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INTRODUCTION TO
ASTROPHYSICS

stronomy is a fascinating subject because the universe is full of such

wonders as black holes, exploding stars, and colliding galaxies and

because new discoveries are being made at a rapid pace. While it is
possible to appreciate astronomy with images and qualitative descriptions, the
goal of this course is to gain access to the deeper level of beauty and understanding
that astrophysics—the application of the laws of physics to comprehend celestial
phenomena—can provide. This not only gives a greater appreciation for the
wonders of the universe, but also allows for the perception of hidden regularities
and connections between phenomena. For example, the relationship between
a white dwarf and a neutron star is analogous to the relationship between an
atom and an atomic nucleus.

This course conveys the quantitative foundations of astrophysics with the hope of
both satisfying and stimulating curiosity about the subject. The most important
prerequisites are the desire to understand deeply, the capacity and patience
for learning new things, and a sense of wonder. To gain the most from the
course, a good background in freshman-level classical mechanics and calculus is
needed; logarithms, trigonometry, and vectors are employed throughout. After
completing this course, you will have a firmer grip on the universe and an
enhanced ability to solve problems in the physical sciences.

Astrophysics spans more orders of magnitude in space, time, and mass than any
other science, and the first 3 lectures of this course provide a unifying structure
to help comprehend the vast range of scales, based on orders of magnitude and
logarithmic charts. The first lecture zooms out from spatial scales of human
beings to the entire observable universe. The second lecture zooms in to the
fundamental particles and the 4 fundamental forces of nature. The third lecture
is about how astrophysicists establish the locations of objects in 3 dimensions,
despite being stuck in an arbitrary location within just one of countless galaxies.




COURSE SCOPE

The next topic is gravity. Lectures 4 through 7 apply the law of gravity to
understand the motion of planets, the destructive power of tidal forces, and the
existence of black holes. A feature of this section is a detailed examination of
the relationship between Kepler’s laws of planetary motion and Newton’s laws
of motion and gravity, a topic usually reserved for more advanced courses.

Attention then turns to a different force of nature: electromagnetism. Lecture
8 is on photons, the basic unit of electromagnetic radiation. The properties of
photons are compared with those of ordinary particles, and many important
formulas are introduced. Lecture 9 provides an immediate application of these
concepts to understand the basic properties of the planets in the solar system.
The next 3 lectures are about telescopes. They discuss the fundamental purpose
of telescopes and the differences between telescopes in the radio, optical, and
x-ray domains of the electromagnetic spectrum. Lecture 12 takes a deep dive
into spectroscopy, the main way to learn about the physical conditions of a star,
planet, nebula, or galaxy.

Then begins a sequence of lectures about stars and their planets in which the
following questions are addressed: How are the properties of stars determined?
What has been discovered about planetary systems around other stars? Why do
stars shine, and how long do they last? What are the conditions like at the center
of a star? What happens when a star runs out of fuel? How can the existence of
stars that are millions of times denser than the Earth be explained?

After such detail is spent on understanding stars, they are destroyed in lecture 19,
which is about supernovas and their causes. Then comes a highlight of the
course, in lecture 20, about gravitational waves. The seminal first detection of
colliding black holes is examined in detail, starting with the original data and
culminating in a calculation of the masses of the black holes and their distance
from Earth. Even as recently as 2015, this lecture could not have been written.



COURSE SCOPE

The last 4 lectures zoom out to gain a perspective on galaxies and the universe as
a whole. Lecture 21 not only features dazzling images of galaxies—the orchids
of the universe—but also introduces the mind-bending astrophysical concept
of the galaxy as a collisionless fluid of stars. The topic of galaxies is developed
further in lecture 22, including active galaxies, in which material is funneling
into a central black hole, and the mystery of dark matter. Finally, lectures 23 and
24 present the quantitative basis of the modern creation story: the big bang. The
course ends at the frontier of astrophysics and particle physics, with the discovery
of what may turn out to be an entirely new force of nature. *



ZOOMING OUT TO
DISTANT GALAXIES

he words “astrophysics” and “astronomy” are

basically interchangeable these days, but there
is a subtle intellectual distinction. Astrophysics is the
application of the laws of physics to understand celestial
phenomena. Occasionally, we even discover a new law
of physics by studying what’s out there. In contrast,
astronomy can be defined as the careful observation
of heavenly bodies—a cultural activity dating back
thousands of years that only gradually became
scientific. The ancient Babylonians, the Chinese, and
the Mayans were all accomplished astronomers, but
they weren’t astrophysicists. Compared to astrophysics,
no other science spans such a vast range of scales—
from nanometers to billions of light-years and from the
radiation of a single electron to the output of trillions

of suns.




Astrophysics began in the 171" century with Isaac
Newton, who explained the motions of the planets
with his shiny new equations relating force, mass,
acceleration, and gravity.

The actual word “astrophysics” is more recent. It’s
from the mid-19 century, after the invention of
photography and spectroscopy. These techniques
allowed us to go beyond looking through telescopes
with our eyes; now we could make more objective records,
detect fainter sources, and connect our observations to laboratory
experiments with light, heat, and atoms.

PUTTING THE UNIVERSE
INTO PERSPECTIVE

¢ It’s difficult to put the whole universe into perspective. Even if we scale
everything down by a factor of a billion, the nearest star to the Sun would
be 25,000 miles away, and our next-door neighbor galaxy would be 20 billion
miles away. No matter how much we try to scale things down to a manageable
size, we still get mind-boggling numbers. The problem is there’s no one scale
factor that will put all the phenomena from
the cosmos to the microworld into a mentally

comprehensible map.

¢ If we start with a map of a building near
Washington DC, for example, and a scale
bar representing 100 meters, then when
we expand our field of view by a factor of

N e
‘\ !“ogréértﬁ

10—making the scale bar 1000 meters, or 1

kilometer—we can take in the whole city.
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LECTURE 1 — Zooming Out to Distant Galaxies

¢ If we expand our field of view by another
factor of 10, we start to see regional features,
such as the Chesapeake Bay. And by taking
another step, the scale bar becomes 100
kilometers, and we can see the entire mid-
Atlantic Seaboard.

\

T A \
82\
. 1000,m
¢ Expand another factor of 10 and we can see Google Earth
the entire Earth, hanging in empty space. At
this point, we've zoomed out from hundreds

to millions of meters.

¢ This brings up the issue of units of
measurement. The standard metric unit
for length is meters, including millimeters,
kilometers, and so on. The scale bar we
have just used is 1 million meters long, or
1 megameter. Another way to write that
is with scientific notation: 10° meters,
because 10 to the sixth power (1,000,000)
is 1 million.

¢ But when we're thinking about entire
planets, meters are not very convenient;
it’s better to measure things in units of
the radius of the Earth. One Earth radius R
is defined as 6378 kilometers. That way,
we can say that the planet Neptune has a
radius of about 4 Earth radii, and Jupiter’s
is about 11. These numbers are much easier

to comprehend than however many millions
of meters. That’s why the Earth radius is a
handy unig; it’s written as R, where ® is the
astronomical symbol for the Earth.

Google Earth




LECTURE 1 — Zooming Out to Distant Galaxies

The next useful unit that we’ll need is for the size of stars. The Sun’s radius is
about 700 million meters, or a little more than 100 times bigger than Earth.
The solar radius, the unit of choice when dealing with stars, is written as R,
where O is the astronomical symbol for the Sun.

Once we get to a scale of 10" meters, most of the other planets come into
view. We've reached the scale of planetary systems, for which the traditional
unit is the radius of Earth’s orbit around the Sun—a unit called the
astronomical unit (AU). It’s about 215 solar radii, or 150 billion meters. With
the astronomical unit, the solar system can easily be described. Mercury is
about 2/5 of an AU from the Sun; Jupiter is out at 5.2 AU.

When we expand the scale again, beyond the solar system, we find ourselves
in empty space for quite a while, until we get to 10'® meters, at which point
some of the neighboring stars come into view. A good unit to use on this
scale is the light-year, or the distance light travels in 1 year, which is just
short of 10'® meters. For example, the nearest star, Proxima Centauri, is 4.2
light-years away.

In practice, astrophysicists don’t use light-years. Instead, the preferred unit is
called the parsec, and it’s about 3.3 light-years. The typical distance between
stars is 1 or 2 parsecs.

From here, we need to zoom out 4 more factors of 10—4 more orders of
magnitude—until the architecture of the Milky Way Galaxy comes into
view, at around 10%° meters. At this stage, we just keep using parsecs, but
with metric prefixes, such as “kilo-” for 1000. The diameter of a typical spiral
galaxy is 10 or 20 kiloparsecs.

It takes a few more orders of magnitude to start seeing neighboring galaxies.
The typical spacing between galaxies is a few megaparsecs, or millions

of parsecs.



LECTURE 1 — Zooming Out to Distant Galaxies

¢ After another step, the galaxies group together to form clusters of galaxies,
joined by what look like filaments, or webs of galaxies. And when we keep
increasing the scale bar all the way to 10%® meters, the universe starts to look
like random static, with nowhere different from anywhere else. The natural
scale at this stage is the gigaparsec, or billions of parsecs.

¢ That’s the end of the line—the largest spatial scales about which we have any
direct knowledge. By zooming out 26 orders of magnitude, we have a view
of the entire observable universe.

EXPRESSED EXPRESSED IN THE

SCALE UNIT IN METERS PREVIOUS UNIT
Planets R 6.4x10°m —
Stars Ro 7.0x 108 m 109 R,

Planetary Systems AU 1.5x 10" m 215 Ry

Between Stars pc 3.0x10°m 206,265 AU
Galaxies kpc 3.0x10” m 1000 pc
Between Galaxies Mpc  3.0x10%m 1000 kpc

Observable Universe ~ Gpc 3.0x10® m 1000 Mpc

LOGARITHMIC MAPS AND CHARTS

¢ Another tactic that astrophysicists use to cope with all of these orders of
magnitude is by making logarithmic maps. Taking the logarithm of a number
means expressing the number as a power of 10 and then plucking out the
exponent. For example, 1000 is 10 to the third power, written as 103, so the
logarithm of 1000 is 3. Thelog of 1 million is 6.



LECTURE 1 — Zooming Out to Distant Galaxies

This also works for numbers smaller than 10. The number 1 is equal to 10 to
the 0™ power, written as 10°, so thelogof 1 is 0; 1/10 is 10 to the -1 power,
written as 107!, so the log of 1/10 is -1; and so on.

A logarithmic map is an ordinary map based on a single scale factor. For
example, 1 inch on the map might be 1 kilometer in real life. But on a
logarithmic map, the scale factor changes when moving from one end to the
other. The first inch might correspond to 1 meter in real life, but then the
second inch is 10 meters, then 100 meters, 1000 meters, then 104, then 10°,
and so on. Mathematically, with every inch, the logarithm of the scale factor
is increased by 1 unit.

Besides maps, there are other logarithmic charts, such as logarithmic time
lines as well as more abstract logarithmic charts that help make sense of things
that range over many orders of magnitude.

For example, our galaxy is full of objects ranging widely in mass and size.
Among other things, there are asteroids, moons, planets, and stars. Let’s say
that we go around our galaxy and measure the mass and radius of everything
smaller than the Sun. To compare all these things, we can make a chart
of mass versus radius, with mass on the horizontal axis and radius on the

vertical axis.

