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On   October   4,   2016,   the   Nobel   Prize   in   physics   went   to   Thouless,   Kosterlitz,   and 

Haldane   “for   theoretical   discoveries   of   topological   phase   transitions   and   topological   phases   of 
matter.”   Half   of   the   prize   was   given   to   David   Thouless   for   two   key   advances:         In   the   early 
1970’s   it   was   believed   that   superfluidity   and   superconductivity   were   not   allowed   for   very   thin   2D 
layers.   Kosterlitz   and   Thouless   showed   that   wasn’t   true   with   the   use   of   topological   concepts. 
And   then   in   the   1980’s,   Thouless   helped   explained   the   mysterious   “Integer   Quantum   Hall   Effect” 
again   using   topology   and      “marked   the   discovery   of   topological   quantum   matter.”      Since   then, 
condensed   matter   physics   of   topological   materials   has   blossomed!  
[   Nobel   prizes   were   awarded   on   December   10,   2016.   But   Thouless   has   not   yet   presented   his 
work   yet.   Hopefully   he   will   submit   an   essay   sometime   in   2107.] 
 

This   note   mainly   focuses   on   the    Integer   Quantum   Hall   Effect           (“IQHE”   or   just   QHE) 
[e.g.,   see    Figure   1    below].      One   author   declared   in   general,   “The   quantum   Hall   effect   (QHE)   is 
one   of   the   most   remarkable   condensed-matter   phenomena   discovered   in   the   second   half   of   the 
20th   century.      It   rivals   superconductivity   in   its   fundamental   significance   as   a   manifestation   of 
quantum   mechanics   on   macroscopic   scales.”   [5]            It   “is   now   used   to   maintain   the   standard   of 
electrical   resistance   by   metrology   laboratories   around   the   world”   and   measures   the   fine 
structure   constant   alpha   accurately   to   .01 8   
 

Typically,   IQHE   needs   a   two-dimensional   electron   gas      (2DEG),   and   that   can   be   formed 
in   a   thin   layer   of   semiconductor   next   to   an   insulator   (called   an   “inversion   layer”   ,   e.g.,   AlGaAs   on 
GaAS).      The   thickness   of   this   gas   may   only   be   30   angstroms   but   still   can   form   a   broad   holistic 
layer   over   the   relatively   large   semi-rectangular   Hall   probe   area.   The   quantum   Hall   effect   is 
macroscopic!   Temperatures   <   1   kelvin   and   magnetic   fields   >   10   tesla   are   often   also   needed   [but 
graphene   can   show   effects   at   room   temperature].   Applied   voltages   in   the   long   x   direction   of   a 
rectangle   cause   a   build-up   of   voltage   in   the   y   width   direction,   so   conductivity   technically   needs 
be   a   2D   tensor:   .      Hall   resistance   is   measured   in   the   cross   yσ E   (includes J E )J i =   ij j x = σxy y  
direction   and   was   observed   to   change   in   integer   steps   on   plateaus   . 

   is   called   the   “von   Klitzing   constantνe h or ρ νe ν.    R e   5.6 kΩ   σxy =   2/ xy =   h/ 2 = RK/ K = h/ 2 ~ 2  
(and   is   good   to   9   figures).   [note   that   the   fine   structure   constant   is 

   ].         A   requirement   for   topological   integer   plateaus   is  4πε c  [SI], so R  determines α    α = e2/ o h̄   K  
having   imperfect   materials   (doping   ions,   surface   roughness,   random   disorder   --   and   most 
materials   do   have   uncontrolled   imperfections).      Large   magnetic   fields   are   needed   to   see   the 
biggest   “ground”   plateau.      And,   note   that   (with   the   right   setup)   going   to   30   T   may   introduce   an 
unexpected   “fractional   plateau”   (1/3rd   )   --   a   separate   and   very   weird   arena   with   largely   different 
physics   (see   Fractional   Quantum   Hall   Effect      FQE   in   a   section   below).  
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   Details   of   the   IQHE   are   intricate,   dovetail   in   an   almost   conspiratorial   way,      and   are 
difficult   to   the   point   of   first   requiring   reading   an   entire   book   on   the   subject   (such   as   that   of   David 
Tong,   [1]   ).      Robert   Laughlin   (Nobel   1998)   would   insist   that   this   new   physics   is   “emergent”   from 
collective   phenomena   and   can   not   be   mathematically   deduced   from   fundamental   physics   (the 
whole   is   greater   than   its   parts).   Others   will   try   anyway   but   with   some   mystery   and   opaqueness. 
 

