeks invented the polis, 

the city-state ruled by its own citizens rather than a ruler. This was a 

fundamental innovation, which would bear fruit two thousand years 

later in Europe. This is how S. E. Finer, in his great History of Govern¬ 

ment from the Earliest Times, puts it: “From the beginning of recorded 

history in Sumeria and Egypt—for some two-and-a-half thousands of 

years—every constituted state had been a monarchy: not only in the 

known world of the Middle East and Eastern Mediterranean, but in 

the worlds of India and distant China too. These monarchs had all 

been absolute, and godlike too, except for the Jewish kingdom where 

God ruled the kings. Suddenly there was government without kings of 

l. Contingency, irony, and Solidarity (Cambridge: Cambridge University Press, 1989), 3. 
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god. Instead there were man-made, custom-built republics of citi¬ 

zens.”2 And later on, he explains that the Greeks “addressed the form 

of government directly. More, they were completely self-conscious of 

this. As a corollary, their polities became completely contrived instru¬ 

ments to achieve consciously expressed goals, and indeed were often 

deliberately reshaped. This, in short, is the very beginning of 'the state 

as a work of art.’” 

The Italian city-states of the late Middle Ages exhibit the same cre¬ 

ativity. Unfortunately, the Greek and the Italian experiments were not 

allowed to continue: both were cut short by foreign intervention, 

Philip of Macedonia in Greece, and Charles V of Hapsburg in Italy. 

Military conquest and foreign hegemony spelled the end of the city- 

states, and of the extraordinary period of creativity which they fostered 

in all fields of human endeavor, the age of Pericles in Athens, and the 

time of the Renaissance in Italy. We are lucky enough that the two great 

historians whom we introduced in the previous chapter, Thucydides 

for Greece and Guicciardini for Italy, recorded the troubled times that 

they went through, and transmitted the main results of these two great 

experiments. 

Both men depict terrible events, wars dragging on for a lifetime, 

destroying cities and laying waste the countryside, leaving in their wake 

the wreckage of thousands of lives. In the words of Thucydides, “The 

greatest event of former times was the Persian war, and yet this was 

quickly decided in two sea-fights and two land-battles. But the Pelopon¬ 

nesian war was protracted to a great length, and in the course of it disas¬ 

ters befell Hellas the like of which had never occurred in any equal space 

of time. Never had so many cities been taken and left desolate, some by 

the Barbarians, and other by Hellenes themselves warring against one 

another; while several, after their capture, underwent a change of inhabi¬ 

tants. Never had so many human beings been exiled, or so much human 

blood been shed, whether in the course of war itself or as the result of 

civil dissensions.”3 

Guicciardinis History of Italy opens in similar fashion: “I have decided 

to write down the events that happened in Italy in our times, after the 

French arms, called into the country by our own rulers, began to throw it 

into extreme turmoil and agitation. Because of their variety and impor¬ 

tance, these were events which are well worth being recorded, and which 

had terrible consequences. During all these years Italy has suffered all the 

2. S. E. Finer, The History of Government from the Earliest Times (Oxford: Oxford 

University Press, 1997), 316. 

3. History of the Peloponnesian War, 1.23. 
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calamities to which poor mortals are subject, sometimes because of Gods 

righteous anger, and sometimes because of the impiety and evil of their 

fellow men.”4 

As we saw above, both Thucydides and Guicciardini held high military 

commands, and their ultimate defeat hit them especially hard. Thucydides 

commanded the Athenian army in the North, in Thrace, and was sent into 

exile in 424 for letting the city of Amphipolis fall to the enemy. Very little is 

known about his life after that. In 1527, Guicciardini was in charge of 

the pontifical army, allied with the Venetians and the French against the 

Spaniards. This alliance was to a large extent his doing, and should have 

been strong enough to drive the Spaniards out of Italy. But dithering on 

one side and boldness on the other led to the opposite outcome: Rome fell 

on May 5,1527, and the pope became a prisoner in his own palace. Guiccia¬ 

rdini’s dream of a free Italy was over, and he retired from public life a few 

years later to start working on his History. 

Why do men who have held such high office start writing after their 

public careers have ended in failure? To show that such catastrophes 

could have been avoided, that their causes are not to be sought in some 

divine will but in human folly, and in the hope that future generations 

will learn from the mistakes of their predecessors. In a famous sentence, 

Thucydides says, “Whoever shall wish to have a clear view both of the 

events which have happened and or those which will some day, because 

of human nature, happen again in a similar way—for these to deem my 

history profitable will be enough for me.”5 As for Guicciardini, after the 

opening we already quoted, he goes on as follows: “From the knowledge 

of these events, so full of diversity and import, every one will be able to 

derive many instructive lessons. They will show by innumerable exam¬ 

ples how unstable human affairs are, like a sea churned up by the wind.”6 

In other words, neither of them is willing to give up. They have seen 

the ways of the world, they have participated in decision-making at the 

highest level, and they have seen how soldiers behave in wartime. The world 

they have seen is so bad that one can only want to change it for the better, 

be it ever so little. But is it possible? This is really what their work is 

about. Both their histories show how ill-conceived decisions, made with¬ 

out proper consideration or under the pressure of passion, have led to 

disasters. They also show how a few great individuals, Pericles in Athens, 

Lorenzo de’ Medici in Florence, have managed, through patient and 

intelligent efforts, to secure for their people long periods of peace and 

4. History of Italy (1537-1540), 1.1. 

5. History of the Peloponnesian War, 1.22. 

6. History of Italy, 1.1. 
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prosperity. Their work was later undone by incompetent or imprudent 

successors, and this is the story that Thucydides and Guicciardini are 

telling. The lesson is that history is not running blindly along, that indi¬ 

viduals have the power to veer its course one way or another. The social 

world is not driven by natural laws and randomness alone, as the physical 

world is, but also by human wills. We are actors in history. The fate of 

humankind does not lie in the hands of God, but in our own. 

At the time of the Renaissance, expressing such an idea would have 

been as dangerous as claiming that the Earth moves around the Sun. So 

Guicciardini goes to great lengths to disguise it as a pious thought, as 

just another of the wonderful ways God finds to have his will done in the 

world. In the first of his Ricordi, he strikes a very delicate balance between 

faith and reason. Although he tries to give the impression that God is 

active in human affairs, he leaves humans firmly in charge: 

What the believers say, that whoever has faith will accomplish great things, 

and, as the Gospel says, that whoever has faith can command mountains, 

happens because faith creates obstinacy. To have faith is nothing else than 

believing strongly, with quasi-certainty, things which either are not reason¬ 

able, or if they are, believing them with a stronger conviction than reason 

would allow. In that way, whoever has faith becomes firm in whatever he 

believes, and follows his way with an intrepid and resolute stride, disdaining 

difficulties and dangers, and ready to endure every extremity. Since the turn 

of events in this world depends on a thousand chances and accidents, it may 

well happen that, in the course of time, some unexpected help will come to 

whoever has persevered in his obstinacy, the source of which is faith.7 

Thucydides and Guicciardini teach us that there is no hidden mean¬ 

ing to be found in history, that the course of events is not predetermined, 

and that the conscious actions of individuals can steer that course in new 

directions. The consequences are important. On the one hand, every 

treaty, every constitution, every institution, every state, is provisional. 

They will flower and die, for they are not reflections of some divine or 

natural order, but agreements between human beings, who are subject to 

death and the multiple contingencies of life. Sooner or later, every empire 

will perish. Thucydides witnessed the end of the Athenian empire and 

Guicciardini the end of the Florentine Republic. We have seen the end of 

the European colonial empires, and the fall of the Berlin wall. Human 

affairs are fluid and in constant flux; powers that look formidable one 

7. Ricordi, 1. 
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day can vanish the next morning, like ghosts fading away when the cock 

crows. This permanent ebb and flow keeps bringing up opportunities 

which talented individuals like Pericles or Lorenzo the Magnificent then 

use to steer the course of history. In Shakespeare’s words: 

There is a tide in the affairs of men 

Which, taken at the flood, leads on to fortune; 

Omitted, all the voyage of their life 

Is bound in shallows and miseries. 

On such a full sea we are now afloat 

And we must take the current when it serves. 

Or lose our ventures.8 

These ideas will be carried further by the Machiavelli in Italy, Mon¬ 

taigne and Pascal in France, and Gracian in Spain. Montaigne's Essays, 

which went through several editions during his lifetime, and Pascal’s 

Thoughts, which were collected after his death from notes for an unfi¬ 

nished book, tend to show that social life is regulated by conventions. 

They record the vast diversity of customs and rules across peoples and 

times, and the enormous disparities in what is considered normal behav¬ 

ior across societies, with the clear implication that the source of social 

regulations is not to be traced to some divine source or some permanent 

feature of human nature. There is nothing universal or permanent to be 

found there: nothing is so outlandish or repugnant that human beings 

have refrained from doing it to each other. Social regulations and institu¬ 

tions are mere human artifacts, with no other justification for their exis¬ 

tence than the fact that they make social life possible by enabling its 

members to adjust their behavior to that of others. The fact that they are 

around, that everyone knows them, and that everyone knows that every¬ 

one else knows them, creates common expectations and enables us to 

anticipate how others will react when we interact with them. 

Pascal is full of examples to illustrate this. Here is one: “The greatest 

of all ills is civil wars. They are certain, if merit is to be rewarded, for all 

will claim that they are deserving. The ill to be feared from a fool, who 

inherits a position by birthright, is neither as great, nor as certain.”9 

Here is another: “Whatever in the world is most unreasonable becomes 

most reasonable because of the unruliness of men. What could be less 

sensible than choosing the first son of a queen to rule a state? To pilot a 

ship, no one would choose the highest born passenger: such a law 

8. Julius Caesar, act 3, sc. 2 

9. Thoughts (1670), frag. 295. 
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would be unjust and ridiculous. But because they are unruly, and will so 

remain forever, that law becomes reasonable and just; for who is to be 

chosen? The most virtuous and the most expert? We shall immediately 

start fighting over it: everyone claims to be that most virtuous and most 

expert person. Let us therefore attach that power to something that is 

not controversial. He is the elder son of the king; the fact is clear, there is 

no arguing over it. Reason cannot do any better, for civil war is the 

greatest of all evils.”10 

Power is no longer seen as inheriting its legitimacy from some divine 

authority; it is a mere convention which we adhere to because we are 

born and educated into it, and because we see that others conform to it. 