120F T T T T — =

Each data point shows

the mass (in units of LonL! _ ]

Earth masses) and o oo

=
T
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2
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=
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[
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the bigger the radius, ol_ . . . .
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which makes sense.
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¢ But there’s a problem with this chart. Because we need to make the axes
range high enough to encompass the very largest objects—millions of Earth
masses—the more numerous, smaller objects end up crammed in close to
the origin and the details are difficult to see.

¢ If we remake this chart with logarithmic axes, the horizontal axis is still
telling us the mass, but now each tick mark represents a factor of 10. Likewise,
the vertical axis still tells us the radius, but on a logarithmic scale.

T 1 N I Ll
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r Saturn ]
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¢ This logarithmic chart shows all the data clearly and, even better, some
patterns that were hidden in the ordinary chart. There are 4 different groups,
differing in the relationship between mass and radius. In each of these 4
zones, we can fit the data, at least approximately, with a straight line.
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On a regular x-y chart, a straight line means that y = ax + b, where a is the slope
of the line and & is a constant, the y-intercept. That’s a linear relationship. But
on a logarithmic chart, a straight line means that there’s a linear relationship
between the logs of the variables: logx=alogy + b.

In this case, the log of the radius (R) equals @ times the log of the mass plus a
constant: log R=alogM + b.

Solving for R results in the following: R o« M*.

This kind of relationship is called a power law, where one variable is
proportional to another raised to some power. And evidently, when
Mother Nature creates objects in our galaxy, she uses 4 different power law

relationships between radius and mass.

Let’s measure the slope—the value of a—in each of the 4 zones.

100‘05_ M=pV=p (%wR:;) X M;

2ol bl

Radius [Rg)]

b0l

107 10° 10? 10* 10°
Mass [Mg]



LECTURE 1 — Zooming Out to Distant Galaxies

¢ For the lowest-mass objects, the slope is about 1/3. That means R o« M /3. This
low-mass regime is closest to the one where we have some direct experience:
small things, such as rocks and boulders. And the relation between radius
and mass of everyday objects depends on the density of whatever material
the object is made of. We can understand objects that have masses less than 1
Earth mass; they behave like rocks.

¢ In the second zone, the slope is about 1/2, so R o« M /2. This means that the
more massive objects have bigger radii than we would expect if they all had
the same density. The more massive objects are less dense. The most massive
objects in this zone are a lot less dense than rock; this makes sense because

these are gaseous planets.

¢ In the third zone, the slope is 0. The size hardly changes at all, even when
the mass is increased by a factor of 100. In everyday life, when we pack more
mass onto a ball, the ball gets bigger; apparently this is not the case for balls
between 100 and 10,000 Earth masses. The more massive objects are much
denser than the less massive versions. Part of the reason these objects are
increasingly dense is gravitational compression: They are so massive that
their own gravity compresses them to higher densities than usual. The other
part of the explanation is an effect called quantum degeneracy pressure. The
objects in this zone are sometimes called Jovian planets, though toward the
higher-mass end, the traditional term is brown dwarfs.

¢ For the highest-mass objects, the slope is about 1, which means that radius
is proportional to mass. These are stars—objects for which gravitational
compression is so strong that nuclear fusion ignites at the center, creating lots
of heat and pressure. This same nuclear fusion also produces the light that
stars are famous for; it’s what makes stars shine.
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READINGS

Astronomy Picture of the Day, https://apod.nasa.gov/apod/astropix.html.

Choudhuri, Astrophysics for Physicists, chap. 1.
Chown, Solar System.

Eames Office, “Powers of Ten™.,” https://www.youtube.com/
watch?v=0fKBhvDjuy0.

Fleisch and Kregenow, A Student’s Guide to the Mathematics of Astronomy,
chap. 1.

Khan Academy, “Introduction to Logarithms,” https://www.khanacademy.org/
math/algebra2/exponential-and-logarithmic-functions/.

Obreschkow, “Cosmic Eye,” https://www.youtube.com/watch?v=jfSNxVqprvM.
Scharf, The Zoomable Universe.

Tyson, Strauss, and Gott, Welcome to the Universe.



https://apod.nasa.gov/apod/astropix.html
https://www.youtube.com/watch?v=0fKBhvDjuy0.
https://www.youtube.com/watch?v=0fKBhvDjuy0.
https://www.khanacademy.org/math/algebra2/exponential-and-logarithmic-functions/
https://www.khanacademy.org/math/algebra2/exponential-and-logarithmic-functions/
https://www.youtube.com/watch?v=jfSNxVqprvM.

AGIOLIINICRIN

TO FUNDAMENTAL
PARTICLES

sually, when something is called “astronomical,”
U it means it’s really big. But just as crucial for
astrophysics are the orders of magnitude smaller
than human scales, because the smallest and largest
scales of the universe are deeply connected. In
this lecture, you will be exposed to the realm of
fundamental particles, including electrons, protons,
neutrons, and neutrinos. In addition, you will learn
about the 4 fundamental forces of nature: gravity,
electromagnetism, the strong nuclear force, and the
weak nuclear force.




LECTURE 2 — Zooming In to Fundamental Particles

GRAVITY

Gravity—probably the most familiar of the 4 fundamental forces of nature—
is what keeps us pinned to the surface of the Earth.

Every mass attracts every other mass, according to Newton’s law of gravity,
which says that the force is proportional to the product of the 2 masses
and inversely proportional to the square of the distance between them. The
constant of proportionality is G, Newton’s gravitational constant, which has

avalue of 6.7 x 10" N m? kg~2.
m

Let’s suppose that we have a big mass, M, held fixed
at the origin of our coordinate system and that

m is free to move—Ilike a planet orbiting a star.
This means that m will feel a pull toward

the origin. Fo_ _GMm
g 2
L ,
To convey the direction of the force, we’ll GMm
use vector notation. A vector is a quantity Ey=———

with a magnitude and direction. We put

an arrow (=) over the F to remind us it’s a

vector. And, by convention, a “hat” () on top means it’s a unit vector, or a
vector with magnitude of 1, so all it’s doing is specifying a direction. # points
in the direction of increasing r—that is, away from the origin. But the force
is toward the origin, which is why there is a minus sign. The acceleration
vector points in the opposite direction as 7.

The potential energy associated with the gravitational force also varies as
the product of masses, but it goes inversely with r as opposed to r%. Again,
it’s negative. But does this make sense? If we let m fall toward the origin, r
shrinks, and according to the formula, the potential energy becomes more
negative, which implies positive energy must be showing up somewhere else,
because the total energy is conserved. And that does make sense: The kinetic
energy, 1/2mv?, is increasing as the mass accelerates toward the origin. The

gravitational potential energy is being converted into kinetic energy.

15



Logarithmically Zooming In

On the human scale, things are measured in meters. Zooming in to a tenth of a
meter, we center on the human face, and as we keep narrowing our

field of view to a hundredth of a meter, 10?2, we stare into the

human’s eve.

Another factor of 10, to the millimeter scale, and we can
fit through the pupil of the eye and dive inside. At 107
meters, we can see the blood vessels in the retina, and
by the time we hit 107, we can see individual blood cells.

Once we reach 107 meters, a millionth of a meter—called a
micron—Wwe can see individual bacteria, each one a few microns
across. We've zoomed in to the size of the wavelength of light. Light is a wave,
an oscillating pattern of electric and magnetic fields—but it's hard to
tell this on human scales, because the wavelength is only about
half a micron. On this scale, though, light waves bend and
spread, like water waves, and it’s impossible to focus them
sharply. That’s the phenomenon of diffraction.

After another few orders of magnitude, at 108 meters,
we start to see that the water that surrounds us is not a
continuous fluid. It's made of individual molecules.

When we zoom in to 10~° meters—that is, the scale of
nanometers—molecules don’t look solid. Instead, they look fuzzy, and they’re
in constant motion, jiggling and vibrating. They’re getting knocked around by
other molecules. The energy of all those random motions is what we perceive as
heat on human scales. The hotter the material, the more vigorously the
molecules are bouncing around.




Zooming in closer, we see the individual atoms that make up molecules. For
example, a single water molecule is made of 2 hydrogen atoms and 1 oxygen
atom. Like any atom, oxygen has a nucleus, which has a positive electrical charge,
and is surrounded by orbiting electrons, which have a negative electrical charge.
Because of the opposite charges, the nucleus and electrons are

attracted to each other.

Before we can make out any details of the nucleus, we ¢
need to go 4 orders of magnitude below the atomic .

scale. The diameter of the oxygen nucleus is about "o

5 x10™ meters, or 5 femtometers. At this scale, if the '5 ® 16 -15
nucleus were a marble, the electron cloud would be the

size of a football field. We can see now that the nucleus

is actually a cluster of 16 little marbles: 8 are protons and 8
are neutrons.

Zooming further, inside the proton, things become very hectic. There are quarks
within a sea of particles called gluons, and everything is in motion, with particles
appearing and disappearing.

ELECTROMAGNETISM

¢ The second fundamental force of nature is electromagnetism. The relevant
equation here is Coulomb’s law, which says that the electrical force goes as the
product of charges divided by 7* and is very similar in form to Newton’s law
of gravity. For the proportionality constant, we’ll use the Greek letter eta ().
Numerically, 7 is 9 x 10° N m?/C?, where the Coulomb (C) is the standard
unit of charge. In those units, the electron and the proton both have a charge
of magnitude 1.6 x 107", which can be represented as e.
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T f
7 = 9.0x10" Nm*C~?
COULOMB'’S LAW
5 Qg
Fo=+—"73
COULOMB ENERGY
I
g - 194
,
ELECTRON OR PROTON CHARGE
e=16x10""C

,f,

Notice that the force law has a plus sign this time, not a minus sign. When the
product of charges is positive—that is, when they’re both the same sign—the
force is repulsive, pushing the charges apart. When the charges have opposite
signs, like an electron and a proton, they attract.

The Coulomb energy is the potential energy associated with the electric
attraction or repulsion. As in the case of gravity, it varies as 1/7.

The Coulomb force explains why the electrons of an atom are attracted to
the nucleus. But there must be something else going on, because why don’t
the electrons fall all the way down onto the nucleus, neutralize it, and come
to rest?

We might ask the same question about the Earth: If it’s attracted to the Sun,
why doesn’t it fall in and burn up? The answer in this case is that the Earth has
a nonzero angular momentum—a sideways velocity—and the gravitational
acceleration just keeps turning its velocity vector around in a circle.

When we look closely at an atom, we might expect to see the electrons
whirling around the nucleus, like a miniature solar system, but we don’t.
Instead, the electrons look indistinct; there’s an electron cloud surrounding

18



the nucleus. That’s because electrons, like
all fundamental particles, obey the rules
of quantum theory, the counterintuitive
laws of motion and interaction. These
rules are more exact and fundamental

than Newton’s laws of motion.

Quantum theory says that when we
measure the location of an electron, or
any fundamental particle, we get a specific
answer. But when we’re not measuring
it—when we’re not forcing the question
of where it is—the electron spreads out
into a cloud. And there’s no way to predict
exactly where we’ll find it when we do
measure it. All we can say is we're likely
to find it somewhere in this cloud, or
wave function.

The cloud is called a wave
function because the equation
that governs the size and shape
of the cloud—how it moves and
interacts with other clouds—
resembles the equation for
ordinary waves. And like regular

waves, the wave function can
take the form of a pattern moving
through space with a certain
speed. It can even interfere with
other wave functions, producing
fringes, like when water

waves overlap.