Before   a   more   detailed      view   of   all   this   can   be   discussed,   it   is   necessary   to   first   introduce 
several   preliminary   topics:   the   standard   Hall   effect   in   classical   physics,   Topology,         Landau 
levels,   Anderson   Localization,   Fermi   levels,      and   Edge   modes. 

 

 
Figure   1.    IQHE    Plateaus   shown   by   quantized   electrical   resistance   Rxy   versus   applied 

magnetic   field   B   and   labeled   by   Landau   level   integers,   i.      Continuing   B   to   above   10   T   would 
reveal   the   i=1   plateau.      The   Landau   Level   (LL)   spikes   are   for   direct   lengthwise   resistance   Rxx   > 
0      and   occur   at   the   transitions   between   plateaus.      On   the   plateaus,   Rxx   =   0.  
 
Classical   Hall   Effect: 

 
Every   freshman   physics   text   presents   the   classical   Hall   effect   of   1879.   If   a   current, ,I  x  

flows   through   a   thin   metallic   strip   that   has   a   strong   perpendicular   magnetic   field,   B,   going 
through   it,   then   a   potential   difference   develops   between   the   sides.   Some   density   of   charge 
carriers,   n,   in   the   strip   flows   with   a   slow   drift   speed   v   and   experiences   a   cross   field   force 
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   where   delta   is   thickness   (very   thin)   and   w   is   crossv with current   I   neδwv       F y = q x B
z  x =   x  

width   in   the   y-direction.      Then,  
.  ev B  BI newδ.   But V   Fw , so,  V   I B  neδ  F y =   x =  

x / =       y =   x z/  

nd resistance R   V I   B neδ  A xy =   y/ x =   / Eqn.   1 
 
The   formula   says   that   even   to   get   micro-volts   of   voltage   will   require   high   magnetic   fields 

(like   where      tesla   =   10,000   gauss   in   current   college   labs)   and   extreme   thinness   ( 20 T    B ≥ 1 δ ~  
microns   or   less).  

The   American   physicist   Edwin   Hall   used   thin   gold   leaf   for   his   conducting   strip   and 
revealed   the   effect   well    before    the   discovery   of   the   electron.      So   what   he   revealed   was   that   the 
quantity   “ne”   flowed   through   the   gold   as   a   negative   current.   Positive   current   flow   would   give   an 
opposite   side-to-side   voltage   (good   for   semiconductor   positive   hole   flow).      Using   E   as   the 
induced   electric   field   sideways   and   J   is   the   current   flow   density   through   the   strip,   a   “Hall 
coefficient ”   was   defined   as:                                  [Eqn.   2]R "  J B   V δ I B  ne   "

H
= Ey/ x  z =   y / x =   1/  

showing   a   way   to   measure   carrier   density   or   magnetic   field   B   (“Hall   effect   probe).      Note   that   this 
unfortunate   naming   convention   is   different   from   the   Hall    resistance    above,   so   resistance   is 

   The   rewards   of   this   classical   measurement   are   knowledge   of   charge   density   for  B R δ.  Rxy =  
H/  

carriers   and   resistivities   for   materials.   And   in   the   20th   century,   carriers   could   be   “holes”   with   an 
effective   positive   charge.   One   should   also   study   the   “Drude   Model”      which   adds   a   friction   term   to 
cyclotron   motion   in   the   form   of   a   scattering   time,   .   It   is   this   model   that   makes   clear   thatτ  
conductivity   should   be   treated   as   a   2x2   tensor   leading   to   resistivities: 

   And   when   we   find   thatm ne τ  versus the usual ρ   B ne.  ρ
xx
=   e/ 2

xy
=   /  
!   (unexpectedly   the   system   is   then   a   perfect   insulator).   The= , then  ρ   0  0  ρ

xy / 0  
xx

=   ⇒ σ
xx  =    

longitudinal   Rxx   depends   on   sample   composition   and   sample   length. 
 

 
Topology: 
 

We   tend   to   think   of   topology   as   the   counting   of   “holes”   through   geometric   objects 
(something   through   which   a   string   can   thread);   and   for   one   hole,   we   consider   a   coffee   cup   to   be 
“the   same   as”   a   donut.   The   number   of   holes   represent   “topological   invariants”   that   are   usually 
integers.   But,   the   term   “hole”   can   also   apply   to   objects   of   any   dimension.      So,   for   example,   the 
inside   of   a   sphere   is   called   a   2-hole   (something   that   can   be   filled   with   water).      There   are   also   a 
variety   of   types   of   topological   indexes   and   other   concepts   that   are   hard   to   picture. 
 