Its strength lies in the fact that we believe that others believe in it: power 

is no more than the illusion of power. The exercise of power is a constant 

fight to keep up appearances. A related thought is expressed by Balthazar 

Gracian in Spain: “Things are not taken for what they are, but for what 

they appear to be. Very few people look into the inside, and almost every¬ 

one is content with appearances. It is not enough to have meant well, 

if the action looks bad.”11 and by Niccolo Machiavelli in Italy: "It is not 

necessary for a ruler to have all the qualities I have described, but he must 

seem to have them. I would even say that if he really had them, and 

kept observing them, they would be to his disadvantage, whereas if he 

just pretends to have them, they are to his benefit. You should seem to be 

compassionate, faithful, human, generous, honest and pious; you could 

even be so, provided you are resolved, in case you need not to be, that you 

can and will do the opposite."12 

So appearances come before substance. But what is substance if all 

that others can perceive are appearances? Does there really exist, 

beyond visible reality, some invisible soul or conscience, which the indi¬ 

vidual carries around? How helpful is that assumption? Do we need it, 

or can we do without, like Laplace, who famously answered, when the 

emperor Napoleon asked him what place was left for God in cosmology, 

“Your Majesty, I did not need that assumption”? Is it possible to study 

human beings from the outside, relying only on what we actually see, 

that is, their behavior? This is another Copernican revolution in the 

making: the Earth is no longer at the center of the physical world, and 

God will no longer be at the center of the social world. Thucydides, 

Guicciardini, and their successors teach us that history is as chaotic as 

any physical system, and that there is no God-given or natural order. 

no. Ibid., frag. 296. 

11. Oraculo manual y arte de la prudencia (1647), frag. 99. 

12. The Prince (1515), in Oeuvres completes (Paris: Gallimard), chap. 20. 
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This immediately raises the question: what are we to put in its place? 

History shows that priests and laypeople, civilians and soldiers, peas¬ 

ants and city dwellers all follow their own perceived interests, each 

reacting to the actions of others and trying to anticipate them. Which 

institutions will enable society to function in the most efficient way? An 

important part of the work of Thucydides and Guicciardini is devoted 

to comparing social regimes and constitutions, aristocratic Sparta and 

democratic Athens for the former, not to mention the Persian Empire 

with its semidivine King of Kings and the many reorganizations that 

the Florentine Republic underwent for the latter. Their concern was to 

find the best possible constitution. This line of thought gave birth to 

the great constitutions of the eighteenth century, the United States and 

the first French Republic. 

The Renaissance raised two related questions. The first one, which we 

have investigated at length, is whether the natural world can in any way 

be considered as the best possible. We are now facing the second one: 

what is the best way to organize society? 
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(chapter 9) The Common Good 

the fundamental d i f f e r e n c e between the physical and the so¬ 

cial worlds is purpose. When people do something, they have a purpose 

in mind; at least, if they are asked why they are acting in that particular 

way, they are able to supply a reason. Human actions are directed toward 

an end; physical events are not. If fire breaks out in a room, people and 

smoke will leave it. The dynamics are similar, but the reasons are quite 

different. People get out because they want to get out, whereas hot air 

merely conforms to the laws of physics. By so doing, it may well be that 

it maximizes some quantities, such as entropy, or minimizes others, like 

action, but it is not intentional, like someone rushing out to escape the 

burning room. Since Galileo, we have had a theory of physical events, 

based on the premise that they conform rigidly to certain mathematical 

laws. Developing a theory of human actions, based on the premise that 

they all have a purpose, took much longer. It was one of the main sci¬ 

entific achievements of the twentieth century, in close connection with 

the progress of economic theory. Its history, which basically moves from 

Central Europe to the United States after the Nazi takeover, is too long 

to retrace here; let me just mention the name of John von Neumann, who 

was a central figure in that field of science as in so many others. His 1944 

book with Oskar Morgenstern, Theory of Games and Economic Behavior, 

has been tremendously influential in shaping the future of the social sci¬ 

ences, particularly economics. Let me now try to describe what the theory 

looks like today. 

In line with the thinking of Thucydides, Guicciardini, and their suc¬ 

cessors, the theory does not try to promote some idea of a universal 

Good, valid across societies and times. There is no absolute judge of what 

is good, or bad; only the individual can tell what is good, or bad, for him 

or her, and the best the theory can do is to record his or her preferences. 

The basic theoretical premise of the economic approach to human 



behavior is that individuals have linear preferences: each of us is sup¬ 

posed to be able to classify, by order of preference, all possible events, 

starting from the most preferred one and going down. It is a complete list 

of all possibilities, and if event B is farther down my list than event A, it 

means that I would rather have event A occur than event B. Typically, 

different individuals will have different lists; if events A and B are on 

both our lists, it may well be that they occur in different order, because I 

prefer A to B and you prefer B to A. 

Individual preferences are simply a matter of record. No set of prefer¬ 

ences will be disallowed because they are unreasonable or immoral; if I 

prefer peanut butter to foie gras, and dog meat to peanut butter, so be it. No 

claim is made that one list is better than the other. There are, however, some 

problems with this definition. Basically, it consists of confronting each 

individual with a list of hypothetical situations and asking him or her to 

rank them. Well, it might be difficult to project oneself into situations 

which are quite real, but about which I know very little (what would my life 

be like if I were a movie star?), and even more so into situations about 

which no one has any experience at all (twenty years ago, no one except 

James Bond used a mobile phone). On the other hand, people make deci¬ 

sions based on what they know now, and not what they will learn later. 

Defining individual preferences simply as a record of present tastes has its 

limitations, like all models, but it is realistic enough to serve its purpose. 

It seems that, since each individual is the only judge of what is best for 

himself, the best of all possible worlds would be the one that every one 

would prefer. That would be a world where every individual’s wishes would 

be realized, which is the way most people would define paradise. Unfortu¬ 

nately, this is not a possible world: we cannot all be movie stars or great 

artists or successful businesspeople. Most human beings on this planet 

would be satisfied to be shielded from hunger, sickness, and war. Things 

were different in the Garden of Eden, although the problem there clearly 

was boredom. Curiously enough, the French philosophers of the Enlight¬ 

enment, who fought so strongly against the church, recreated the Christian 

myth of paradise lost by imagining that we originally lived in peace, from 

the bounty of nature, until civilization corrupted us and brought all the 

evils that we know. In the words of Jean-Jacques Rousseau, “I see [primitive 

man] eating under an oak, drinking from a stream, making his bed under 

the same tree that provided his meal, and all his needs are satisfied. Well, it 

has been a long time since manna last fell from heaven. We cannot live 

alone; we rely on others to produce the stuff of our material and intellectual 

life, and we have to organize society so that its members will cooperate 

toward the common good. 
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But what is the common good? Individual preferences may very well 

be in opposition. Rousseau thinks that social life emerges in the idyllic 

state of nature because individual preferences turn out to be in unison: 

while no single hunter is strong enough to track down a deer by himself, 

several can cooperate to accomplish this feat. So far, there is a common 

interest to be pursued. But once the deer is killed, the problem of sharing 

it appears, and individual interests diverge: no one can get a bigger share 

except at the expense of someone else. There is no longer a clear common 

interest, and there is no obvious sharing rule. Sharing equally among the 

hunters, for instance, may not be the best thing to do, either because it is 

not feasible (there are different morsels to the deer, and different tastes 

among hunters), or because it is not fair (whoever was the first one to see 

the tracks probably deserves some reward), or because it does not meet 

the collective needs (are bachelors to get the same share as those who 

have families to sustain? what about the children, women, and elderly 

who cannot participate in the hunt?). 

Many philosophers have assumed the problem away by postulating 

an identity between individual aspirations and the common good, 

suitably defined. Rousseau, and the French revolutionaries after him, 

thought that democracy was the solution to that problem. In the in¬ 

troduction to his Discourse on the Origin and Foundations of Inequality 

amongMen, he wrote, “I wish I was born in a country where the sov¬ 

ereign and the people could have only one and the same interest, so 

that all the movements of the state would always be directed to the 

common good; since this cannot happen unless the sovereign and the 

people are one and the same person, this implies that I wish I was born 

under a democratic government, suitably tempered.” Unfortunately, 

things are not as simple as that. Even in democracies, there are many 

divergences of interest, and majority rule does not solve that problem. 

The French Revolution quickly turned into a civil war against the sup¬ 

porters of the old order, and in today s large democracies, we find that a 

majority of citizens, mostly the poor and dispossessed, have given up 

on voting, so that their interests are not taken into account. At least 

they could vote if they so chose, so that there is some measure of popu¬ 

lar control on government; according to Winston Churchill (himself 

an aristocrat) "Democracy is the worst of all regimes, except for all the 

others.” It is by no means perfect, and indeed I think that improving it 

should be one of the main concerns of our times. We have seen demo¬ 

cratic leaders go to war against the wishes of their people, and there is 

no institutional way in which the poor on this planet can make them¬ 

selves heard. 

168 



The British economist Francis Hutcheson, in the eighteenth century, 

coined a formula that was to be much quoted afterward. He defined the 

common good as “the greatest welfare for the greatest number.” This 

certainly is a brilliant formula, but it is useless. How helpful would it be 

to me, if I have to share a cake, to be instructed to give "the greatest 

share to the greatest number”? Either I give the greatest share, that is 

the whole cake, to one person, or I divide the cake among all, but then 

everyone gets a small piece: I do one or the other, I cannot do both. Of 

course, increasing welfare is not exactly the same as sharing a cake. If I 

improve the quality of air, for instance, everyone will benefit, whereas if 

I give a piece of cake to only one person, no one else will enjoy it. So 

there is a contradiction in Hutchesons definition, and it cannot serve as 

a definition of the common good or the public interest. How then are 

we to define it? 