In the case of an electron near the nucleus of an atom, the wave function isn’t

moving; it’s trapped by the electrical attraction to the nucleus. It’s like a sound

wave reverberating inside an organ pipe or the vibrating surface of a drum.

And the wave function obeys Heisenberg’s uncertainty principle: If you try to

pin down a particle’s location, by trapping the wave function in a tiny volume,

the particle’s momentum—mass times velocity—becomes more uncertain.

HEISENBERG'S UNCERTAINTY PRINCIPLE

A:L'Ang

N

6.6 x 10734 s
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LECTURE 2 — Zooming In to Fundamental Particles

In this mathematical relationship, Ax is the spatial extent of the cloud and
Ap is the extent of the momentum cloud (the range in the possible values of
momentum the particle might have if you measure it).

You can’t make both Ax and Ap as small as you might want; their product
is always at least A/2, a fundamental constant of nature. The 5 is Planck’s
constant, 6.6 x 10734 joule-seconds, and the small bar through it is shorthand
for h/2m.

The uncertainty principle explains why atoms are stable. Even if you drop
an electron directly onto a proton, with 0 angular momentum, it doesn’t fall
down and come to rest. That would imply that Ax and Ap are both 0—and
this can’t be. Instead, the wave function strikes a balance between Dx and Dp.

The proton exists as a wave function, too, but there’s a big difference. Even
though the proton and electron have charges of equal magnitude, the proton
is much more massive—Dby a factor of 1800. This ends up causing the proton’s
wave function to be much smaller than the electron’s.

Neutrons are nearly the same size and mass as protons but without any
electrical charge. They're neutral. Bur if the protons in a nucleus have positive
charge and the neutrons are neutral, then there aren’t any negative charges,
so what’s holding this cluster of “marbles” together? Shouldn’t the protons
repel each other and fly apart?

THE STRONG NUCLEAR FORCE

This brings us to the third fundamental force of nature: the strong nuclear
force. This is a very short-range force that acts between nucleons—protons
and neutrons. It’s a complicated force with no simple equation. It depends on
how many nucleons are present, which kinds, whether they’re spinning, and
other things. And it only acts over femtometers. Beyond that, it’s negligible.
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LECTURE 2 — Zooming In to Fundamental Particles

Think of it this way: In a stable nucleus, all the “marbles” are coated with a
layer of “glue” strong enough to withstand the electric repulsion. That’s the
strong force. The strong force is also why the “marbles” are rigid: The force
is attractive up until the point of contact, but then it becomes repulsive, so
it’s very difficult to compress a nucleus.

THE WEAK NUCLEAR FORCE

Neutrinos—neutral particles that have a much smaller mass than the
electron by at least a factor of a million—interact mainly through the fourth
fundamental force of nature: the weak nuclear force.

The weak force is a short-range force, like the strong force, but it’s not like
any sort of “glue.” In fact, it’s kind of a stretch to call it a force; it’s more like
a special power nucleons have to change identities. A neutron can change
into a proton, or vice versa. For example, a neutron sitting all by itself will
spontaneously turn into a proton within about 10 minutes.

The total electrical charge should be conserved, so the new proton’s positive
charge has to be balanced by negative charge somewhere else. What happens
is the weak force conjures up an electron along with the proton and they sail
away in nearly opposite directions.

You'd expect them to be exactly opposite, because in addition to charge,
momentum has to be conserved. The initial momentum of the stationary
neutron was 0, so you'd think the proton and electron would have equal
and opposite momenta. But when you measure them, they’re not exactly
opposite. The reason is that the weak force also produces a neutrino that
sails away at nearly the speed of light, carrying just enough momentum so
it all adds up to 0.

21



LECTURE 2 — Zooming In to Fundamental Particles

COMPARING FORCES

¢ What sets the nuclear forces apart is you only notice them on femtometer
scales. In contrast, gravity and electromagnetism are long-range forces, acting
on all scales, and their force laws look similar: They both go as 1/72. But
there are major differences between gravity and electromagnetism, starting
with the fact that eleccromagnetism is much stronger.

¢ Say we have 2 protons separated by some distance . What'’s the ratio between
the force of electric repulsion and the force of gravitational attraction?

¢ To find out, we divide the Coulomb force by the gravitational force. The 72
terms cancel, and when we plug in the numerical values of all the constants,
we find a ratio of 10¢ power. In other words, the electrical repulsion is
unimaginably stronger than the gravitational attraction.

9.0 x 10 Nm*C~? 1.6x107" C
5 ...’ ’.'..'
ne 2
F, @M  Gm2~
r?2
6.7 x 10~ Nm?kg 2 1.7%x 102" kg

¢ Butif gravity is really so pathetic, why is it the most familiar force of nature?
The reason is that gravity is always attractive; it’s never repulsive. There’s no
such thing as negative mass.
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¢ Electromagnetism is different. Here, particles can be positive or negative, and
when they merge together, the result is neutral. It doesn’t feel any electric force.
So, what happens is that all the positive and negative charges in the universe
attract one another. They quickly find each other, getting pulled together with
tremendous force, forming tiny structures with no net charge: atoms. This is
why the incredible strength of the electric force is hidden from us.

Richard Feynman compared the situation of the proton and electron pulling on each
other inside the atom to a pair of Olympic arm wrestlers pulling on each other’s arms

with tremendous force. They’re equally matched; their clenched hands aren’t moving.
From far away, you might not even be aware of their intense effort.

¢ Once neutral atoms form, all that’s left of electric forces are the slight
imbalances that arise because the negative charge, the electron cloud, is more
spread out than the positive charge, the nucleus.

¢ In fact, what we perceive as everyday forces—our feet pushing on the ground,
our hands pulling on a rope, our knuckles knocking on a door—are all
complex manifestations of the residual forces that are left over from the

combination of electromagnetism and quantum theory.

¢ Gravity, on the other hand, never gets cancelled. That’s why, when we zoom
out to astronomical scales, gravity is the dominant force. That’s why gravity—
even though it’s weak—sculpts the properties of planets, stars, and galaxies.

¢ Electromagnetism is more than just attraction and repulsion. There are
magnetic fields, which come from moving charges, and there is electromagnetic
radiation, which comes from accelerating charges. Whenever you accelerate a
charge—speed it up, slow it down, whirl it around—it radiates. It takes some
of its own energy and flings it outward at the speed of light. The radiated
energy takes the form of photons.
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LECTURE 2 — Zooming In to Fundamental Particles

This chart of distance scales from the previous lecture now
includes 3 key units discovered during this lecture’s zoom-
in: the micron (same order of magnitude as the wavelength
of visible light), the Bohr radius (the atomic scale), and the
femtometer (the nuclear scale).

EXPRESSED EXPRESSED IN THE

SCALE UNIT IN METERS PREVIOUS UNIT
Nucleus fm 1075 m —

Atom a, 5x 107" m 52,000 fm
Visible Light pm 10°°m 18,900 «,
Human m I1m 10° pm
Planets Ry 6.4x10°m 6.4x10°m
Stars Ry 70x10°m 109 R,
Planetary Systems AU 1.5x10" m 215 Ry
Between Stars pc 3.0x10°m 206,265 AU
Galaxies kpc 3.0x 10" m 1000 pc
Between Galaxies Mpc 3.0x 102> m 1000 kpc

Observable Universe Gpc 3.0x10® m 1000 Mpc
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READINGS

Astronomy Picture of the Day, https://apod.nasa.gov/apod/astropix.html.

Choudhuri, Astrophysics for Physicists, chap. 1.
Chown, Solar System.

Eames Office, “Powers of Ten™.,” https://www.youtube.com/
watch?v=0fKBhvDjuy0.

Fleisch and Kregenow, A Student’s Guide to the Mathematics of Astronomy,
chap. 1.

Obreschkow, “Cosmic Eye,” https://www.youtube.com/watch?v=jfSNxVqprvM.
Scharf, The Zoomable Universe.

Tyson, Strauss, and Gott, Welcome to the Universe.
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Lecture 3 \\

MAKING MAPS
OF THE COSMOS

f we want to explore the whole universe, we’d
better have a good map. This lecture is about how
astronomers locate objects in the universe.

If you want to specify the location of an object in 3
dimensions, you use Cartesian coordinates; you choose
an origin and pick 3 perpendicular directions to be the
X, y.and zaxes. Instead of this system, astronomers
use latitude, longitude, and elevation. They use a
spherical polar coordinate system—specifically, an
Earth-centered coordinate system—and extend

the concepts of latitude, longitude, and

elevation up into the heavens.




Imagine a giant transparent sphere that is centered on the Earth and marked with
grid lines of latitude and longitude. The latitude lines tell us how far we are from
the celestial equator—the projection of the Earth’s equator up into the sky—and
the longitude lines tell us how far east or west we are from the

celestial equivalent of the prime meridian. That way,

when we look at a distant star, we can read

off the star’s angular coordinates by seeing

where it appears relative to the grid.

That leaves only the third dimension:
the distance to the star, the celestial
equivalent of elevation, which is much
trickier to measure.

ANGULAR COORDINATES

¢ Say there are 2 stars that happen to be located along nearly the same line of
sight from the Earth, so they appear close together on the celestial sphere.
If they’re too close, they blend together and appear as a single point of light,
rather than 2. What determines whether we can perceive the double star?

¢ Generally, it depends on how good the telescope is, but we can be more
specific than that. This question pinpoints the basic dilemma of astronomy—
that all we have is light. With few exceptions, our only source of knowledge
is the electromagnetic radiation that happens to hit the spinning ball of rock
we live on. So, we need to understand the physics of light.
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LECTURE 3 — Making Maps of the Cosmos

¢ Imagine a telescope as a big lens pointed at a star straight overhead that
focuses the starlight into a tight spot on a camera. If there’s another star in
a slightly different direction, then ideally, the lens focuses its light onto a
different spot in the image, which shows 2 dots: star 1 and star 2.

¢ The problem, though, is we
can’t focus light into as small
a point as we might like. The
stars blend together when
the angle between them,

A0, is of order A/D, where

diameter i .
of the lens A is the wavelength of light

and D is the diameter of the
lens—or mirror, or whatever

, .
we're using to collect and

focus light.

¢ The reason for this inevitable $

blurring is the phenomenon
called diffraction, a consequence
of the wave nature of light.
Light is an electromagnetic
wave, a traveling pattern of
oscillating electric and
magnetic fields.

¢ So, we can imagine the
light from star 1 as an ocean 7
wave, a traveling pattern of crests and
troughs of electromagnetic energy, with a wavelength—a
separation between crests—of A. This wave passes through the diameter D
of the telescope and then a lens or mirror responds to that pattern of energy
by redirecting it toward a camera.
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LECTURE 3 — Making Maps of the Cosmos

The energy gets redirected to a different
position on the camera if the starlight comes
in from a different angle, tilted by Af. But
if A@ is tiny, how could the lens or mirror
possibly tell the difference? The wave energy
is smeared out, with a spatial extent of 4.
So, the telescope still sees a crest filling
the opening. The optical system responds

. . . IB Telescope
essentially the same way as before, directing

the energy to the same spot on the detector.