One   goal   of   topology   is   to   identify   properties   of   objects   that   are   invariant   under 
continuous   deformations.   A   simplest   example   of   a   topological   concept   is   that   of   “deformation 
classes”   or   “path   components”   of   geometric   regions,   S.      This   means   that   for   any   two   points, 
there   can   be   a   continuous   path   ending   on   the   points,   and   this   idea   obviously   applies   to   a 
2-sphere,   or   a   torus   surface,   or   infinite   Euclidean   spaces      .   The   symbol      is   used   forEn (S)πo = 0  
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the   set   of   all   path   segments   that   can   be   deformed   into   each   other.      A   virtue   is   that   “global 

topological   properties   are   robust   against   local   perturbations   [7].” 

But,   if   there   is   a   forbidden   “ gap ”   separating   two   materials,   then   there   is   no   continuous 

path   between   them.      The   idea   of   a   forbidden   barrier   also   applies   to   physical   “phases”   so   that 

solid   ice   is   separate   from   water   fluid   (   liquid/gas)      on   a   pressure   versus   temperature   plot   (a   path 

does   exist   between   liquid   and   steam   by   going   around   the   “triple   point”).   There   is   a   “phase 

transition”   between   between   solid   and   fluid   states.   We   now   know   that   there   are   other   types   of 

phases   in   condensed   matter   physics   such   as   topological   superconductors,   topological 

insulators,   superfluidity,   and   now   the   quantum   Hall   states.   In   IQHE,   there   is   a   phase   transition   at 

specific   energy   levels   so   that   a   normally   insulating   material   suddenly   becomes   a   good 

conductor. 

 

The   role   of   topology   in   condensed   matter   physics   often   enters   through   quasi-momentum 

on   the    “Brillouin   torus.”       For   crystals,   electron   states   depend   on   the   geometry   of   the   lattice 

which   generally   repeats   from   atom   to   atom.      The   potential   energy   is   periodic   like   the   lattice,   and 

the   wavefunction   is   also   periodic:   for   a   rectangular   lattice.   The(x  na, y b )  u(x, ) u +     + n =   y  

primary   difficulty   is   dealing   with   the   vast   variety   of   possible   types   of   crystal   structures.      Including 

momentum   gives   a   “Bloch   wave:”      where   k   is   the   crystal   wave   vector   and   (r)    e  u(r)ψ =   ik r   
momentum   .  k  p =   h̄   

The   simplest   rectangular   physical   lattice   has   another   view   called   the      “reciprocal”   lattice 

with   primitive   cell   sides:    which   is   effectively   a   Fourier   transform   of   aπ a and B π b  A = 2 / = 2 /  

simple   physical   lattice.      Reciprocal   lattice   points   or   vectors   G   in   this   Fourier   space   are 

where   h   and   j   are   integers.      Crystal   wave   diffractions   are   satisfied   when   .   AA BG = h + j k  GΔ =    

cell   of   size   A   x   B   is   called   a   “first   Brillouin   zone.”      Because   of   periodicity,   the   opposite   sides   are 

“identified”,   and   that   means   homeomorphic   to   a    torus    ( ).      “Thefor 2d and T  for 3d.T 2  3
 

fundamental   group”   for   the   torus   is:         ,      where   Z   is   the   set   of(T )  π (S )  (S )  Z     π1
2 =   1

1 π1
1 =   Z  

integers   (e.g.,   representing   “winding   numbers”   about   a   circle). 

This   means   that   there   could   be   non-contractible    loops    (rather   than   the   previously   mentioned 

arcs)   around   the   torus   representing   many   integers   of   winding   numbers.   [Note   that   S   being 

“simply   connected”   implies   that      “The   full   ensemble   of   states   over   the(S)  and π (S)  ].πo  = 0 1 = 0  

Brillouin   torus   is   always   trivial.”      But   an   energy   gap   can   cause   a   split   into   two   well   separated 

sub-ensembles   each   with   non-trivial   topology.   This   is   related   to   Thouless’   original   Chern 

topological   index.   “The   Chern      number   is   topological   in   the   sense   that   it   is   invariant   under   small 

deformations   of   the   Hamiltonian.”   [21] 

 

As   a   short   hint   on   these   topics:      Chern   number,   Berry   phase,   and   classical 

“Gauss-Bonnet”   Euler   characteristic   can   all   be   calculated   as   integrals. 