The common good is quite an elusive concept, and in fact, in any situ¬ 

ation, different people have different opinions on what society should be 

doing. So let us just give up on trying to define the common good, or the 

public interest, and throw the decision back to the citizens. The French 

Declaration of Rights stated that “law is the expression of the general 

will.” But a nation, unlike an individual, does not have an organ to 

mouth its will, and if we want to find out what it is, if anything, we must 

put in place institutions and procedures directed to that purpose. Is 

there an optimal way to do so? 

Well, by now humankind has had extensive experience with government, 

and many procedures have been developed for collective decision-making. 

In 1785, however, the marquis de Condorcet showed that some of the most 

popular procedures, like majority voting, could lead to the assembly contra¬ 

dicting itself. His 1785 book, A Discussion on the Application of Analysis to the 

Probability of Decisions Taken by Majority Voting, is a milestone, for it is the first 

time mathematics was used to model human behavior. It contains the first 

example of what is known today as Condorcet s paradox. Suppose there are 

three candidates for office, Andrew, Brian, and Catherine. One-third of the 

voters rank them A, B, C; one-third B, C, A; and one-third C, A, B. There is 

then a two-thirds majority preferring A to B, and (a different) two-thirds 

majority preferring B to C. Two motions could then be passed, stating, “This 

assembly prefers Andrew to Brian,” and “This assembly prefers Brian to 

Catherine.” It would then be expected that a third motion, “This assembly 

prefers Andrew to Catherine,” would pass as a logical consequence of the 

others, but in fact it would not. It would be rejected by a two-thirds majority. 

It turns out that this is a problem with majority voting, and that other 

procedures are immune to Condorcet s paradox. Such a procedure was 
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devised by the chevalier de Borda, who proposed it in 1785 to elect mem¬ 

bers of the French Academy of Sciences. It was adopted and used until 

Napoleon (himself a member), who thought it too democratic, used his 

authority as emperor to change it. In Borda’s procedure all voters rank 

their choices by order of preference, from their first choice to the last. 

One then sums, for each candidate, the ranks he has been given by the 

voters. Suppose, for instance, there are three candidates, A, B, and C. If 

candidates! has been ranked first 13 times, second 18 times, and third 4 

times, his score is 13 + 36 -1-12 = 61. The candidate with the lowest score 

wins the election. 

There are great advantages to Bordas procedure. On the one hand, it 

enables voters to give some sense of the intensity of their preferences: if 

there are two candidates only, this effect is not felt, but if there are seven¬ 

teen, the one I rank seventeenth really will be hurt. On the other, the 

Condorcet paradox disappears. If we use the Borda procedure to rank A, 

B, and C, there can be no inconsistency: if the vote shows A ahead of B 

and B ahead of C, then it will show A ahead of C. So it may seems that we 

have found what we were after, namely a consistent way for assemblies to 

express their will. Unfortunately, that is not so, for there are other draw¬ 

backs to the Borda procedure. Imagine, for instance, that two candidates, 

A and B, stand for election. There are 30 voters in the electoral college, 19 

of whom prefer B to A, so it would seem that B will carry the day. If the 

Borda procedure is used, however, the supporters of A can rig the elec¬ 

tion by introducing a third candidate, C, who is universally disliked. So 

the supporters of B will rank C third and last, but the supporters of A will 

rank C second, against their own preferences, for the sole purpose of 

defeating B. Then A will be ranked first 11 times and second 19 times, for 

a Borda score of 11 + 38 = 49, whereas B will be ranked first 19 times and 

third 11 times, for a Borda score of 19 + 33 = 52, so A gets elected. 

There has been much research since on voting procedures, culminat¬ 

ing in the so-called Arrow impossibility theorem, which states that there 

is no procedure that is immune both to Condorcets paradox and to 

this kind of manipulation. The only way an assembly can get around them 

is to appoint a dictator and defer to his decisions. In other words, there 

is no perfect procedure: the problem is to choose the best one for the 

circumstances. 

In collective decision-making, the outcome is decided by the voting 

procedure as much as by the voters’ preferences. This is a lesson that 

politicians have known for a long time; every representative is aware that 

using the rules book and scheduling the votes in the right order can per¬ 

form miracles. As a historical example, let us recall that on June 20,1991, 

170 



the German Bundestag had to pick one of three options: A, transferring 

the government and the Parliament to Berlin; B, leaving both in Bonn; 

and C, leaving the government in Bonn but transferring the Parliament 

to Berlin. It is now clear that there was a substantial relative majority for 

staying in Bonn, so that putting all three choices to the vote together, 

and either using the relative majority or the Borda procedure, would 

have led to that outcome, for most of those who favored moving every¬ 

thing to Berlin preferred staying in Bonn to separating government from 

Parliament.1 However, the procedure was deferred to a committee, who 

decided that the assembly would first vote on the compromise position 

C, and if it did not get a majority, they would then choose between A and 

B. This freed the voters from that concern, and the outcome, as we well 

know, was that everything moved to Berlin, a move of historical impor¬ 

tance, which ultimately hinged on the voting procedure rather than on 

some sense of the public interest or the common good. 

There is, however, one last branch to cling to: certainly if every mem¬ 

ber of society prefers A to B, then society itself should prefer^ to B. This 

is called the Pareto criterion, from the name of Vilfredo Pareto, an Ital¬ 

ian sociologist and economist (1848-1923), and it is met by all the col¬ 

lective decisions rules we have discussed: the majority vote, the Borda 

rule, and even the dictatorial rule (if every member of society prefers A 

to B, then so does the appointed dictator, and he will accordingly 

choose A over B). Unfortunately, this criterion may not be strong 

enough to choose between two alternatives: what are we to do if some of 

us prefer A and others prefer B? We will have to resort to some form of 

collective decision-making, and we are back with the difficulties we 

outlined before. On the other hand, the Pareto criterion will enable us 

to eliminate many inferior outcomes: if everyone prefers A to B, and C to 

D, then there is no need to even consider B and D, and the real choice is 

between A and C. 

The Pareto criterion is a criterion for efficiency: if A and B are two pos¬ 

sible states of society, and if A is Pareto superior to B (that is, if everyone 

prefers^! to B), then A is a more efficient use of the collective resources. 

Put another way, if society is in a certain state, and there is another pos¬ 

sible state which everyone would prefer, then society must be wasting 

some resources. For instance, imagine sharing a cake. There are many 

possible ways to do so, from the dictatorial one (give everything to a sin¬ 

gle person), to the most egalitarian (give an equal share to everybody). 

We cannot rank them by the Pareto criterion: all of them turn out to be 

i. W. Leininger, “The Fatal Vote: Berlin versus Bonn,” F'manzArchiv N.f. 50.1 (1993): 1-19. 
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efficient. For instance, sharing equally will not be unanimously preferred 

to giving everything to a single person, for the lone beneficiary will dis¬ 

sent. What the Pareto criterion tells us is that it is inefficient to leave 

some of the cake undistributed, for if this happened, we could distribute 

the leftovers and give a little bit more to everyone. 

Achieving economic efficiency is not always that simple: it is difficult 

to track down waste and slack in large organizations. For this reason, 

many economists advocate worrying about efficiency first and letting 

redistribution take care of itself. In economic development, for instance, 

this means applying policies that will increase the GNP, in the hope that 

this global increase will end up benefiting everyone, perhaps through an 

unspecified “trickle-down” process from the rich to the poor. Unfortu¬ 

nately, there is no convincing reason why it should be so, and there is 

historical evidence for the opposite. The Russian economy, for instance, 

certainly is more efficient than it was under the Soviet regime, but large 

segments of the population, such as the pensioners, are worse off than 

they were before the fall of communism. In addition, the argument of 

efficiency has often been used for political purposes. The whole process 

of colonization, for instance, has consisted of Europeans settling into 

foreign lands and dispossessing or exterminating the natives under the 

pretext that they would put that land to better use than its former owners 

did. Underdeveloped countries, mainly former European colonies who 

have learned their lesson the hard way, are understandably wary of enter¬ 

ing global trade agreements, even though they would increase the effi¬ 

ciency of the world economy: they worry about redistribution. 

All this means that the Pareto criterion is not a suitable one for opti¬ 

mization, because it is not discriminating, and may be used to justify 

extremely unfair situations. If we are to use optimization theory as a tool 

for economic decision-making, we need to find another criterion. In 

such a simple matter as deciding whether to build a new road, we run 

into a host of problems. If that road is built, there will be winners (those 

whose travel routes have been shortened, businesses that will spring up 

along the new road), as well as losers (property owners whose land is 

taken up by the new road, businesses who lose customers as traffic pat¬ 

terns change), both probably very vocal. How are we to balance the 

wishes of one against the other, bearing in mind that some of the parties 

will not be around to express their feelings? Granted that building the 

road is deemed globally beneficial, would there not be a better use for 

that money, for instance by building somewhere else a road that would be 

even more beneficial? What about scrapping the road and putting the 

money into education or health care? The Pareto criterion does not tell us 
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which of these projects to choose. All it says is, whatever you do, make 

sure you do not waste. 

So we need some criterion to help us decide. There are several possible 

ones, and the one you choose will represent your view of the public inter¬ 

est, or the common good. One of the most popular criteria consists of 

having each of the parties affected by an economic project evaluate the 

benefit or the prejudice that realizing that project would bring him or her; 

one then simply sums up the benefits and subtracts the costs from realiz¬ 

ing the project and the prejudices borne by individuals. This is called the 

utilitarian criterion, and the result is called the social value of the project. If 

it is positive, the project is deemed to be in the public interest, which does 

not mean it should be realized, because there could be another project, 

somewhere else, with an even higher social value. In fact, the main prob¬ 

lem is not so much finding which projects have positive social value, as 

finding the optimal ones, those with the highest possible social value. 

The utilitarian criterion is basically a monetary version of the Borda 

rule: each stakeholder votes for or against the project by telling how 

much he or she would benefit or lose from it. Although this is one of the 

most widely used criteria used in public economics, it shows some weak¬ 

nesses. First of all, it is not very satisfactory to express everything in 

monetary terms. Both a wheat field and a nuclear plant carry capital 

value, but they are also means of subsistence for individuals, and if they 

are deprived of it, one will have to evaluate the costs of relocating and 

changing jobs. In addition, evaluating environmental costs is going to be 

very tricky as well: how are we going to find out the price tag individuals 

put on clean air and quiet nights? Not only is it a difficult matter per se, it 

is also open to all kinds of false pretenses and manipulations: one is 

always tempted to exaggerate ones prejudice, so as to be able to claim 

more compensation, and to keep one’s true benefits hidden from the tax 

collector. And even if I am honest and willing, why should I be the best 

judge in my own cause? What if I have expensive tastes, which I have 

acquired by squandering vast amounts of unearned wealth? What if I 

have willingly taken risks from which it is now very costly to extract me? 