As AB increases, at what point do the waves

from star 2 start to look different from star
12 The answer is when you no longer have a
crest extending across the opening. The tilt
is large enough that there’s a crest at one
end and a trough at the other end. For this
minimum value of Af, it’s at least possible
for the optics to distinguish the 2 waves.

TRV
Telescope

Because the distance between a crest and a

trough is half of 4,

A2
tan AQ . = "=
In practice, AQ_, is a tiny number. For visible light, 4 is about half a
micron while D is usually a meter or more. So, we can use the small-angle
approximation: Whenever an angle is small, the tangent is nearly equal to the
angle itself, expressed in radians. In this case, this means that

A~ D
min 2D

That’s the minimum angular separation we can reliably measure with a
telescope of diameter D.
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¢ Keep in mind that this is just an order-of-magnitude relationship, based
on the rough idea that we need to tilt the waves enough to get a shift of
order 4 across the telescope opening. To get this exactly right, we'd need to
calculate the diffraction pattern of light after it passes through a circular
hole of diameter D.

¢ What that more complex calculation shows is that the starlight gets focused
into a blob surrounded by a pattern of rings, and the diameter of the blob is
1.224/D. So, if 2 stars are closer than that, their blobs merge together. That’s
why the usual definition of this diffraction limit is 1.221/D.

A/Dis a dimensionless number—a length divided by a length. That means the
angle is measured in natural units, or radians.

[n ordinary life, we measure angles in degrees, with a right angle being 90° and
360° going around the whole circle. Using the number 360 is a tradition going

at least as far back as the ancient Babylonians, who used a base-60 counting
system. That’s also why we divide 1degree into 60 arc minutes and 1arc minute
into 60 arc seconds.

[t’s simpler to calculate in radians, the system in which a right angle is z/2
and the whole circle is 27.

¢ Because the diffraction limit is proportional to /D, the way to improve
our angular resolution is to increase D: build a bigger telescope. And that
works, to a point. But in practice, there are other reasons why our images
are blurry besides diffraction. Maybe our lens isn’t polished perfectly or our
mirror has defects. And then there’s the constantly fluctuating atmosphere,
which scrambles the directions of light rays at the level of an arc second, even
at our best mountaintop observatories. So, even with a large telescope, we
usually cannot achieve the ultimate diffraction limit. That’s one reason why

we launch telescopes into space, above the atmosphere.
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MEASURING THE DISTANCE
FROM EARTH

¢ Lets return to the original problem of locating things in space. The really
tough problem—historically the most difficult problem in astronomy—is
measuring that third dimension: the distance from Earth.

¢ Imagine we discover some new galaxy. We measure its angular extent on
the celestial sphere. With only that information, we can’t tell if the galaxy is
relatively small and nearby or huge and billions of light-years away.

¢ So, we're on the Earth and an object is located a distance 4 from Earth. The
object has a true size of S and an angular size of a—that is, the rays arriving
from opposite sides of the object have an angle of a between them.

Angular size a

Distance d ——»

¢ We use the small-angle approximation again, because in practice a is tiny
(maybe just a few microradians). That means, a = S/, or, equivalently, S = ad.

So, if all we know is a, we can’t figure out S.
¢ A similar situation arises when we measure the brightness of a source. For a

given brightness, we can’t tell if the source is intrinsically luminous and far
away or if it’s actually intrinsically faint and happens to be nearby.
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LECTURE 3 — Making Maps of the Cosmos

¢ Suppose the luminosity of the source is L. That’s the power—the energy
per unit time—that the luminous object is pouring out into space. We
can measure L in watts, for example, and all that power spreads out as the
radiation goes farther from the source.

¢ The Earth is far away, at a distance d. By the time the light reaches Earth,
it's been spread out over a huge sphere of radius d.

LUMINOSITY (L)
(watts)

¢ We can’t measure L directly. Instead, we have a telescope with a certain
collecting area, and we measure the power received by the telescope. We then
calculate the power per unit area, which is called the flux, F.

¢ The following equation, representing the flux-luminosity relation, is an
example of an inverse square law: The flux goes down as the inverse square
of the distance.

_ L
T 4nd?

¢ If we measure F, we need to know 4 in order to deduce L. And we need to
know L, the true luminosity, if we want to figure out what’s physically going
on to produce that radiation.
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¢ Measuring the distance to an astronomical object is a crucial problem we need
to solve. And we do so in 4 different steps: radar, parallax, standard candles,
and standard explosions.

RADAR

¢ Build a giant radio transmitter, aim at a nearby planet, and fire. If you hit
the target and your receiver is sensitive enough, you can detect the echo—the
reflected radio waves. The echo is delayed by a time interval Az=2d/c, where
2d is the round-trip distance and ¢ is the speed of radio waves (that is, the
speed of light). And because we know the speed of light, we can calculate d.

2d
'~ 2.99792458 x 10° m/s

¢ With the world’s biggest transmitters, we can measure the distances to
Mercury, Venus, Mars, and even some asteroids. That allows us to make
maps of the solar system with a precision of a few parts in 10 billion, an

astonishing level of detail.

¢ But unfortunately, this method is limited to relatively nearby objects. You
can show that the amplitude of the echo falls off like 1/4*. To go beyond the
solar system, we need other techniques. We move on to the second step of
the 4-step solution: parallax.
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PARALLAX

Parallax is based on simple geometry. Hold out your arm and raise a finger.
Next, close your left eye and look at your finger and the scene in the
background. Then, switch eyes: Open your left and close your right eye.
It looks like your finger jumped! That’s because your right eye views from
a slightly different angle, so it sees your finger projected against a different
part of the background scene.

That’s parallax. If you measure that shift in angle, as well as the distance
between your eyes, you could use trigonometry to calculate the distance to

your finger.

In astronomy, we take advantage of the Earth’s motion around the Sun. We
take a picture of a nearby star and then wait 6 months for the Earth to go
halfway around and take another picture. Thats like closing your left eye
and opening the right. The nearby star, like your finger, will appear to have
shifted in position relative to the more numerous background stars.

Let’s do the math. Here’s the

Earth going around the Sun in a

APPARENT APPARENT

nearly circular orbit, with a radius
of 1 AU. A star is at distance 4.
We need to point our telescope
in a certain direction to see the
star. But 6 months later, we need
to point in a slightly different
direction. In fact, as the year
progresses, the star will seem
to move in a little circle on the
celestial sphere, with an angular

radius of a.

Using the small-angle approximation, a =1 AU/d, or d=1 AU/a.
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¢ And because we already know the value of the astronomical unit very precisely

from radar ranging, whenever we measure a, we can calculate 4.

Qaresec = 206,265 a
206,265 AU

Cyarcsec

1pc = 206,265 AU

d

1pc

d=

(Yarcsec

¢ For simplicity, the star is shown directly above the plane of Earth’s orbit.
In general, though, the star will be off to the side somewhere. That doesn’t
change the basic idea. It just means that the star will appear to move in an
ellipse, rather than a circle, and the parallax angle is the semimajor axis of the
ellipse. And if the star is right on the ecliptic—the projection of the Earth’s
orbit onto the celestial sphere—it’ll go back and forth along a straight line.

As is the case with the diffraction limit, the equation & =1AU/ d works when e is
expressed in radians. But what if we want to use arc seconds?

One radian works out to be 206,265 arc seconds, so if we're expressing o in arc
seconds, the right side of the parallax equation becomes 206,265 AU/ d.

The tradition at this point is to define a new unit of distance, the parallax second,
or parsec, equal to 206,265 AU. That way, the numbers are easier:

d=1parsec/a in arc seconds.

The parsec is a handy unit for measuring the distances between stars, and it
happens to have the same order of magnitude as the light-year.

1 parsec = 3.3 light-years
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LECTURE 3 — Making Maps of the Cosmos

Parallax is by far our reliable method for measuring distances to stars. But as
the distance gets larger, eventually the parallax angle becomes too small to
measure—if for no other reason than the diffraction limit.

Right now, our best parallax measurements come from a space telescope
called Gaia, launched by the European Space Agency in 2013. It measured
parallaxes as small as 0.0001 of an arc second, good enough to make maps
of the galaxy out to 10,000 parsecs, or 10 kiloparsecs.

That’s impressive. But to go beyond our galaxy—and there’s a lot beyond
our galaxy—we need to take another step in the quest to measure distances.

STANDARD CANDLES

Our 2 best ways to measure more distant objects both rely on the flux-
luminosity relation derived earlier: F= L/4md?, where L is the power an object
emits and F is the power per unit area measured by Earthlings. We can
measure F, but we can’t figure out L unless we also know the distance, 4.

But suppose there were some light source out there for which we already
knew L. In that case, we could calculate the distance by rearranging the
flux-luminosity equation.

L
F =
4md?
L
d=14/——
4 F

RS Puppis is an example of a category of stars called Cepheid variables—so
called because the first known example was in the constellation Cepheus and
because they vary in brightness. They pulse, getting brighter and fainter, in
an endless cycle, with a period of typically a few weeks.
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¢ The average luminosity of a Cepheid can be predicted accurately from the
period of the pulsations, as discovered by Henrietta Leavitt in 1912. Stars
that pulse more slowly are intrinsically more luminous.

# One reason we know this

TYPE | CEPHEID VARIABLES

to be true is that some

Cepheids are close enough
30,000 -
for parallax measurements,

so we can determine 0|

their luminosities. And

among that collection, 3,000

LUMINOSITY (L,,)

we observe that L is
1,000 |

linked to the pulsation
period, P. A schematic

chart  of luminosity 3 5

3
. . PERIOD (DAYS)
versus period shows this

increasing relationship.

¢ So, if we spot a Cepheid a megaparsec away, in some other galaxy, we can’t
measure its parallax, but we can measure the pulsation period. We just
monitor the flux and see how long it takes to rise and fall. Then, we use the
period-luminosity relationship to determine L and then calculate d, which is
the distance to the galaxy where the Cepheid resides.

(Cepheid variables were what first allowed us to zoom out beyond the Milky Way.

¢ Cepheids are examples of what are called standard candles—sources for
which we somehow know the luminosity. Even though Cepheids have been
used for more than a century to map out our galactic neighborhood, we don’t
know exactly why they are such good standard candles.
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¢ With our best telescopes, Cepheids can be seen out to a distance of around 50

megaparsecs. But if we want to go farther—to reach out to gigaparsecs—we
need to use standard explosions.

STANDARD EXPLOSIONS

In the 1980s, astronomers realized that a certain category of exploding stars,
or supernovas, produce fireballs that all have nearly the same peak luminosity.
They’re called Type Ia supernovas, and they all explode with nearly the same
energy. They’re predictable enough so that if you measure the color and
duration of the afterglow, you can determine its luminosity to within a few
percent. We know this because we've spotted Type Ia supernovas in nearby
galaxies that also have Cepheids in them.

Here’s a chart showing data
for some nearby Type Ia TYPE IA SUPERNOVAE

supernovas. The horizontal 10"

axis is time (in days) and

the vertical axis shows Luminous SN

/ fade slowly

the measured luminosity
of the explosion. Notice

LUMINOSITY (L)

that all the supernovas :
rise to about the same .:u.