[23].(sphere)  (1 2π) dM   χ g. E.g., χ(S )  2, g 2  0, and χ(T )  0χ =   / ∫
 

M
K =   = 2 2   2

  =     = 1 χ/ =     2 =    

K   is   the   “curvature”   of   a   Manifold,   g   =   genus   =   holes/handles   for   a   3D   surface.   A   sphere   has   no 

handles   and   a   torus   has   one   hole.   A   simpler   example   is   for   a   2D   circle 
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Circle   (1 2π) ds    (1 r)(1 2π)(Cir πr)     in 2D.     S1 :   / ∫
 

circle
K =   / / = 2 = 1 = χ  

The   3D   genus   and   Euler   characteristic   also   pertains   to   the   old   high-school   geometry:      vertices   - 
edges   +   faces=   V-E+F.      For   a   4-faced   tetrahedron,   4-6+4   =   2   so   g   =   0   (no   holes). 

Berry   Phase   uses   Stokes’   theorem   to   get   a   form:   where   Omega   is   a   Berry  S (R)   γ =∫
 

S
d Ω  

curvature   from   a   Berry   connection   and   R   is   a   vector   parameter   of   time. 
 

The   topologically   invariant   Chern   number,   ,   comes   from   the   integration   of   “Berryor cChn   
curvature.”   A   nonzero   Chern   number   says   that   there   is   an   obstruction   in   applying   Stokes 
theorem   over   the   entire   parameter   space   [   --   see   “Geometry   in   Modern   Physics”   [6]   ].      If   one 
wants   to   see   plentiful   applications   of   topology,   condensed   matter   physics   is   the   place   to   be   -- 
however,   the   dovetailing   of   the   Chern   numbers   to   IQHE   is   acknowledged   to   quite   difficult   [9].  

Many   articles   on   topology   and   physics   deal   with   the   “real   world.”      But,   the   topology   in   the 
quantum   Hall   effect   is   really   a   topology   in   a   quantum   state”   and   quantum   topology   is   now   used 
for   many   application.   “Berry   phase   is   the   simplest   demonstration   of   how   geometry   and   topology 
can   energy   from   quantum   mechanics”   and   at   the   heart   of   the   IQHE.      This   phase   shift   occurs 
when   a   complete   loop   is   made   in   some   parameter   space   and   is   geometric   and   separate   from 
the   usual   Edt   and   kdx   phase   contributions.   The   leading   example   is   the:    Aharonov-Bohm   (AB) 

effect   with   phase   change   (e.g.,   for   a   closed   path   around   a   solenoid).   And   this   isA dx  γ =  ∮
 

C
e i

i  

applied   below. 
 

In   modern   condensed   matter   experiments,   one   can   additionally      see   analogue   cases   of 
formation   of   Dirac   monopoles   and   also   Yang   monopoles   with   non-vanishing   2nd   Chern   number 
measured   for   the   first   time   [7].   A   research   article   by   NIST   said:   “Fundamentally,   topological 
order   is   generated   by   singularities   called   topological   defects   in   extended   spaces,   and   is 
quantified   in   terms   of   Chern   numbers,   each   of   which   measures   different   sorts   of   fields   traversing 
surfaces   enclosing   these   topological   singularities.   Here,   inspired   by   high   energy   theories,   we 
describe   our   synthesis   and   characterization   of   a   singularity   present   in   non-Abelian   gauge 
theories   -   a   Yang   monopole   -   using   atomic   Bose-Einstein   condensates   …”  

Topological   materials   have   topological   properties   that   are      “robust   and   insensitive   to 
perturbations   and   impurities.”   They   “stay   the   same   if   you   continuously   change   the   system: 
stretching   it,   straining   it,   shaving   off   some   layers   –   or   really   any   change   that   doesn’t   cause   a 
phase   transition.”   [17]  

 
Claimed   definitive   explanations   of   IQHE   can   be   shown   in   several   different   ways;   and   one 

seems   to   require   “Non-Commutative   Geometry,”   [Bellissard,   1994,   ref.   [3]   ].      Hall   conductance   is 
a   non-commutative   Chern   number,   “Ch.”      That   is,   interpreted   as   aνe   (e h) Ch(P )   σxy =   2/ h̄ =   2/ F  
Chern   character   from   a   “Kubo-Chern”   relation.      The   first   inroad   to   understanding   IQHE 
quantization   was   given   in   a   famous       ( -ly   undreadable )    1982   paper   referred   to   as   “TKNN”   [8]   for   its 
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four   authors   (one   of   them   being   David   Thouless).   It   says   “Hall   conductance   is   quantized 
whenever   the   Fermi   energy   lies   in   an   energy   gap,   even   if   the   gap   lies   within   a   Landau   level.”  