Certainly, if I am very rich, the amount of money I would regard as appro¬ 

priate to compensate me for suffering some inconvenience would be 

much greater than if I am very poor; a sleepless night is worth much more 

to Bill Gates than to Mother Theresa. What should we do about these 

differences? 

In John Rawls's famous book A Theory of Justice, we find another crite¬ 

rion for the common good. To compare two possible states of society, A 

and B, let us look at how the worst off fare in each of these two states. 
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Let us say that, in stated, group 1 is the worst off of all members of soci¬ 

ety: their level of income, say, is iv In state B, group 2 is the worst off: 

their level of income is ir We shall say that stated is better than state B if 

ij is higher than ir In other words, a state of society is preferable to 

another if the poorest members of that society (which may differ from 

one state to another) are treated better in the first state than in the sec¬ 

ond. To be fair to Rawls, his criterion comes second to other considera¬ 

tions: he first asks society to respect certain basic rights. If these are ful¬ 

filled, economic considerations come into play, and then he classifies 

possible states by using this criterion. Note that between the utilitarian 

criterion and the Rawlsian one, there are many others, obtained by giv¬ 

ing different weight to individuals when computing the social value of a 

project. For instance, if we decide that every poor citizen will count as 

much as two rich ones, we will multiply his benefit (or his prejudice) by 

two before carrying it into the total balance. In this way, more considera¬ 

tion is given to the effects of a given project on the poor, and in the Rawl¬ 

sian criterion, they are the only ones to be considered. 

There is no natural choice between all these criteria: the one you pick 

defines your idea of what the public interest is. If you are a utilitarian, 

you pick the first one; if you are a Rawlsian, you pick the second. You can 

also define your own: if you feel that voters in your constituency, or con¬ 

tributors to your reelection campaign, deserve more attention, you sim¬ 

ply give them more weight in computing the social value of projects. This 

is a crucial step in social planning, for the criterion one chooses embod¬ 

ies a compromise between all the different objectives to be achieved. 

Once this hurdle is cleared, however, we will find it is only the first one: 

we quickly run into another obstacle, which is the question of implemen¬ 

tation. Having formulated the decision to be made as an optimization 

problem and having found the right solution are no longer enough; the 

social planner has to show how this solution is to be implemented. In a 

way, the engineer encounters that problem as well: it is not enough to 

find the right shape and composition for the bridge; one also has to 

explain how to build it out of existing machinery, or to construct a new 

machine. But the engineer deals with machines and materials, whereas 

the social planner deals with human beings. 

Much of the progress in economic theory in the past thirty years has 

been devoted to studying the problems that social planners face. They fall 

roughly into two categories: asymmetry of information, and strategic 

behavior of individuals. If we assume these problems away, we get a wholly 

unrealistic picture of how an administration is run. Unfortunately, it is 

still prevalent in political thought, at least in France. Every civil servant is 
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supposed to do her job perfectly well, out of sheer love for the public, in 

the absence of monetary rewards for performance. Every mayor, police 

officer, or judge, although endowed with largely discretionary powers, is 

supposed to stop short of using them for personal purposes, out of respect 

for his duties. Every business is supposed to promptly provide the admin¬ 

istration with all information it needs to compute taxes, particularly envi¬ 

ronmental taxes for activities generating negative externalities. The judi¬ 

cial system is supposed to be so effective as to prevent any kind of 

collusion, corruption, or favoritism when the administration awards con¬ 

tracts for public works. It is also assumed that government policies 

directed toward supporting certain categories of citizens will never be 

diverted toward other categories, who were not originally among the 

intended beneficiaries but who would claim to be. 

I am not claiming that civil servants or public officials are corrupt or 

do not care about the public interest, I am just saying that, like everyone 

else, they have their own view of what that interest is. Generals will tend 

to believe that more money should be spent on defense, and an automo¬ 

bile manufacturer is famously quoted as saying “What is good for Gen¬ 

eral Motors is good for the United States.” Everyone tends to speak from 

experience and see the public interest from his own position in society; it 

is difficult to factor in facts that you have no direct experience of, and 

ideas which you are not familiar with. In addition, power certainly may 

fall into the hands of individuals who will try to use it to their own par¬ 

ticular ends; indeed, one may fear that precisely this kind of person will 

be attracted to a position of responsibility, and will try to increase her 

share of power. The traditional remedy is to create some watchdogs, indi¬ 

viduals or institutions who will make sure that the name of the public 

interest is not taken in vain, and that individual ambitions are kept 

under control. One then runs into the age-old problem: who will watch 

the watchdogs? Are we to suppose that they will be immune to human 

weaknesses, and will remain forever uncorrupted by the exercise of 

power? 

If we assume that, somewhere in the system, there is a person or a 

group that is entirely devoted to our idea of the public interest, we may 

just put them in charge and let them govern the ship of state. This was 

the basic idea of many utopian states, such as Plato’s ideal republic, 

which was ruled by philosophers, or the Soviet Union, which was run by 

the Communist Party. Plato was lucky enough not to have his ideas put to 

the test, but the Soviet Union turned into a murderous tyranny, instead 

of the socialist paradise its founders were hoping for. This is but a partic¬ 

ular aspect of a more general problem: institutions may be designed with 
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a specific purpose in view, and perform quite differently than it was 

intended. A famous instance is the Fourth Crusade, launched through¬ 

out Christendom to free the tomb of Christ from the heathen. Instead of 

going to Jerusalem, it ended up under the walls of Constantinople, the 

capital of the Byzantine Empire, which it took in 1204 in an orgy of mas¬ 

sacre and pillage against fellow Christians. There is no doubt that this 

expedition, far from strengthening Christianity in the East, hastened the 

decline of the Byzantine Empire and its eventual conquest by the 

Ottoman Turks. 

Without even appealing to historical examples, any one of us can 

recall instances to show that organizations are not animated with a sin¬ 

gle purpose, but that their members constantly jockey for power and try 

to steer them in directions that will further their own careers and ambi¬ 

tions. Wars have been fought, and men sent to slaughter, for very mun¬ 

dane interests. The lesson of experience is that it is useless to conceive 

institutions which will be directed by providence and staffed by angels, 

able to read hearts and minds and entirely devoted to their fellow citi¬ 

zens welfare. In the real world, institutions will function with very ordi¬ 

nary men and women, aware of their duties, but also preoccupied with 

their own careers. They may be doing their best under the circumstances, 

but their knowledge will always be fundamentally limited. Relevant infor¬ 

mation will be hidden from them, they will have only that much time to 

devote to each piece of business, and they will have to develop routines 

which will harden them and channel their thought process. Every day 

will bring them in contact with other individuals and organizations with 

their own objectives and preoccupations, and these regular exchanges 

will lead to a mutual adjustment, like the pebbles on a beach are uni¬ 

formly rounded by the waves and tides scraping them together. 

Economists are often faulted with being too optimistic in certain 

ways, and too pessimistic in others. Their models are peopled with indi¬ 

viduals who are farsighted and selfish, with an endless ability to com¬ 

pute. These creatures are able to foresee the consequences of their 

actions, and the consequences of the consequences. They will never tire 

of figuring things out; their intelligence easily runs up and down the 

causality ladder; and neither passion nor impatience ever interferes with 

the limpidity of their reasoning. They know that everyone else in the 

world they inhabit is made on the same pattern, and they act on that 

information, as on any other they have. They take into account the pro¬ 

jected response to their own actions: knowing, as they do, that others are 

similar to them, they can figure out their response by putting themselves 

in the others’ shoes, much like a chess player trying to look a few moves 
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ahead. The way organizations work, be it private firms or government, is 

similar to a huge chess or poker game, where each player is trying to 

adapt her own behavior to what she can infer from the perceived behav¬ 

ior of others. Since everyone is doing the same, we may have a situation 

where everyone does exactly what the others expect of him, and ends up 

having acted in his own best interests, given that the others have 

done exactly what he expected them to do. Such a situation is called an 

equilibrium, and was described at length in chapter 7. 

One may suspect that the whole equilibrium concept is unrealistic: do 

we really act rationally? Do we think out the consequences of our 

actions? Are we not guided mostly by momentary impulses, the force of 

circumstances, or the power of habit? It turns out that this is just one 

particular way to look at equilibrium. We have introduced it as a situation 

resulting from rational beings arriving simultaneously at the same con¬ 

clusions. But it can also be the end result of a simultaneous learning 

process from agents who have just enough sense to realize whether their 

previous policies have been successful, to keep applying them if they 

have, and to change them if they have not. We have also described earlier 

how species may adjust to each other and to the environment, so that 

individuals may be born into an equilibrium and support it by innate 

behavior, rather than intelligent strategies. 

An equilibrium is to a large extent artificial, for it depends as much on 

the expectations of the parties concerned as on any objective component 

of the overall situation, much as the price of a stock or the rate of a cur¬ 

rency depends as much on what the administrators think as on any fun¬ 

damentals of the firm or the country. There can be many different equi¬ 

libria, each of them being a particular way of coordinating expectations 

and actions, so that the first support the second. Each of them is a situa¬ 

tion where the expectations that I entertain about everyone else deter¬ 

mine a certain strategy on my part, and on everyone elses as well, and 

where all these strategies result in precisely everyone's expectations being 

confirmed. In other words, if a group is in equilibrium, its members are 

never surprised by each other s behavior. To outsiders, it appears as a set 

of conventions that rule social interaction and which everyone adheres 

to; these conventions are self-fulfilling, in the sense that, given that oth¬ 

ers conform to them, our best interest is to conform as well. 