. . \ S0
level, with differences that .
correlate with the duration: *%e

10° 1 1 1 1 1 1 1 L

The faster the explosion -20 0 20 40 60
fades, the lower the peak TIME (DAYS)

luminosity is.
When we measure the rise and fall of flux from a really distant Type Ia

supernova, we can match the observed duration of the event to one on this
chart and then read off the peak luminosity.
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¢ The great advantage of using Type Ia supernovas as standard explosions is
that they’re as bright as 5 billion Suns, bright enough to see even when they
happen in galaxies that are extremely far away.

¢ We don’t know for sure what causes Type la supernovas. They’re almost
certainly exploding white dwarfs, but the trigger for the explosion remains
a topic of active research. What is clear, though, is that we can use them to
measure cosmological distances. They’re the last step in our quest.

THE DISTANCE LADDER

1 10 100 1 10 100 1 10 100 1000
pc pc pc kpe kpe kpec  Mpc Mpc Mpc Mpc

Alpha
Centauri
Pleiades
cluster
Center of
Magellanic

READINGS

Carroll and Ostlie, An Introduction to Modern Astrophysics, chap. 1.

Fleisch and Kregenow, A Student’s Guide to the Mathematics of Astronomy,
chap. 4.

Tyson, Strauss, and Gott, Welcome to the Universe.
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THE PHYSICS

DEMONSTRATION
IN THE SKY

To the naked eye, the planets of the solar system are
points of light that move from night to night relative
to a fixed background of stars. It was this celestial
physics demonstration that led Isaac Newton to his law
of gravity. The planets move in response to the Sun’s
gravity, without any friction. And each one is a different
distance from the Sun, so by observing them, you

can figure out how gravity depends on distance. The
goal of this lecture—and the next one—is to solve this
physics problem in the sky.

The name “planet” comes from an ancient Greek word for “wanderer,” because
the planets wander through the constellations.




KEPLER’S FIRST LAW

¢ The 17"-century astronomer Johannes Kepler pointed
out 3 patterns in the motion of the planets.

Kepler’s first law is that the planets trace out
ellipses as they go around the Sun. The
orbits look like circles, but they’re not;
they’re slightly flattened into ovals. And

the Sun is not at the center.

¢ Before getting to the physics of why the
orbits are ellipses, let’s address the geometry
of ellipses. Let’s start simple, though, with a
circle. Mathematically, a circle is defined as the
set of all points that are the same distance from

some chosen center.

Wouldn't it be simpler if the orbits of planets were circles? The ancient Greeks
certainly thought so. And later, even when the data got better and proved to
be inconsistent with circular motion, theoreticians didn’t abandon circles—they

doubled down on them. They had the planets move in circles, the centers of
which were themselves moving in circles. These are the “epicycles” that became
the basis for the Ptolemaic model for the solar system, which prevailed up

until Kepler.

¢ An ellipse has 2 focus points, or foci,
and for all the points on the ellipse,
the distance to the first focus plus

the distance to the second focus

is a constant. And that constant
is equal to the length of the long
axis of the ellipse, the major axis.
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If a circle has a radius of 4, the equivalent for an ellipse is the radius along the
major axis, called the semimajor axis, which can also be labeled 4. With an
ellipse, we also have the distance between the center and either focus, which
can be whatever we want, as long as it’s smaller than a. Tradition dictates
that we express that distance as ae, where e—or eccentricity—is a number
smaller than 1.

When e is 0, the foci coincide at the center and we have a circle of radius
a. As e gets larger—and closer to 1—the foci separate and we get a more
elongated ellipse.

The area of a circle is wa®. For an ellipse, area is
area = ma’y/1 — e2.

Next, we need the mathematical equation for an ellipse in polar coordinates.
We start by introducing a coordinate system. We’'ll put the origin at one of
the foci—for example, the one on the right—and we’ll lay down x and y axes
along the major and minor axes. To specify the points on the ellipse, we use
polar coordinates: r is the distance from the origin and 8 is the angle measured
counterclockwise from the x axis.

What is the equation for 7 as a function of 6?

4+ Y
To find the equation, we start with , .
. T
the fact that at any point, the 0
sum of distances to the foci is < T — 0N\

equal to the length of the major
axis, 2a. We can write that as
r+ 1 =2a, where r is the distance

to the focus at the origin and 7' is the
distance to the other focus.

But we want the equation to be purely in terms of 7 and 6, not 7. To get rid
of the 7', we use the law of cosines.

42



LECTURE 4 — The Physics Demonstration in the Sky
¢ The Pythagorean theorem says c2=a*+ b?, where a, b, and ¢ are the lengths

of the sides of a right triangle. The law of cosines is the generalization to any
triangle, with y being the angle across from the ¢ side.

c

a

2 =a®+b* —2abcosy Y

v »
—0 \H
¢ Lets apply the law of cosines to this L T
triangle, with r' as the ¢ side. L/

(r"? = 1%+ (2ae)? — 2(r)(2ae) cos(m — 0)
(r")? = 1%+ (2ae)? + darecost
(2a —r)* = 1?+4a*e* + darecost
40 + 12 —dar = r®+44d%e® + darecost
> —ar = a®¢®+arecosh
a®> —a’e®* = ar+arecost
a(l —¢?) = r(l+eccosb)
a(l —¢e?
r(®) liecos)ﬂ
a(l —e?)
T(O) - m That’s our equation!
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LECTURE 4 — The Physics Demonstration in the Sky

What Kepler noticed—his first law—is that all the planets move in ellipses,
with the Sun not at the center but at one of the foci.

Each planet has its own semimajor axis and eccentricity. For the Earth, a
is about 93 million miles, or 150 million kilometers, or 1 AU. The Earth’s
orbital eccentricity is 0.017, which is quite small. All the planets in the solar
system have small eccentricities. That’s why it took so long to notice that the
orbits are not circles. Mercury has the most eccentric orbit, with ¢=0.21.

Some of the planets around other stars that have been discovered over the
last few decades have larger eccentricities, some even larger than 0.9. These

incredibly elongated orbits were one of the big surprises of exoplanetary science.

KEPLER’S SECOND LAW

Kepler’s second law is about how fast the planets move. When they’re close
to the Sun, they move faster, in a specific way. As the planet moves, the line
joining the planet and the star—the planet’s radius vector—sweeps out area
at a steady rate.

When the planet is near the

star, the radius is shorter
but the planet moves
faster, so the swept-

out sector has a large
angular width; when

the planet is far away,
the radius is longer but the

planet is slower, making a tall v
and skinny sector. Kepler found
that all the sectors have the same area.
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LECTURE 4 — The Physics Demonstration in the Sky

Let’s put the planet at an arbitrary position and say it moves for an infinitesimal
time interval dr. It sweeps out a thin sector spanning an angle of d6), with
an area of dA.

What is the area of the sector? The planet moves in both the radial direction,
or the r direction, and the perpendicular direction, or the 8 direction—the
direction of increasing 6. It’s the motion in the 6 direction that sweeps out
area; purely radial motion doesn’t sweep any area.

In time d, the planet moves in the 6 direction by an amount rd6, using the
small-angle approximation. So, the swept-out sector is basically a skinny right
triangle with sides of 7 and rd6. The area of that triangle is

1

3" rd. A
That leaves out a tiny corner piece of the dr
sector whose dimensions are dr and rd0, the rd0
product of 2 tiny numbers. In the limit of r
infinitesimal df, that piece is vanishingly
small compared to the rest of the triangle.

do Y

This means that we can write

dA = % r-rdf.
dA 1 ,df
And dA/dk, the rate at which area is swept out, is g = 5?"2 a

If that rate is a constant, as Kepler observed, then d6/dt must be proportional
to 1/7%. In other words, 6 advances at a rate that varies as 1/72.
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LECTURE 4 — The Physics Demonstration in the Sky

KEPLER’S THIRD LAW

¢ Kepler’s third law is about total time required to go all the way around: the
orbital period. The bigger the orbit, the longer the period.

¢ In this logarithmic chart, the horizontal axis shows the semimajor axis in
AU and the vertical axis shows the period in Earth years. So, the point
representing Earth is at 1 AU and 1 year, and the other points are for the
other planets.
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¢ Its striking—they all fall on a single straight line! It has a slope of 3/2; if we
move 2 units to the right, the line goes up 3 units. Because this is alog plot,
that means

3
log P = 3 log a + constant.

¢ This in turn means that P oc ¢®/2. That’s Kepler’s third law.
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LECTURE 4 — The Physics Demonstration in the Sky

Unlike Kepler, we now know that other planets have orbiting bodies, or
moons. The data points for the 4 biggest moons of Jupiter all lie on a straight
line, too—with the same slope of 3/2. But interestingly, it’s not the same
line as the one defined by the planets. It’s shifted up, to a longer period for
a given semimajor axis.

Why is P proportional to 2>, and why do the moons of Jupiter have a larger
proportionality constant?

NEWTON'’S LAWS OF
MOTION AND GRAVITY

Kepler didn’t understand why his laws—which should really be called
patterns—hold. That task fell to Isaac Newton.

Newton’s law of motion is that the force acting on a body equals the mass of
that body times its acceleration:

m .
#, where M is the Sun’s mass and m

b . . =4
Newton’s law of gravity is Fy = — .

is the planet’s mass.

How do these laws relate to Kepler’s laws? Kepler’s second law is the most
fundamental, so let’s start there. The key concept is the conservation of

angular momentum.

But before getting to angular momentum, let’s consider momentum and velocity.
Momentum is mass times velocity, p = mv, and the velocity has 2 components.
In time df, the velocity takes the planet from one position to another, changing
both rand 6, so the velocity has a radial component—toward or away from the
origin—and an angular component in the perpendicular direction.
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LECTURE 4 — The Physics Demonstration in the Sky

rdf
The radial component, v,, is equal to dr/dt, and the % Vg = ——

angular component, v,, is rdf—the distance moved in dt\

the direction of increasing 6—divided by dk. o

Angular momentum, L, is defined as rmw,. Only the — ﬁ
dt

angular component—the sideways component—

of the velocity matters. And because we have an

equation for v,, we can write
,df

L=r -mvg=mr-—.
¢ dt

In vector language, L = 7 x m&.

The cross product is the way to pick out only the perpendicular component;
it has a magnitude of r times the component of mv that’s perpendicular to 7.

In some circumstances, angular momentum is conserved. It doesn’t change
with time, even if the body is changing in other ways. The classic example
is the twirling figure skater who pulls in her arms, effectively reducing her
r—which means her df/dr must increase to compensate. That's why she
twirls faster.

Angular momentum is conserved whenever there’s no net torque—no force in
the 6 direction. This is certainly true for the planets; the only force is gravity,
which is in the radial direction, toward the Sun.

. do
So, as a planet goes around, even though r and v are always changing, 1“2%
is a constant and therefore

@ 1
dt 1?2

That’s Kepler’s second law! This shows that Kepler’s second law is a
consequence of the conservation of angular momentum. Just as the ice skater
twirls faster when she pulls in her arms, the planets twirl faster when they
approach the Sun.
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LECTURE 4 — The Physics Demonstration in the Sky

This is an important result, with implications beyond planetary motion. It
helps explain why material speeds up as it spirals into a black hole, why a star
spins faster when it contracts in size, and why a young star is surrounded by
a spinning disk of material within which the planets are formed.

In Kepler’s third law, why is the orbital period proportional to the 3/2 power
of the semimajor axis?