The point, however, is that there is nothing natural about such con¬ 

ventions. For starters, mathematically speaking, many different equilib¬ 

ria are possible. Montaigne, and many others after him, made a point of 

comparing the customs and ethics of different peoples and showing how 

different they are from the ones our own education takes for granted. 
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The purpose of education is to train us to live in a particular society, that 

is, to develop in us a set of habits and values according to which the equi¬ 

librium we are born in is the only “natural” one, and “morally superior” 

to the others. We feel it to be natural because it is the only one in which 

we are comfortable, and we think it to be morally superior because we 

have not been trained to share the values the other equilibria convey. 

This is not to say that there is any worthier alternative. Social conven¬ 

tions are unspoken agreements that make society livable by indicating to 

everyone what role to play, and what to expect from others. We are mostly 

born into our roles, and there is little point in wondering how that par¬ 

ticular casting was arrived at. The important point is that it has been 

done, and that everyone understands his or her role. 

As Pascal puts it, “How right one is to tell men apart by their exterior 

appearance, rather than by their interior qualities! Who will have prece¬ 

dence between the two of us? Who will give way? The least talented? But I 

have as much talent as he has, and we will have to fight over it. He has 

four footmen, and I have only one: this is clear; we just have to count; it is 

for me to yield, and I would be a fool to discuss that matter. By this simple 

device we have achieved peace, which is the greatest of all goods.”2 Simi¬ 

larly, Pascal points out that law is but a matter of convention. The law 

draws its authority from the simple fact that it is the law, and is recog¬ 

nized as such; there is no point in claiming that it draws its legitimacy 

from some divine authority or some natural law. The law has to be obeyed 

because it is the law, not because it is just: “Custom makes fairness, for 

the lone reason that it is accepted; this is the mystical foundation of its 

authority. Whoever brings it back to its principle destroys it. Nothing is 

as wrong as laws which redress wrongs; for whoever obeys them because 

he thinks they are just obeys the justice he imagines rather than the 

essence of the law: it is entirely contained in itself. It is the law, and noth¬ 

ing more. Whoever will look into its foundation will find it so weak and 

slight that, unless he has grown used to the prodigies of human imagina¬ 

tion, he will marvel that one century has been enough to coat it with such 

pomp and reverence.”3 

We have now come full circle. We started this chapter by wondering 

whether the tools of optimization theory could be used for regulating 

human society, and we discovered that we needed a criterion to optimize, 

that is, an acceptable definition of the common good (or the public 

interest). Lacking such a definition, we started on another tack. Each 

2. Thoughts, frag. 320. 

3. Ibid., frag. 230. 
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individual in a group is supposed to know where his or her best interests 

lie. Supposing they are rational, that is, that they act consistently and 

strategically to further those interests, where does that lead the group? 

The answer is that it leads it into some equilibrium, but there may be many 

of these, and how are we to choose between them? For this, we need a crite¬ 

rion for the common good, and this is precisely what we have been missing 

from the beginning. 

One can, of course, impose such a criterion, or educate a group into 

accepting it. For instance, some equilibria might turn out to be ineffi¬ 

cient, so that shifting society into another equilibrium, and redistrib¬ 

uting the wealth thus created, may be to everyone’s benefit. Even such a 

seemingly straightforward operation may be quite difficult to perform: 

people will lie about their own situations, thereby skewing the process, 

and it will be no easy matter to ensure that the redistribution actually 

takes place. There are other cases when the common interest is less clear. 

In the case of global warming, for instance, there is by now a consensus 

in the scientific community that maintaining human production of 

greenhouse gases at their current level will lead to climate change early in 

the current century, with catastrophic consequences for most countries. 

Bangladesh would simply disappear, coastlines would recede every¬ 

where, Europe would lose its mild winters and become similar to the 

eastern United States. Other countries, however, may fare better; with 

the disappearance of the permafrost, Russia may gain vast amounts of 

arable land in Siberia. Most of us would think that the general interest 

lies in preventing this from occurring, and therefore curtailing right now 

the production of greenhouse gases. This, however, is perceived as 

extremely unfair by developing countries, which are not responsible for 

this situation and are now asked to pay for it in terms of postponed eco¬ 

nomic growth. It is also perceived as unfair by the principal beneficiaries 

of the present situation, the United States, who have come to see their 

way of life as the only “natural” one, and who see no reason why it should 

be curtailed, even though it is unsustainable for the rest of the planet. 

There are essentially two possible outcomes for such a situation. Either 

there will be some kind of general agreement on reducing the emission of 

greenhouse gases, with an international authority given the power to 

monitor compliance, or there will be a revival of colonization from the 

United States and Europe, who will seize desirable tracts of land in 

the new geography and maintain emerging powers like China and India 

in economic underdevelopment. The first solution means implementing 

a certain idea of the common good; the second one is just an equilib¬ 

rium, backed by military force, like so many others before it. The political 
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developments of the past years can be read as a struggle between the pro¬ 

ponents of these two options. 

We have now reached the end of our journey. It started in the world of 

the Renaissance, impregnated with Christian values. It is impossible to 

understand thinkers like Galileo or Leibniz, for instance, if one does not 

understand that they believed the world to have been created by God. 

The laws of nature then are simply the rules God followed when creating 

the world, and the purpose of science is to recover them from observa¬ 

tions. There is then also a deeper science, which is to seek the purpose 

God himself had in creating the world. This is what Maupertuis, in a 

glorious moment, thought he had achieved, thereby reconciling forever 

science and religion, both being the quest for God’s will, in the physical 

world and in the moral one. 

Our journey ends in a world where God has receded, leaving humankind 

alone in a world not of its choosing. Technological progress, however, has 

enabled us to play God, by shaping our environment and ourselves, on a 

scale which has now reached the planet and is growing at an unprecedented 

pace. What do we want to do with this power? What kind of world do we 

want to create, among the many possible ones? This is an entirely new ques¬ 

tion, which humanity faces in an entirely new situation. Our intellectual 

categories and moral values, which were developed in earlier times, have 

yet to incorporate the changes that science has brought in the human con¬ 

dition. Our personal identities and characters, for instance, can be 

changed by chemical treatment; our bodies can be changed by cosmetic 

surgery. Our tastes and opinions are shaped by professionals and spin 

doctors, from marketing, advertising, mass communication, and journal¬ 

ism. Huge amounts of money and ingenuity are invested into making us 

desire what industry wants to sell and approve what people in power want 

to do. What then is the meaning of the traditional advice of moral philos- 

ophy, know thyself ? Should I meditate the consequences of being 

depressed and nearsighted, or should I take Prozac and seek eye surgery? 

It is claimed that Beethoven died of lead poisoning, and that it also stimu¬ 

lated his creative powers. Should he have been cured? Who is the real 

Beethoven? The deaf genius who wrote the Diabelli Variations and the 

Ninth Symphony, or the more ordinary musician but healthy one who 

would have replaced him if his condition had been diagnosed, as it cer¬ 

tainly would have been today? 

With the progress of genetic engineering, the human species may soon 

prove to be as malleable as the individual. V?e can already detect undesir¬ 

able genes in the fetus, thereby raising moral problems where there were 

none before. Between screening the genes and actually changing them, 
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that is, shaping our offspring according to our wishes, there are but a few 

decades of technological progress. The time is coming when plain 

people, ordinary couples wanting a baby, will face a task that philoso¬ 

phers, theologians, and moralists of ages past believed to be beyond our 

powers: designing a human being. There is as yet little precedent for this 

kind of decision, apart from the book of Genesis and other myths of 

Creation, but as it becomes part of the human experience, guidelines will 

develop, one way or another. Whatever they are, they will leave open to 

the human species the possibility of reshaping itself, of taking command 

of the evolutionary process. This is the last blow dealt to the idea of the 

common good, as we understand it today. It is hard enough to define the 

common good of a society of rational individuals with well-defined 

objectives and tastes. But if the individuals alive today are but stepping 

stones toward a higher and better state of humanity, of which we know 

nothing yet beyond the fact that they are different from us, then the task 

becomes impossible, like building a statue out of water. 
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(chapter 10) A Personal Conclusion 

the story i have t o l d in this book is not one of failure. On the 

contrary, it is a record of tremendous and unexpected successes. Only 

four hundred years separate Hubble, cruising several thousand miles 

above the Earth, and sending us pictures from galaxies billions of light- 

years away, from the primitive telescope which Galileo used to discover 

mountains and seas on the Moon and rings around Saturn. The modern- 

day physicist no longer climbs towers to drop stones, but sends sub¬ 

atomic particles colliding against each other in circular accelerators many 

miles in diameter. Galileos original law on the motion of falling bodies 

(speed increases in proportion to time elapsed) is now seen as a minor 

consequence of much deeper properties of space and time, encapsulated 

in Einsteins theory of general relativity. 

Maupertuis thought that the least action principle was the blueprint 

of Creation. On the one hand, it contained all the secrets of nature, since 

the laws of physics could be derived from it by mathematical arguments. 

On the other, it had such an obvious purpose that it was clear that there 

was a will behind it. How can natural motions minimize the total ex¬ 

penditure of “action” if there is not an invisible hand to guide them? 

How does light choose the shortest path among the many possible ones 

if some higher intelligence does not direct it, like a skier tracing a path 

in virgin snow for others to follow? We now know that this is not the 

case, and that reality is much richer than that. Light does not follow the 

shortest path; natural motions do not minimize the action. The right 

concept here is stationarity rather than minimization, and it requires 

some mathematical sophistication to understand. So there is seemingly 

a loss, since the concept is one more step removed from our everyday 

experience, although it is more than compensated by its increased ap¬ 

plicability. Today s physics and mathematics are much richer and broader 

than those of Maupertuis, but the least action principle (in its revised 



version, with action-minimizing motions replaced by stationary ones) 

remains in force. It is no longer considered a fundamental law of nature, 

but a mathematical tool toward new discoveries—such as Gromov s un¬ 

certainty principle. There is no need either for an invisible hand to help 

light find the stationary paths: it is but one of the many consequences 

of the fact that light consists of waves, which propagate and interfere 

according to laws which were already known to Huygens, many years be¬ 

fore Maupertuis. In a similar fashion, the discovery of quantum physics 

provided a firm foundation for the least action principle: it is but a mac¬ 

roscopic consequence of the structure of matter at very small scales, as 

Feynman pointed out sixty years ago. 

The least action principle ended up looking very different, but more 

interesting, than Maupertuis had suspected. The metaphysics have gone, 

but the physics and the mathematics are deeper and better. Perhaps 

Maupertuis would have been disappointed by the way it turned out, but 

the greater scientists, Fermat, Huygens, Euler, Lagrange, would have 

been thrilled at the progress we have made in understanding nature. 

Unfortunately, they would probably have expected the development of 

human society to match the progress of scientific knowledge, and they 

would have to be sorely disappointed. If they were alive today, they would 

have to be told about the horrors of the twentieth century, the tens of 

millions killed in battle during the two world wars, two cities wiped 

out by a single atomic bomb with no warning to civilians, the millions 

of tons of bombs dropped over Germany and Vietnam, the millions of 

displaced people in Europe, the Middle East, and Africa, the genocides 

of the Armenians, the Jews of Europe, Cambodia, and Rwanda. Killing 

people has now become an industrial process like any other, benefiting 

from advanced technology and management skills, and the efficiency of 

that particular industry has kept pace with the rest. It looks like the spe¬ 

cies Homo sapiens has not evolved since it first gathered into competing 

tribes, but that they are now throwing bombs at each other instead of 

rushing at the enemy with spears. Worse still, those who manage the kill¬ 

ing process are so remote from the end result that they do not feel that 

they are doing something wrong or even unusual. They have desk jobs, 

like Adolf Eichmann had; in the words of Hannah Arendt, evil has be¬ 

come banal. 

This discrepancy between progress in technology and the persisting 

mistreatment of human beings is very troubling, even for those who have 

not been on the receiving end of humanity’s malevolent ingenuity. One 

naively expects that the enormous stock of knowledge that has been ac¬ 

quired in the past four hundred years, and that has enabled some of our 
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species to tread on the moon, would also enable us to live on this planet 

in abundance and peace. This is obviously not the case. Europe, that 

most cultured of continents, where pacifists and socialists have always 

abounded, started two world wars and exterminated most of its Jews. We 

have not learned from this. All my adult life, torture has been used as a 

way to terrorize people, by dictatorships in Latin America, Africa, and the 

Middle East, but also by great democracies, France, Israel and the United 

States, and I find this deeply unsettling: not only have we more efficient 

means of killing each other, we also have more efficient means of inflict¬ 

ing pain and taking every advantage of it, so that killing may look merci¬ 

ful by comparison. Since 9/11 the situation has gotten worse; even in 

Great Britain, the birthplace of habeas corpus, one can now be detained 

without knowing what one is accused of or who ones accusers are. In the 

international sphere, the U.S. government is walking away from the 

complex network of international agreements, starting with the United 

Nations charter, which tried to create some kind of international rule 

of law, and proclaiming instead its right to preemptive strike, that is, 

immediate military action against anyone by whom it feels threatened, 

anywhere in the world. This is the kind of doctrine that was entertained 

by the Roman Empire; the natural sciences have progressed tremen¬ 

dously in two thousand years, while political science clearly has not. 

One way to react to this sorry situation is to despair: what good is sci¬ 

entific knowledge if it puts stronger weapons in the hands of the power¬ 

ful? What achievement of quantum physics can atone for its inventing 

the atomic bombs? There are the lasers, the CD and DVD players, all the 

digital technology that is now so central to our lives, and all the peaceful 

uses of atomic energy which may save us when the fossil fuels have run 

out or we have finally decided they are too dangerous to burn. True 

enough, but even if today people live longer than their ancestors, are in 

better health, enjoy more comfort of every kind, they may not be happier. 

This is because happiness is relative to one’s experience and to the people 

one consorts with; if I feel depressed, I will not be comforted by the 

thought that two centuries ago, few people reached my age. It is also 

because the mass media of communication have turned the world into a 

global village, and are bringing into every household vivid pictures of 

incredible hardships. Famines and massacres have always happened 

throughout the world and the centuries, but only now are they brought 

to our immediate attention by the information networks and the Inter¬ 

net. The human experience is now global, as is the economy. It is largely 

shaped by newspapers, radio, and television, and our sense of comfort 

and happiness depends on what we read, hear, and see. The end result is 
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that we are directly exposed to many more tragic situations than our 

ancestors, that we see these situations, like the war in Iraq, perpetuating 

without improvement, and that we therefore tend to view the world as 

much less of a safe and happy place. 

There is a general feeling that science has given us longer and better 

lives, but has not taught us how to live them. Certainly, we have wit¬ 

nessed immense progress in very many fields of knowledge, from mathe¬ 

matics to anthropology, and one could even argue that in effect, science 

has split into separate sciences, each one with its own set of operating 

rules, and each one with its record of successes. However, no unified view 

of the world has emerged. In fact, most scientists are extremely special¬ 

ized, and have very little to say about science outside their own fields, let 

alone about the world at large. One can find scientists of practically every 

opinion and creed, and scientists have been directly connected with very 

questionable enterprises. There is a sense of disappointment that people 

who have been able to devise the means to reach the Moon are not able to 

answer the basic questions that every human being faces: who am I? what 

am I to do? Science seems to raise more questions than it provides 

answers, but human beings are in quest of certainties, and if science 

will not provide them, then others will—religions and ideologies. And 

indeed, the first half of the last century was the era of ideologies, which 

ended with the bloody clash of fascism and communism, while the sec¬ 

ond half has seen religions emerge as the main actors, and mayyet lead us 

to another conflagration between the Abrahamic creeds—the so-called 

clash of civilizations. 

I think these are the wrong attitudes. There is no cause for despair, 

nor should we let religious fundamentalisms lead us down the path to 

collective destruction. Since the time Galileo first raised his telescope 

to the night sky, we have learned much more than how to send humans 

to the Moon: we have learned a method of investigation. It consists of 

relying on facts, and of arguing correctly from them. Establishing the 

facts is an aim in itself: ideally, one should put in doubt all the certainties 

handed down by tradition and society, and try to find, by repeated 

observation and experimentation, some truths one can safely build 

upon, truths which are to be perpetually revisited and double-checked. 

This is the scientific method, as theorized by Rene Descartes; as indi¬ 

cated in the title of his 1637 book A Discourse on theMethod to Orient One’s 

Reason and to Seek Truth in Sciences, this method is universal. It has been 

used in science with tremendous success, and there is no reason why it 

should not be as useful in philosophy, or in trying to establish some prin¬ 

ciples by which to guide our collective and individual lives. This is precisely 
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what Descartes tried to do, and this is what we should be doing, each in 

our own way, reexamining what we believe in, in the light of our experi¬ 

ence. Some of the conclusions Descartes reached we would reach our¬ 

selves. He realized, and accepted, that his method did not lead to any 

specific morals or ethics, much as we see nowadays that science does not 

teach us how to live our lives. But he introduced the idea of a morale par 

provision, “acting morals," so to say, to be in effect until better ones are 

found, much like a scientific theory is in effect until progress has made it 

obsolete in favor of another one. In other words, in morals as in science, 

we have not reached a definitive and all-embracing truth, nor is it certain 

that we will ever reach one. But the history of the past centuries has 

shown us that incomplete and provisional truths can be used to great 

effect in science, and there is no reason it should be any different in 

morals and philosophy. In other words, do not be disappointed that we 

do not have right now the definitive answer to problems humans have 

been struggling with since the beginning of time. It is enough to have 

partial answers, to cobble them together in an incomplete but operating 

theory, and to work toward making it more complete. 

What I am claiming here is that rationalism, the reluctance to accept 

anything that cannot be defended by argument or experience, has not 

exhausted its possibilities and can still carry us a long way. In a way, this 

is just another belief, and it is irrational as all beliefs are. I myself think 

that this faith in reason is supported by experience, whereas faith in res¬ 

urrection or reincarnation is not, but this argument will not convert a 

Christian or a Hindu unless she is ready to submit to experience, that is, 

unless she already is a rationalist. Why then put our confidence in 

rationalism and the scientific method? 

A first set of reasons has to do with the alternatives. If we do not 

accept that reason has to be the mainspring of human action, that our 

decisions have to reached by rational arguments with due regard to 

their consequences, then we must let emotions and passions take their 

toll. It is true that there is an irrational side to human beings, which can 

bring out the best in them, but it can also bring out the worst, and in the 

long run it is the worst which prevails. If rational arguments are not 

accepted, disputes will be solved by force, if no common ground is 

accepted for discussion, then the only recourse is violence. As Popper 

puts it, “Rationalism is closely connected with the belief in the unity of 

mankind. Irrationalism, which is not bound by any rules of consistency, 

may be combined with any kind of belief, including a belief in the broth¬ 

erhood of man; but the fact that it can easily be combined with a very 

different belief, and especially the fact that it lends itself easily to the 
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support of a romantic belief in the existence of an elect body, in the divi¬ 

sion of men into leaders and led, into natural masters and natural 

slaves, shows clearly that a moral decision is involved in the choice 

between it and a critical rationalism.”1 Popper goes on to say that 

faith in reason is not only faith in our reason, but also—and even more—in 

that of others. Thus a rationalist, even if he believes himself to be intellectu¬ 

ally superior to others, will reject all claims to authority since he is aware that, 

if his intelligence is superior to that of others (which is hard for him to 

judge), it is so only in so far as he is capable of learning from criticism as well 

as from his own and other peoples’ mistakes, and that one can learn in this 

sense only if one takes others and their arguments seriously. Rationalism is 

therefore bound up with the idea that the other fellow has a right to be heard, 

and to defend his arguments. . . . Ultimately, in this way, rationalism is 

linked up with the recognition of the necessity of social institutions to pro¬ 

tect freedom of criticism, freedom of thought, and thus the freedom of men.” 

My own understanding is that the ability to argue rationally, and 

hence the ability to create and understand science as we know it, is pre¬ 

cisely what distinguishes human beings from other animals. An interest¬ 

ing situation may arise if, in the future, we encounter creatures who 

behave in some pattern which is incomprehensible to us, and yet appear 

to use nature in a way which suits their (unfathomable) purposes; such a 

situation is described by Stanislaw Lem in his book Solans (where the 

creature actually is a whole planet), which deals with human intruders 

much as we would deal with a colony of ants, trying to figure out how 

they react to stimuli and how they communicate. But this is science fic¬ 

tion, and although it does bring up very deep problems about the very 

concept of rationality, humanity has more pressing concerns right now. 