We'll answer this question in 2 stages: First, we’ll prove Kepler’s third law
for a circular orbit, and then, in the next lecture, we’ll prove it for the general
case of elliptical orbits.

v
Imagine a planet moving in a circle of e V= 2ma
radius @ with some constant speed P
v. Over a full orbital period, P, the
2ma
planet travels all the way around the P = o

circle. Therefore, v must equal the
circumference of the circle, 27a, divided

by P. Or, equivalently, P =2ma/v.

One reason why P increases with a is that the
circumference of the circle gets bigger. There’s a longer way to go.

In addition, when a is larger, v is lower; the planet moves more slowly because
the gravitational attraction is weaker. This increases P even more so that at
the end of the day P goes as a*2.

In a time dt, the planet advances by a small
angle d6, which corresponds to an arc length

of ad0. So,
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LECTURE 4 — The Physics Demonstration in the Sky

During that same time interval, the velocity vector rotates by the same
angle df. The change in the velocity vector is vdf, so the magnitude of the
acceleration, the rate of change of velocity, must be Udﬁ

t

Let’s combine the equations by solving the first one for d6/dt and then
inserting the answer, v/4, into the second equation. This gives

02
acceleration = —.
a

We just proved that to keep a body moving at speed v in a circle of radius @, an
inward acceleration—a centripetal acceleration—of v*/a needs to be supplied.

In the case of a planet, that acceleration is provided by the Sun’s gravitational
p p y g

force, GM |
)
2
We set that equal to v*/a: GM_ w7
a? a

Then, we solve for v, finding

GM
7:1]2
a
GM
v =4/ —.
a

We can insert this into our previous expression for the period, and we find

that P is proportional to %>
2ma
P=— GM
v < v \ a
a
P=2 -
Ty Eag
2w 3/2

- VGM
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¢ We also find that the proportionality constant is .
vGM

¢ It decreases with the mass of the attracting body. That's why there was a
vertical offset between the data for the planets and for the moons of Jupiter.
The Jovian moons have a longer period for a given a because Jupiter is less
massive than the Sun.

Kepler’s third law is the most reliable way we have to measure the mass of just
about anything in astrophysics. The basic idea is that to measure an object’s
mass, we need to watch other things moving in response to its gravity. It works
for stars, planets, black holes, neutron stars, and entire galaxies. It even works—in
a sense—for measuring the mass of the entire universe.

READINGS

Carroll and Ostlie, An Introduction to Modern Astrophysics, chap. 2.

Fleisch and Kregenow, A Student’s Guide to the Mathematics of Astronomy,
chap. 2.

Ryden and Peterson, Foundations of Astrophysics, chap. 3.

Tyson, Strauss, and Gott, Welcome to the Universe.
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Lecture 5 \\

NEWTON'S
HARDEST PROBLEM

magine that the year is 1660. The law of gravity is

unknown. You’ve just read Johannes Kepler’s books
and puzzled over the 3 patterns he observed in the
motion of the planets. Can you use those patterns to
figure out the law of gravity? This is a tough problem
that took Isaac Newton years to solve. But you have an
advantage: calculus.

Kepler’s Laws in Equation Form

Kepler’'s law says that the orbits of the planets are ellipses with the Sun at one
focus, so if we use a polar coordinate system with the Sun at the origin, the path

of the planet, r(@) is
a(l—e?) /_K%
r(0) = 1+ ecosf k/j




This is the equation for an ellipse that we derived in the previous lecture, in terms
of the semimajor axis, a, and the eccentricity, e.

Kepler’s second law says that the line from the Sun to the planet sweeps out area
at a steady rate. In the previous lecture, we showed that this implies that

1 ,df

2" ar
iS a constant—a certain area per unit of time—specific to each planet. For the

Earth, the numerical value is zw(AU)? per year, because the Earth's orbit is
approximately a circle of radius 1, which has a total area of 7.

More generally, %;% is equal to the area of the ellipse divided by the orbital
period, P:

d, . 1
—(area) = Er

2df  ma*y1— e
dt '

dt P
Kepler’s third law says that Pis proportional to a*/2

P x a®/?

THE VELOCITY VECTOR

¢ We already know from laboratory experiments that force equals mass times
acceleration, but we don’t yet know the equation for the force of gravity. To
obtain a clue, we need to calculate the acceleration of a planet that obeys

Kepler’s laws.
¢ To calculate acceleration, first we need to know the planet’s position as a

function of time. Then, we’ll take the time derivative to get the velocity.

Then, we'll take another time derivative to get the acceleration.
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LECTURE 5 — Newton’s Hardest Problem

Kepler’s first law tells us the position, but not as a function of time—it’s a

function of angle, 6. All the time information is the second and third laws.

So, we need to combine the equations somehow.

Another problem is that we wrote Kepler’s first law in polar coordinates, but

with vectors, such as acceleration, it’s easier to take derivatives in Cartesian

coordinates, x and y. So, let’s convert to Cartesian coordinates.

In general, when the polar coordinates are r and 6, the x coordinate is 7 cos0,

and y =7 sinf.
So, for our planet,

cos

r=a(l—e?)——
v = af ¢ )1-}—(:(;0:;6'

And we get a similar equation for y:

sin
1+ ecosf

y =a(l —e?)
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¢ We can do the same thing with

unit vectors. In the polar coordinate
system, 7 is a vector of length
1 pointing in the direction of
increasing r. That means # changes
orientation as the planet moves
around; it always points away from
the origin. At any point, though, we
can write 7 as

7 =2cosf + gsinf,



LECTURE 5 — Newton’s Hardest Problem

¢ Now let’s calculate the velocity by taking the time derivative of x and y.
Because they’re written as functions of 0, not time, we need to use the chain
rule. v, the x component of velocity, is dx/dt, which is dx/d6 times d6/dr. To
get dx/db, we use standard tools of calculus. Because x has functions of € in
the top and bottom of the expression, we use the quotient rule. We take the
derivative of the top times the bottom, minus the top times the derivative of
the bottom, over the bottom squared. And we can simplify a bit.

_ do _|dz df
V== 0t T|de dt

. cost
r=a(l—e*)——
v=all—c )l+k(‘()59
dx —a(l— ) —siné(1 +€(;050) - ('()JsO(fesiILOY
do ’ (I 4+ ecos0)? |
. sin 0
— —al(l — ¢? L
ol - )(1+ccos(/’)2

¢ For dB/dt, we need Kepler’s second and third laws, the ones relating to time.
Let’s consolidate them by writing the P in the second law in terms of « using

32 Because

the third law, which says that P equals some constant, K, times a
the second law has a 1/2 on the left side and a 7 and a square root on the
right side, we can cancel out the 1/2 and the  and fit the K'under the square

root and write the third law as follows.

oy _ G _dr [0
TTodt T de |dat

1 ,d0 malV1 — e

KEPLER'S 2ND LAW  —7' =
2 dit r
3/2 21 3
KEPLER'S 3RD LAW P xa”/~ = NG a

db
L Y e
T i Ka(l —e?)

o J/Ka(l - )
dt r2
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LECTURE 5 — Newton’s Hardest Problem

¢ Now we have the ingredients we need to calculate the velocity. We plug in
the expressions we just derived, which leads to an equation in terms of  and
0. To put everything in terms of just one variable, 6, we insert the ellipse
equation for 7(0) and simplify.

_da _jdz|
Yz =9~ |ae

(1—e?) siné Ka(l —e?)
~la(l —e .
(1 +ecosh)? r2
. sin 6 _1+ecos0]?
= —a(l - ————  VKa(l —€2) | —————
a(l —e )(1+m:0s9)2 Ca(l —e?) La(lfez)}

| K
- sin @
\ a(l —e?) s

¢ The factor in front of sinf is a constant—it doesn’t depend on 6 or time—and
it has units of velocity. To make the equation look even simpler, let’s name
that constant v, and simplify.

K

> Yo
a(l — e?)
Uy = —Vg Sin 0
__dy &
¢ That leaves the other component of velocity, WER T @t
v,, which we calculate as dy/d6 times d0/dk.
The steps are similar to the ones for v,. L \/ K (cosf + ¢)
a(l —e2) 7 N

vy = vg cosl + vge
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LECTURE 5 — Newton’s Hardest Problem

¢ What does all this mean? Let’s find out by tracking the planet’s velocity vector
over a full orbit. We'll plot v, on the horizontal axis and v, on the vertical
axis. This kind of chart is called velocity space; each point specifies a velocity,
rather than a position.

POSITION 7 S VELOCITY
Y Uy
Z ®
> U,
o) — a(l —€?) Uy = —g sinf
( )_1+ecos9 vy = g cos  + vge

¢ The equations tell us that v, starts at 0 and v, starts at v +e. Then, as 0
increases, v, goes negative and v, shrinks. When we keep going, we find that
the tip of the velocity vector moves in a circle!

POSITION 4 VELOCITY
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LECTURE 5 — Newton’s Hardest Problem

We can prove it algebraically, too, by showing that our equations imply the
equation for a circle in velocity space with radius v, and centered at the point
(0, evy).

Ve = — sin ¢ 2 2 92
vy + (vy — evy)” = vj

(v, — evg)? = v cos? 0

While a planet moves in an ellipse, its velocity vector traces out a circle.

THE ACCELERATION VECTOR

The x component of acceleration, a,, is dv, /dt, which we can use the chain
rule, as we did previously, to write as dvg df

df dt
Substituting for v, and d0/dk,
Ka(l —e?)
=— a(1_€2)0089 2 = —— cosf

The y component works the same way. We take the 8 derivative to get sinf

and then plug in d0/dt, leading to

_dvy v d g%
W T de ar O
) Ka(l —e2) )
= — a(lfeQ)bme 2 ———281n9

In vector notation, we just learned that acceleration is

K
a= 2 (Zcosf + gsinf)= 2 7.
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LECTURE 5 — Newton’s Hardest Problem

It all hangs together, if the Sun is pulling the planet toward it with a force
whose strength varies as 1/7%. We just “discovered” the law of gravity by
following Kepler’s 3 clues.

We now see that the constant K that appeared in Kepler’s third law sets the
overall strength of the Sun’s gravitational force. If we further assume that
the force is proportional to the mass of the attracting body, we can write K
as GM , where G is a fundamental constant of nature.

GM,

r2

.:;‘.'

THE CONSERVATION LAWS

Now let’s return to a modern stance, in which we already know the law of
gravity and want to understand some other aspects of planetary motion.
Specifically, let’s consider the 2 big conservation laws: the conservation of
angular momentum, L, and energy, E.

Both L and E remain constant throughout a planet’s elliptical orbit, even
while the planet is moving and changing speed. So, we should be able to
derive expressions for L and E purely in terms of constants—G, M, m, a,
and e.

First, let’s do this for angular momentum. In general, L = mrv,. Remember,

. di
only the angular component of the velocity matters. Because v, = ap we
2do '

can also write L as mz -

And previously in this lecture, we consolidated Kepler’s second and third

laws into one equation:

r‘— =y/Ka(l — €2).
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If we multiply this by m and substitute GM for K, we arrive at a new formula
for angular momentum that is purely in terms of constants:

L =my\/GMa(l — €2).

As an immediate application of this new formula for angular momentum, we
can take care of a piece of unfinished business: Kepler’s third law. In the previous
lecture, we proved it for a circular orbit. Now we can prove it for the general case
of an elliptical orbit.