Again, I think that human beings can and should recognize each other 

in their capability to think rationally—even if they think and behave 

irrationally in many circumstances—and that is the strongest bond 

among them. This capacity is apparent even in societies who were never 

exposed to science as we know it. As Claude Levi-Strauss has repeatedly 

pointed out, human beings string together intellectual systems from 

whatever bits and pieces are at their disposal, much like an amateur 

handyman, who does not have the same tools as a professional (and who 

may not even know that they exist), will make do with whatever tools he 

l. Karl Popper, The Open Society and Its Enemies, 4th ed. rev. (Princeton, Nj: Princeton 

University Press, 1962), chap. 24. 
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has at hand and turn them to his needs. The variety of human experience 

must be put into some semblance of order, and if science is not available 

for that purpose, then societies turn to myths, religions, and ideologies. 

Grooming such systems of beliefs, keeping them alive by continuous 

additions, devising ways to connect their various parts and to smooth 

over discrepancies, not to mention contradictions, requires considerable 

intellectual ingenuity. If one thinks, for instance, of the intellectual 

power required to write the Book of Safety by Ibn Sina (Avicenna), the 

Guide of the Perplexed by Moses Maimonides, or the Summa Theologica by 

Thomas Aquinas, all of which try to build a system of beliefs reconciling 

the Abrahamic religions with Aristotelian philosophy, one cannot but 

put their authors at the highest level of intellectual achievement. Avicenna 

and Maimonides were first and foremost known as physicians, and most 

of their work deals with medicine; they were in fact the greatest scientists 

of their time. If they were alive today, they would know of the evolution of 

species and the genetic code; one wonders what kind of system they 

would develop from this vastly increased store of knowledge. 

We should proceed in the direction they and so many great minds have 

pointed out to the following generations: use the power of reason to free 

people from all kinds of bondage, bondage to natural powers and bondage 

to human oppression. What is needed is courage: it is always so much eas¬ 

ier to accept what you are being told than to think for yourself. “Laziness 

and cowardice, writes Immanuel Kant, “are the reasons why so many 

men, after nature has so long freed them from a foreign conduct, never¬ 

theless remain all their lives in a state of tutelage; and why it is so easy for 

others to pose as tutors.”2 But the remedy is at hand; as Georg Christoph 

Lichtenberg puts it, That is true, gentlemen, I cannot make my own 

shoes, but my philosophy, I will let no one pick it for me.” Deciding on 

one's own opinions, even in important matters, is not such a difficult task 

as all those who like to pick them for you would want you to believe. In 

recent times, Noam Chomsky has made that point forcefully, as, for 

instance, here: I will not connect the analysis of social issues with scien¬ 

tific problems, which require specialized and technical training and 

intellectual references before they can be treated. To analyse ideology, it is 

enough to have a good look at the facts and to be willing to follow an 

argument. Only Cartesian sense, ‘the most common thing in the world,’ 

is required-It is Descartes' scientific approach—if by this you mean 

to be willing to look at facts with an open mind, to check the assumptions 

2. Kant, “Was heisst: sich im Denken orientiren?” Berlinische MonatsschriftZ (July- 

December, 1786). 
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and to follow an argument to its conclusion. Nothing further is required, 

no esoteric knowledge to explore ‘depths’ which are simply non-existent.”3 

Of course, those who subvert the power of government for their pri¬ 

vate interests tend to protect themselves by shielding public policy from 

scrutiny. The traditional way to do this is to endow rulers with some 

suprahuman legitimacy, to picture them as God’s vicars on Earth, as the 

defenders of morality or as the leaders of a nation at war, so that any crit¬ 

icism of their actions can be represented as a criticism of the higher val¬ 

ues they stand for. A more subtle way to achieve the same aim is to pre¬ 

tend that global issues are much above the head of common people, 

either because they require some deep and technical knowledge which is 

available only to experts, or because ordinary people do not think as 

clearly as politicians, and do not have as deep a commitment to the com¬ 

mon good. All of this is patently false: there is nothing sophisticated 

about understanding global warming, and ordinary citizens are much 

more concerned about its consequences than politicians. As a third 

method, it is also very effective to hide private interests under noble 

ideals. Now as always, armies have been sent to invade land and to seize 

resources from weaker peoples, always for the sake of religion or civiliza¬ 

tion, never it seems out of greed. The motives provided—in earlier times, 

we wanted to save the souls of the heathen; nowadays we want to bring 

them democracy and deliver them from oppressive regimes—are a trib¬ 

ute to the fertile imagination of the human mind, and to our unending 

capacity to hide the reality of our actions under a stream of words. Some¬ 

times I feel like Robert Musil's hero in The Man without Qualities, who saw 

“the big sentiments, ideals, religions, fate, humanity, virtue, as the ulti¬ 

mate evil. He ascribed to them the fact that our times were so insensitive, 

so materialist, so irreligious, so inhumane and so depraved.” 

Big sentiments are no guarantee of ethical behavior, as the behavior of 

troops brought in to convert the heathen to our religion or our way of life 

abundantly shows. In the realm of moral laws, as in the realm of natural 

laws, the scientific method is the only safe one. Here again, let me quote 

Popper at length: 

On the contrary, whenever we are faced with a moral decision of a more 

abstract kind, it is most helpful to analyse carefully the consequences which 

are likely to result from the alternatives between which we have to choose. 

For only if we can visualize these consequences in a concrete and practical 

way do we really know what our decision is about; otherwise, we decide 

3. Dialogues avec Mitsou Ronat (Paris: Flammarion, 1977). 

189 

P
E

R
S

O
N

A
L
 
C

O
N

C
L

U
S

IO
N

 



C
H

A
P

T
E

R
 

T
E

N
 

blindly. In order to illustrate this point, I may quote a passage from Shaw’s 

Saint Joan. The speaker is the Chaplain; he has stubbornly demanded Joan’s 

death; but when he sees her at the stake, he breaks down. “I meant no harm, 

I did not know what it would be like... I did not know what I was doing... If 

I had known, I would have torn her from their hands. You don’t know: you 

haven’t seen: it is so easy to talk when you don’t know. You madden yourself 

with words. But when it is brought home to you; when you see the thing that 

you have done; when it is blinding your eyes, stifling your nostrils, tearing 

your heart, then, then—O God, take away this sight from me!” There were, 

of course, other figures in Shaw's play who knew exactly what they were 

doing, and yet decided to do it, and who did not regret it afterward. Some 

people dislike seeing their fellow men burning at the stake, and others do 

not. This point (which was neglected by many Victorian optimists) is 

important, for it shows that a rational analysis of the consequences of the 

decision does not make the decision rational; it is always we who decide. But 

an analysis of the concrete consequences, and their clear realisation in what 

we call our “imagination,” makes the difference between a blind decision 

and a decision made with open eyes; and since we use our imagination very 

little, we too often decide blindly. This is especially true if we are intoxicated 

with an oracular philosophy, one of the most powerful means of maddening 

ourselves with words—to use Shaw’s expression.4 

Seek the truth, and the truth will set you free. This is a pronounce¬ 

ment as old as philosophy itself, but science has taught us what truth is 

really like. It is not a global all-encompassing truth, handed down by 

some supreme authority or revered tradition. It is a piecemeal truth, con¬ 

quered slowly and with great exertion, each small piece of which is all the 

more precious because it was so hard to attain. In the famous analogy of 

Otto Neurath, “We are like sailors who in the open sea must reconstruct 

their ship but are never able to start afresh from the bottom. Where a 

beam is taken away a new one must at once be put there, and for this the 

rest of the ship is used as support. In this way, by using the old beams 

and driftwood, the ship can be shaped entirely anew, but only by gradual 

reconstruction.”5 A ship of fools, drifting on the high seas, has often 

been taken as an image of humankind. In the present state of the ship, 

not all the beams have been tested, far from it, and its design is less than 

ideal. In the intellectual framework within which our decisions are made, 

not everything is scientific knowledge, and we are not able yet to fit all we 

4. The Open Society and Its Enemies, chap. 24. 

5. Anti-Spengler (Munich, C. D. W. Callwey, 1921). 
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know, think, and do into a coherent whole. We need it, but we don’t have 

it. This is no reason to compromise with truth; as Maurice Merleau- 

Ponty puts it, “It cannot be expected from a philosopher that he goes 

beyond what he sees himself, nor that he gives directions he is not sure 

of. The eagerness of souls is no argument here; one does not serve the 

souls by half-truths and impostures.”6 The first duty of intellectuals is to 

tell the truth. 

This is what Musil has to say about Ulrich, the hero of his great novel, 

himself a mathematician, which pretty much summarizes what I have 

tried to say: 

He hated men incapable of “suffering hunger in their souls for the love of 

truth,” to use the words of Nietzsche, those who hold back, those who shun 

discussion and who seek comfort, who cuddle their souls with nursery tales 

and feed it religious, philosophical or imaginary sentiments, which are like 

bread buns dipped in warm milk, claiming that intelligence would feed it 

stones instead of bread. His opinion was that we find ourselves in this time 

committed to an expedition with the whole of the human race, that pride 

commands us to answer “not yet” to all useless questions and to lead ones 

life according to interim principles, while remaining aware of a goal that 

those coming after us will reach. The truth is that science has developed the 

idea of a raw and sober intellectual power which makes mankind s old meta¬ 

physical and moral representations simply unbearable, even though it can 

put in its place no more than a hope: that some day will come, in a long time, 

when a race of intellectual conquerors will settle in the valleys of spiritual 

abundance. 

6. Eloge de la philosophie: Legon inauguratefaite au Colldge de France (Paris: Gallimard, 

1953)- 
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(appendix l) 

Finding the Small Diameter of a Convex Table 

start from the first (larger) diameter of the table, and call 

it AB. The distance between A and B is the greatest possible between two 

points on that table. Take a point Mx on the upper half of the table (above 

AB) and another point M2 on the lower half (below A B). Denote by* the 

length of AMj and by y the length of BMr 

As x andy vary, the segment M1M2 moves around. The smallest pos¬ 

sible value for x is x = o (then Mx lies at A), and the smallest possible 

value fory isy = o (then M2 lies at B). Denote by d the distance between 

A and B. The greatest possible value for x is x = d (then Mx lies at B) and 

the greatest possible value fory isy = d (then M2 lies at A). Giving pairs of 

values (x,y) specifies a position for the segment MxM2: 

(x = o, y = o) puts M1M2 on AB 

(x = o, y = i) puts MXM2 on AA 

(x = i, y = o) puts /V?,M2 on 68 

(x= 1, y = i) puts MXM2 on BA 

The distance between A and B is easily figured out in these four cases. 

We find: 

If (x = o, y = o) then the distance between M1 and M2 is d 

If (x = o, y = l) then the distance between M, and M2 is o 

If (x= i, y = o) then the distance between M, and M2 is o 

If (x = i, y = i) then the distance between M, and M2 is d 

More generally, define/(x,y) to be the distance between Mx and M2 

when the length of AMy is x and the length of A M2 isy. From the above, 

we have: 
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/(o,o) = d 

/( o,i) =o 

/(i,o)=o 

/(v)=d 

If we now graph the function/(x,y) on the square defined by o <x<d 

and o <y < d, we get two maxima at two opposite corners of the square, 

(x = o, y = o) and (uc = \,y = 1), and two minima at the two other cor¬ 

ners. This means that the graph has two peaks at the two first corners, 

and by our general theorem on islands there must be a mountain pass 

somewhere on the square; let (x = a,y = b) be its position. Setting M1 

at a distance a from A and M2 at a distance b from B gives us the second 

diameter we were looking for. 

Note that this second diameter neither maximizes nor minimizes the 

distance. Note also that there might be several passes, corresponding to 

several possibilities for the second diameter. This would be the case if, 

for instance, the billiard table has the shape of a rectangle with the four 

corners rounded off. There would then be, in fact, four diameters: two 

large ones, corresponding to peaks in the graph, and two smaller ones, 

corresponding to passes in the graph. 
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(APPENDIX 2) 

The Stationary Action Principle for General Systems 

the simplest system in classical mechanics is the one-ball bil¬ 

liards. The motion of the ball is fully determined by its first impact on the 

cushion, that is, by a pair of numbers (x,y), where x gives the position of 

the impact on the edge andy the incoming angle. We shall refer to (x,y) 
as the initial state of the billiards. 

For general systems, we need more variables. A solid body, for in¬ 

stance, spins as it moves. To specify its state at any time, we need ten 

variables: three to give the position of the center of mass, two to give 

the direction of the rotation axis, three to give the velocity of the center 

of mass, and two to give the speed of rotation and the displacement of 

the axis. The state of any system in classical mechanics can be described 

by the values of an even number of variables, say (xl,yv ..., xN,yf), the 

variables xn identifying the position and the variables yn the associated 

velocities. This amounts to prescribing a point in a space of zN dimen¬ 

sions, called the phase space associated with the given system. The num¬ 

ber A, which is often called the number of degrees of freedom, can be quite 

large for complicated systems. 

To describe the motion of a given system, we need one further ingre¬ 

dient, namely a function H on the phase space. The number H(xl,y1, 

xN,yN) is called the energy of the state (x^yq,..., xN,yN). The phase space 

and the energy contain everything there is to know about the system; if 

we have figured them out, we can write down the equations of motion 

(but we may not be able to solve them). These are differential equations, 

so that, if we are given the state at time t = o, the state at any later time t 

is fully determined. 

The most striking fact about these equations is that they are conserva¬ 

tive, that is, that throughout the motion, the value of the energy stays 

pegged at its initial value. Say this initial value is h; then the trajectory is 

entirely contained in the set H(xvyv..., xN,yN) = h, which is a hypersurface 
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5 in the phase space. In other words, a trajectory starting on a cer¬ 

tain energy level remains on that energy level. Some of these trajectories 

might be closed; they will correspond to periodic motions of the given 

system. 

With any closed curve drawn on S, we can associate a number, which 

is the action along the given curve. Maupertuis’ principle states that the 

closed curves which make the action stationary are trajectories of the sys¬ 

tem; that is, they satisfy the equations of motion. From then on to prove 

that such stationary curves actually exist is quite a step. This was finally 

achieved by Claude Viterbo in 1986; thanks to his result, we now know 

that periodic solutions exist under very general conditions. 

Viterbo's method is similar in spirit (although very different techni¬ 

cally) to the method we used to find the small diameter of a convex bil¬ 

liard table. Hofer and I then had the idea to define diameters for general 

systems. To do this, we consider the hypersurface S, defined by the equa¬ 

tion H(x1,y1,..., xN,yN) = h. By Viterbo’s result, 5 carries at least one 

closed trajectory, and in fact usually carries infinitely many; we order 

them according to the values of the action along them. The smallest 

value will be called the “first diameter’’ of 5. The next smallest will be the 

“second diameter,” and so on. 

These diameters enjoy remarkable properties. In the case of the bil¬ 

liards, there are only two: a large one, L, and a small one, /. Imagine now 

that we have two tables, the first one with diameters Lx and lv and the 

second one with diameters L2 and /2. If the first table is contained in the 

second one, then it must be the case that both its diameters are smaller: 

Ij < L2 and /j < l2. The same property holds for the “diameters” of more 

general systems. 

This is the key to Gromov’s uncertainty principle. Indeed, an uncer¬ 

tainty region around (xvyv ..., xN,yN) is mathematically indistinguish¬ 

able from an energy level: the boundary of the region is the hypersurface 

S. I still have not figured out a satisfactory physical interpretation for that 

identification. Bur the mathematics are clear. Uncertainty regions have 

“diameters,” just like energy levels, and the correct use of these diameters 

quickly leads to a proof of the second uncertainty principle, which is 

different from the one Gromov originally gave, and which links it closely 

with the stationary action principle. 
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(bibliographical notes) 

i have been careful to acknowledge my sources in the text, and 

to check all the quotations. Some sources, however, have been more in¬ 

spirational than others. For the first two chapters, I have made extensive 

use of the books of Alexandre Koyre, notably Etudes Galileennes (Paris: 

Hermann, 1940), Du monde clos a I’univers infini (Paris: Gallimard, 1967), 

Etudes d’histoire de la pensee scientifique (Paris: Gallimard, 1973). For the 

second, the book by Paolo Rossi, La nascita della scienza moderna in Europa 

(Rome-Bari: Laterza, 1997) has been extremely useful. Of course, I have 

read Leibniz s Monadology, but if I had not come across the commented 

edition by Clotilde Calabi (Milan: Bruno Mondadori, 1995), I am afraid 

it would have remained a closed book to me. 

From chapter 3 on, I have relied directly on the writings of the various 

actors, Fermat, Maupertuis, Voltaire, Euler, Lagrange, and on my exper¬ 

tise as a professional mathematician. I have also consulted historians of 

science, such as Ernst Mach and Rene Dugas, but I have allowed myself 

to disagree with them on occasion. In chapter 5, we enter completely new 

territory, since we are explaining mathematical discoveries which have 

happened during my lifetime, some of which I have contributed to, and 

there are of course no other references to them except in scholarly jour¬ 

nals. Chapter 6 covers more familiar territory, chaos theory for instance, 

for which there are many references, including earlier books by myself, 

Mathematics and the Unexpected and The Broken Dice, both at University 

of Chicago Press (Chicago: 1990 and 1993). 

Chapter 7 is the only one in the book where I cannot claim firsthand 

expertise. I am no biologist, and although I have looked up the original 

sources, notably Darwin, I have had to rely on others’ work. The views I 

have found most congenial to my own thinking, and which are reflect¬ 

ed here, are those of Stephen Jay Gould, as expressed, for instance, in 

A Wonderful Life (New York: W. W. Norton, 1989). I realize that almost 
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twenty years have elapsed since that book was published, and that much 

progress has been made since then, notably in the understanding of the 

Burgess shale, but I have not updated my knowledge, in the belief that 

the core of the argument (that evolution cannot be interpreted as prog¬ 

ress in any meaningful way) was unaffected. 

With chapter 8, we go back to mathematics (optimization theory), 

and we introduce two authors whom I have studied for a long time, the 

Greek historian Thucydides and the Renaissance historian Guicciardini. 

There are many studies about Thucydides, the most recent (and most 

interesting) one being the book by Marshall Sahlins, Apologies to 

Thucydides (Chicago: University of Chicago Press, 2004), which ap¬ 

peared too late for me to take advantage of it. Much less has been written 

about Guicciardini, although it is my belief that he is no less a histo¬ 

rian. Certainly he has been extremely useful to me in understanding the 

uses and limitations of political power. Chapter 9 introduces some basic 

economic concepts, such as efficiency (Pareto optimality), and problems, 

such as the difficulties of collective choice. 

Of course, it is impossible in a couple of hundred pages to cover all 

the scientific and philosophical aspects of the problem raised by the title. 

What I have given here is by necessity a personal choice, colored by my 

training as a mathematician and as an economist, but it is a considered 

and careful one. Readers with different backgrounds, such as philoso¬ 

phers, anthropologists, or biologists, will probably find my account un¬ 

balanced. I hope some day we will reach a unified view of science and 

philosophy which will make a full account possible, perhaps along the 

lines drawn up by the Vienna Circle, but I fear this is as far away as grand 

unification is in physics. Meanwhile, readers who want to continue in¬ 

vestigating these questions in an entertaining (yet profound) way, are 

directed to the science-fiction books of Stanislaw Lem. An excellent in¬ 

troduction to Lem, and a handbook for would-be creators, has been writ¬ 

ten by Bernd Grafrath: Esfallt nicht leicht, ein Gott zu sein (Munich: Beck, 

1998). Readers who want to learn more about Maupertuis’ fascinating 

personality are directed to MaryTerralls book, The Man Who Flattened the 

Earth (Chicago: University of Chicago Press, 2002). 

Finally, I would like to recall the memory of Susan Abrams, who 

encouraged me to start this ten-year effort and kept supporting me until 

her untimely death. 
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