KEPLER'S d
2ND LAW dt

1 ,do

(area) = 57

i

KEPLER’S
SRD LAW




LECTURE 5 — Newton’s Hardest Problem

Energy—the other conserved quantity—
has 2 parts: kinetic, 1/2mv?, and
potential, -GMm/r.

Their sum must be equal to some

combination of the constants G, M, m,

a, and e. Lets figure out what it is.

Because energy is constant, we can calculate it at any point in the planet’s
orbit and get the same answer, so let’s make life simple by choosing 8= 0.
That’s when the planet makes its closest approach to the Sun and r=a(1 - ¢).

We can figure out the velocity with another application of our new angular
momentum formula. In general, L = mrv,.

Here, at =0, v, is simply v, because at that point, the velocity vector is
totally perpendicular to the radius vector: 7 is in the x direction and v is in

the y direction. So, at 0=0, L = ma(l - e)v.

We solve for v and plug in our new expression for L.

L my/GMa(1l —€e?)

— T

v ma(l —e) - ma(l —e)
Then, we insert that expression 1 GMm2a(l — ¢?) GMm
for v into the energy equation = 5"” m2a2(1 — e)? - a(l—e)

and simplify. The algebra leads

to a cascade of cancellations and e GMm [(1+¢)(1—¢) 2
aresult that’s refreshingly simple. 2 [(1-e)(l—¢e) 1-c¢
GMm [1+e—2
E="5 { 1—e }
GMm
E=—
2a
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LECTURE 5 — Newton’s Hardest Problem

All the terms related to eccentricity cancelled out—it turns out that energy
depends only on the semimajor axis of the ellipse, not its eccentricity. If
you have a nearly circular orbit with radius 1 AU, like the Earth’s, and you
compare it to a planet on a highly elliptical orbit, with 2=1 AU and ¢=0.9,
they’ll both have the same energy.

They’ll also have the same orbital period (1 year) because Kepler’s third law
says P depends on a, but not on e. The planet on the elliptical orbit whips
around the Sun near its closest approach, and moves more slowly when it’s
far away, and the 2 effects cancel each other exactly to give the same period
as the Earth. It’s an interesting coincidence.

A GRAPHICAL APPROACH TO
UNDERSTANDING ORBITS

Imagine a particle of mass 7 that is gravitationally attracted to a larger mass,
M. We give our particle some initial position and velocity, which in turn
corresponds to some values of angular momentum, L, and energy, E.

As before, the energy is

And the v* has 2 components, radial and angular: v, and v,

1 . . GMm
F = E'm(l',z. + 1,7) ) —

Let’s now bring in the conservation of angular momentum.

L=mrv, —uv, = —
0 v mr
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So, we can rewrite the energy equation as

L? GMm

1
E = —mov?
UT+2mr2 r

2

That’s an interesting way to write it, because the second term is purely a
function of 7, making it look sort of like the potential energy, even though it’s
really part of the kinetic energy. Thats the basis of a neat trick: We define an
effective potential energy, U 4, equal to the highlighted term below.

€

L? GMm

1
E= §mvf+

2mr? T

That way, we can write

E = %mvf + Uest (7).
The reason this helps is because now the energy equation only depends on
r and v,, which is the time derivative of . So, even though we live in a
3-dimensional world, the motion of the particle is governed by a single-
variable equation! That’s what makes it easy to understand graphically.

Let’s plot U g as a function of r.
For small #, the 1/#? is dominant,
and it’s positive, so U, shoots up
to infinity. For large r, the 1/7 is
dominant, and it’s negative, so
as r grows, the potential dives

down to negative values and rises
toward 0 as 7 goes to infinity. It
makes a bowl shape. The exact
shape of the bowl depends on L,

how much angular momentum

we give the particle.
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The trajectory of the particle
depends on E, how much total Ueti—
energy we give it. First, let’s

i Tmin i Tmax

consider the case in which E is
negative—the negative potential

energy dominates the positive

kinetic energy. We'll plot E as a
dashed horizontal line.

Because the difference between
E and U, is equal to 1/2mv,?, 4
which is always a positive
number, the particle’s radius (7) Tmin
must be confined to the region
where E is bigger than V—that PN >

is, where the dashed line is higher
than the solid line: inside the

bowl of the effective potential.

Furthermore, at locations where E - U . is large, that means v, is large, too,
so the particle is moving quickly in the radial direction. Wherever U, gets
close to E, the particle must be slowing down. When the lines cross, v, is 0
and r is momentarily staying still.

All this means that the particle’s radial motion can be understood qualitatively
by imagining we drop a marble in this bowl, starting at one of the intersection
points. The marble starts at rest, rolls to the bottom and speeds up, rolls up
to the same height on the other side, stops briefly, then drops down again,
and keeps oscillating.

Likewise, the r value of our particle will grow, then shrink, and then grow
again, as it’s whirling around. That makes sense: We already know that the
particle follows an ellipse, with a distance to the origin that gets bigger and
smaller as it goes around.
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And if we happen to put the particle right at the lowest point in this
bowl, it will just stay there. That corresponds to a circular orbit, with an
unchanging radius.

This graph can teach us other things, too. For example, we've just seen that
for a given angular momentum, a circular orbit has the minimum possible
energy—the low point in the bowl. Whenever you drain energy out of an
orbit, with friction or some other process that leaves angular momentum
alone, the orbit will circularize.

In addition, we see that it's impossible for the particle to ever reach r=0.
That’s because of the first term in the effective potential, L?/2mr?, which
makes an infinitely high barrier, guarding the origin. The only exception
would be if L, the angular momentum, is exactly 0. Then, there’s no barrier.

In plain language, to make a direct hit on the origin, you need to be dropped
straight in, with no sideways motion. If you have any angular momentum at
all, you'll orbit the attractor—you won’t hit it.

When the total energy is positive, rather than negative, the dashed
line intersects the solid line only once, near the center. So, the particle
approaches the origin and then turns around and flies away, slowing down
but never returning,.

That’s an unbounded trajectory—Ilike what happened in 2017, when an
interstellar asteroid (which was later named ‘Oumuamua) approached the
Sun at high speed and with a lot of energy. It flew in from parsecs away, and
its radial coordinate, r, shrunk to a quarter of an AU before the Sun deflected
it in a different direction and it flew away. It was the first time anyone had
detected an asteroid from some other star system encountering our own.

The plot of the effective potential tells us what’s happening to the radial
coordinate, but it doesn’t tell us what’s happening to its 6 coordinate. We
need keep in mind that while r is changing, the particle is also moving in
the perpendicular direction.

65



LECTURE 5 — Newton’s Hardest Problem

What's happening to the 6
coordinate for a bound orbit
with negative total energy? The

Tmin  "'max

conservation of energy tells us that
there will be some minimum and

maximum radius for the particle
that is set by the intersection

points between the energy (the
dashed line) and the effective

potential (the solid curve).

And the conservation of angular momentum tells us that the perpendicular
velocity is L/mr, so it whirls faster when 7 is small and slower when it’s
farther out. That’s Kepler’s second law—which holds for any central force,
not just gravity.

So, you can play this trick—defining an effective 1-dimensional potential—

for any central force law, whether the force goes as 1/7%, or+/r, or whatever.

In general, the particle whirls around, going from the minimum to the
maximum radius and back again, in accordance with Kepler’s second law.
The trajectory makes a beautiful pattern called a rosette orbit that fills in the
space between the minimum and maximum distance.

But for the special case of the inverse square law, there’s a remarkable
coincidence: The trajectory comes around and repeats, making an ellipse.
Just about any other force law—any other power of r—Ileads to infinitely
looping rosettes instead of a fixed geometric shape.

Another exception is if the particle is attached to the origin with an ideal

spring, with force proportional to 7; then, its trajectory is also an ellipse, but
in that case, the origin is the center of the ellipse instead of the focus.

66



¢ Why is it that the actual force law chosen by Mother Nature is one of the
exceptional cases that gives ellipses? It turns out that this coincidence is related
to the fact that for the specific case of the 1/72 law, there is a third conserved
quantity besides energy and angular momentum. Here’s the equation for this
additional constant of motion.

vxL

-7
GMm

€=

¢ The equation takes the planet’s velocity vector, crosses it with the angular
momentum vector, divides by GMm, and then subtracts the # unit vector.
The result is called the eccentricity vector.

¢ The time derivative of this quantity is 0. The eccentricity vector is constant
in time, even while v and # are changing throughout the orbit.

¢ The magnitude turns out to be the orbital eccentricity, and the direction of the
vector specifies the orientation of the ellipse—it points along the major axis.
Working that out is another way to prove that Newton’s law of gravity implies
Kepler’s first law (as opposed to what we did, which was demonstrate that
Kepler’s laws imply an inward acceleration
going as 1/7?). i
Energy is conserved because
¢ Whenever there’s a conserved quantity, such the laws of physics don’t
as energy or angular momentum, there’s a change with time. Angular
corresponding symmetry in nature—a sense momentum is conserved
in which nature is mathematically simpler whenever the situation has
than it could have been. This is called rotational symmetry.

Noether’s theorem, after Emmy Noether.

¢ It turns out that the equations governing the motion of a particle under
the force of gravity from another particle are mathematically equivalent—
through a complicated change of variables—to the equations for a particle
moving freely, without any force, on the surface of a 4-dimensional sphere.
And it’s the perfect symmetry of that 4-dimensional sphere that leads to the
conservation law for the eccentricity vector.
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READINGS

Carroll and Ostlie, An Introduction to Modern Astrophysics, chap. 2.

Fleisch and Kregenow, A Student’s Guide to the Mathematics of Astronomy,
chap. 2.

Ryden and Peterson, Foundations of Astrophysics, chap. 3.

Tyson, Strauss, and Gott, Welcome to the Universe.
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TIDAL FORCES

his lecture will address 3 questions. First, the major

rings around planets are all in the range of about
2 to 2.5 times the radius of the planet. Why is that?
Second, all of the giant planets have moons. Why are
the large moons spherical while the smaller ones can
have irregular shapes? Third, all the large, spherical
moons are far from the planet—well outside the rings—
whereas the small moons are found all over, including
in and among the rings. Why are the large moons only
found in wide orbits? To answer these questions, our
discussion of gravitational orbits needs to be expanded.




LECTURE 6 — Tidal Forces

UNDERSTANDING RINGS AND MOONS

So far, we have assumed that the orbiting body is a point mass—an
infinitesimally small mathematical point. We've ignored the fact that a planet,
or a moon, is a real object with a nonzero size.

This is important because the force of gravity depends on distance; it gets
weaker as you get farther away from the attracting mass. For example, the
side of the Earth facing the Sun—the dayside—is pulled harder than the
nightside. The differences in gravitational forces from one part of a body to
another are called tidal forces.

Suppose we have a planet of mass M that has a moon with a small mass, m,
whirling around in a circular orbit of radius r.

Actually, let’s start with an even simpler case. If we drop the moon, starting
from rest, it will accelerate downward and crash into the planet. It doesn’t
orbit because we didn’t give it any angular momentum.

Now let’s give the moon a nonzero size. We could make
it a sphere, but the math would get too hairy. To keep
things simple, let’s just take one step beyond the point-
mass approximation. We’ll model the moon not as 1 point AF -
mass, but as 2 point masses—2 rigid spherical “rocks,”
each of mass m, with their centers separated by some small

distance Ar.

When we let go of the rocks, they both fall onto the planet.
They do not stay together as they fall. The inner rock is
closer to the planet, so it feels a stronger gravitational
force than the outer one, leading to a larger acceleration

and causing it to pull away from the outer rock. Our
“moon” breaks apart as it falls.
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LECTURE 6 — Tidal Forces

*

In general, the magnitude of the force from the planet is

GMm
2

F(r) =

*

Let’s calculate the difference in force, AF, experienced by the rocks. Because
Ar is very small compared to 7,
dF 2GMm

AF = Fout - F1in ~ EAT’ = 3 Ar.

¢ The minus sign means that the force weakens with distance.

*

We've learned that the part of the “moon” closest to the planet is pulled harder
by an amount proportional to Ar, the size of the moon, and M, the mass of the
planet and inversely proportional to the cube of the moon’s orbital distance.
Those are the hallmarks of tidal forces: They grow with the size of the body—
the mass of the attractor—and fall off as the third power of distance.

*

If we want to keep our “moon” intact, we need to supply a force to counteract
AF: the gravitational force between the rocks, which are attracted to each

other with a “self” gravitational force of

Gm?

Fse = TA o
1f (AT’)2

*

If we want them to stay together as they fall, the magnitude of AF must be

smaller than F_.. That leads to an inequality that can be simplified as follows.

|AF| < Fsclf

2GMmAr < Gm?
r3 (Ar)?

2M m

FEERNVNSE

¢ If m is big enough and Ar is small enough—that is, if the rocks are massive
and closely packed—we can satisfy this inequality and they hold together
as they fall.
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LECTURE 6 — Tidal Forces

¢ But there’s a 1/7° on the left side. As time goes on and r gets smaller, the left
side grows rapidly and, at some point, overwhelms the right side. Let’s call
that minimum orbital distance 7 _; , which we can solve for by setting the 2

sides equal to each other. Inside of 7_, , the moon will break apart.

M m
T?nin B (AT)g
1/3 1/3
Tmin = (%) Ar =~ 1.26 (ﬁ) Ar (two rocks)
m m

¢ Our model of a moon as 2 point masses is not very realistic. You can do
a similar calculation for a model in which the moon is a big blob of fluid
that can deform and flow in response to tidal forces. That takes more
mathematical horsepower, but the result is similar. In fact, it’s the same as
our equation, but with Ar representing the average radius of the moon, and
the 1.26 is replaced by 2.44.

1/3
Pmin & 2.44 (%) Ar (fluid body)

¢ It’s more traditional to write the equation in terms of the densities and sizes
of the bodies, rather than masses. We can replace the planet mass, M, with
volume times density, and we can do the same for the moon, m. With those
substitutions and a touch of algebra, the minimum radius comes out to be
2.44 times the planet radius, times the cube root of the density ratio.

’, A R?
M\ /8 M= ——pu
T'min ~ 2.44 (-) AT 47T(A’f')3
m m = 3 Pm
Ripy 1'°
Proin % 2,44 {’;”] Ar
(A’) Pm
pPM 18
Tmin ~ 2.44 R () The Roche Limit
Pm
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This was first worked out by Edouard Roche, so the minimum distance is
known as the Roche limit: the distance within which tidal forces overcome
the gravitational binding force of a moon modeled as an idealized fluid body.

What if the moon is orbiting, instead of just falling in? Is there still a
Roche limit? Yes. It’s the same, and in that case, 7, ; refers to the minimum
orbital distance.

Suppose a moon made from a bundle of rocks is going in a circular orbit.
The rocks closer to the star have slightly smaller orbital distances, so, by
Kepler’s third law, they have shorter orbital periods. The outer rocks have
longer periods.

Therefore, unless the moon’s self-gravity is strong enough, the rocks drift
apart over time, with the inner ones moving ahead of the outer ones. The
moon gets shorn into pieces and strung out into an arc around the star.
Eventually, the arc reaches all the way around the planet, making a ring. This
may be where planetary rings come from!

The number 2.44 is a pretty good match to the observed sizes of the rings
of the giant planets, which range up to 2 or 2.5 times the radius of the
planet. The density ratio is always of order unity, because the densities of
the moons and planets are of the same order of magnitude, a few grams per
cubic centimeter. So, the numbers fit the story.

All the planets have a Roche limit, including Earth. The Moon’s mean density is
around 3 grams per cubic centimeter, typical of rocks. The Earth’s is higher, around
5.5, because the Earth’s stronger gravity compresses its interior and because the

Earth has more iron in its core. Given those numbers, the Roche limit comes out
to about 3 Earth radii. Our Moon is at a distance of 60 Earth radii, So it’s not in any
danger of tidal destruction.
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¢ We derived the Roche limit by setting the tidal force, which tries to pull
the body apart, equal to the attractive gravitational force trying to hold it
together. But there are other ways for a body to hold together besides gravity.
There are also chemical or material forces that give rocks their rigidity. The
silicon atoms in a rock aren’t held in place by gravity; they’re stuck together
with chemical bonds, which are ultimately electromagnetic forces at the
atomic level.

¢ The Roche limit is only relevant for objects that are held together mainly by
gravity. And we shouldn’t take the factor of 2.44 too seriously; that’s for the
ideal case of a frictionless fluid. Material forces allow a body to come closer
than this official limit.

¢ Why can we find little moons,

What happens when a body violates the smaller than about 500 kilometers,

Roche limit? nestled right within the rings that

are inside the Roche limit? It
In 1994, a comet named Shoemaker- must be because those objects are
Levy-9 crashed into Jupiter. By the time held together mainly by material
it hit Jupiter, tidal forces had broken it forces, not gravity. In fact, you

into fragments, each of which punctured can tell if an astronomical object
is gravitationally bound by just

Jupiter’s clouds in a different place,
making a series of brown spots.

looking at it. If gravity is the
dominant force, it'll be a sphere.
The comet broke apart because it was a That’s because each piece is
loose conglomeration of rocks and chunks attracted to every other piece. Left
of ice; there wasn't much holding the to its own devices, gravity draws

chunks together besides gravity. everything inward toward the
center of mass, smoothing out any

lumps to make a perfect sphere.

¢ In contrast, chemical and material forces are very local; they act only between
neighboring molecules or surfaces in direct contact. So, a body held together
by those forces can be any shape—an egg, a potato, a person—depending on
the history of how the pieces came together.
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LECTURE 6 — Tidal Forces

But if we make the object bigger and bigger, gravity becomes more important
and eventually dominates over chemical and material forces.

Let’s do an order-of-magnitude calculation to estimate how big a body has
to be for gravity to mold the shape into a sphere.

Suppose we have a rock with a characteristic size of R and a mass of M. Now
let’s make it slightly larger by adding a single silicon atom. Which is more
important: the molecular forces that bind the silicon to the minerals on the
surface or the gravitational attraction of the atom to the entire mass of rock?

I¢'1l be easiest to compare the relevant amounts of energy. The energy levels
of electrons in atoms are always on the of order of a few electron volts. The
energy scale for material forces tends to be an order of magnitude lower,
because rocks aren’t perfect crystals—they’re ragged collections of crystals,
and the interactions between them are weaker. So, let’s say the energy released
is, on average, 0.1 ¢V per silicon atom.

Meanwhile, the gravitational potential energy that’s released when we add
mass 7 is of order GMm/R. For gravity to be more important, we need that
to be much larger than 0.1 V. That gives us a condition on the rock’s mass
over radius, M/R. We’re wondering about the critical size, so let’s write M as
volume times density and solve for R.

GMm
Eeem ~ 0.1eV  Egay ~ ‘R
G M
Eyrav > Eohenn — = m > 0.1eV
M . 0.1eV M AT R3 ,
R m 3/
ar 0.1cV
R
3P > Gm
1.6 x IO_ZUJ
3 01V
Ry —- ~ 600 km
4r Gmp\
-11 2 -2 / / 3000 k,gm'3
6.7 x 107" N m* kg 47 4102 kg
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¢ The density of rock is around 3 grams per cubic centimeter, or 3000 kilograms
per cubic meter, and the mass of a silicon atom is about 28 proton masses, or
4.7 x 107%¢ kilograms. Plugging in those numbers along with the constants
leads to a critical radius of about 600 kilometers.

¢ Based on this calculation, we would expect objects much larger than that
to be sculpted into spheres by gravity, while much smaller objects can have

irregular shapes. And this is what we observe among the moons of Saturn.

Why are the major rings of the giant planets all within about 2.5 planetary radii?
Because that’s the approximate location of the Roche limit.

Why are the large moons spherical? Because they’re big enough for gravity to

dominate over material forces.

Why do the large moons orbit well outside of the rings? Because otherwise tidal
forces would break them into smaller pieces.

OCEAN TIDES

¢ Inaddition to helping us understand rings and moons, tides are also relevant
to planets, stars, black holes, and entire galaxies. A more down-to-earth
example of tidal forces is ocean tides.

¢ The Earth’s gravity pulls on the Moon, and the Moon’s gravity pulls on the
Earth. That means the Moon exerts tidal forces that, left unopposed, would
tear the Earth apart by squeezing it along the direction to the Moon. The
Earth’s gravity prevents that from happening. But there’s more to it than that.
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LECTURE 6 — Tidal Forces

The vectors in this image represent the gravitational

force of the Moon at different points in space surrounding

the Earth. Close to the Moon, the vectors are longer

because the force is stronger. There’s also

some variation in direction, because all
the vectors point straight at the center of
the Moon.

But importantly, the Moon is orbiting the
Earth. To see the Earth and Moon sitting
still, as they are in this image, we must
be in a frame of reference that’s rotating
along with the orbit, once a month.

ywww%///

We're allowed to do physics in rotating frames, but the price we pay is that we

must insert a fictitious force: the centrifugal force. In this case, the centrifugal
force on the Earth points away from the Moon, with a strength such that
at the center of the Earth, the centrifugal force cancels out the gravitational

force exactly. That’s why the Earth is sitting still in this frame of reference.

Let’s add the centrifugal and gravitational forces and Fi

replot the net force vectors. There’s no net force at the

center of the Earth. The net force points toward the

Moon on the near side and away from the Moon on the

far side, where the centrifugal force is larger than
the gravitational attraction. And in between

there are sideways forces.

Imagine that the Earth is a frictionless
sphere surrounded by a thin layer of
water. What would happen to the water?
It would feel these net forces and flow
around the surface to form 2 bulges, one

on the near side and one on the far side.
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LECTURE 6 — Tidal Forces

¢ Then, if the frictionless Earth were to rotate, sliding underneath the layer
of water, an observer on the surface would see the ocean rise in height, then
fall, rise, and fall again over the course of a full day. That’s why we observe
2 high tides and 2 low tides in 1 day.

¢ The Earth is not a frictionless sphere. There’s lots of friction, and there are
continents, underwater mountains, and all kinds of things that make the
picture more complicated. That’s why we need tide tables.

¢ The tidal forces from the Sun are also significant.
That’s why the maximum height of the tide varies
with the phase of the Moon. When the Sun, Moon,
and Earth are along a line, the Sun and Moon work
together and produce unusually high tides called
spring tides. When the Sun and Moon are at right
angles, the contrast between high and low tides is
reduced, and they are called neap tides.

¢ From the relative heights of the spring and neap tides,
we can determine that the Sun’s tidal forces are not

quite as strong as the Moon’s—they’re only about
half as strong.

¢ Tidal forces are proportional to the mass of the
attracting body ove