  
Landau   Levels:  

 
A   first   step   is   to   talk   about   electron   motion   in   a   thin   film   with   a   normal   magnetic   field,   B. 

The   Lorentz   force   F   =   qvB   will   be   balanced   out   by   “centrifugal”   force   where  mv r   F =   2/  
      The   electron   will   go   around   in   circles   with   a   “cyclotron”   frequency”r  ω angular motion.  v/ =   =    

   where   m   is   the   effective   mass   of   the   electron.   Since   Boltzmann’s   constant   isqB m  ωc =   /  
   and   lab   temperatures   are   below   1   K,   thermal   fluctuations   have   negligible.61 0  eV K  kB = 8 1 5 /  

effect.      This   allows   for   the   emergence   of   quantum   effects   such   as   quantized   Landau   levels   and 
quantized   magnetic   flux.   A   typical   energy   for   .      An   analogyω   0 meV  for f ields B  0 T  h̄ c ~ 1 ~ 1  
with   old   Bohr,   one   aspect   of   circular   motion   is   that   a   circumference   has   to   be   integer   multiples   of 
wavelengths   round   the   circle.  

 
Mathematical   Derivations: 

 
The   presence   of   a   magnetic   field   in   a   z-direction   alters   a   term   in   the   Hamiltonian   as 

   as   if   a   vector   potential   A   times   charge   acted   as   “electromagnetic   momentum”  (p A) 2m  H =   q
2/  

The   term   (p-eA)   is   called   “canonical   momentum,”   as   opposed   to   usual   “mechanical   momentum” 
      The   vector   potential   is   not   gauge   invariant,   and   Lev    Landau    picked   a   specialp   m x  .  μ

mech =   ˙ 2  
“Landau   gauge”      for   A:        y  Ax =   B (or   alternately   with   all   other   Bx Ay =   0Ai =   )         which   acts 
as   a   simple   shearing   field   indeed   giving      as   it   should.      Then   the   Hamiltonian   could   be  B  A =    
written   as 

.      If   we   were   to      label   an   “offset”   distance   as        [(p By)   p   p ] 2m  H =   x  + e
2 +   y 

2 +   z
2 / eB,  yo =   px/

we   could   write   out   a   term,   ],   exactly   matching   the   first   term   above   (one   has   tomω (y ) 2  [ c
2

yo
2/  

expand   both   squares   and   match   up   the   terms).   The   this   second   degree   of   freedom   is   the 
coordinate   of   the   center   of   the   cyclotron   orbit. 
 
Now,   the   standard   “Linear   Harmonic   Oscillator”    (LHO)    has   a   similar      form 

where   the   last   term   incorporates   a   vibrating   spring   energy.      For  p 2m  mω y 2         H =   2/ +   c
2 2/  

IQHE,   we   have   a   term   instead   of   a      term   implying   a   new   off-centering   concept.y )    ( yo
2

y 
2  

This   displacement   can   be   thought   of   as   where      is   “magnetic   length”l  yo  = k
2

l  
   .      In   the   IQHE,   B   includes   many   magnetic   flux   quanta25.7nm  l = √ c eBh̄ / =   /√B teslas  

   --   webers   a   unit   of   magnetic   flux   (or   half   that   value   for   the   case   ofe   Wb  Φo = h/ ~ 4 10 15  
Cooper   pairs   for   superconductivity   vortices)   so   that   the   density   of   magnetic   flux   is 

.  Φ 2π l    B =   o/ 2   
 
Using   these   Hamiltonians   in   a   quantum   mechanics   setting   requires   solving   the 

Schrodinger   equation   where   H   is   treated   as   an   operator:      .      We   don’t   have   to   do   thatΨ EΨĤ =    
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here   because   all   standard   texts   solve   the   easier   LHO   problem   and   present   its   wavefunctions. 
We   then   know   that   the   quantum   linear   harmonic   oscillator      ends   up   having   quantized   energy 
levels   according   to   the   famous   formula:               ;   and   because   the   Hamiltonians   are  (ν 2) ω  E =   + 1/ h̄  
similar,      that   will   also   apply   to   the   energies   for   circular   motion   Landau   Levels.      So   energy   could 
be   pictured   as   increasing   in   steps   of 

is   the, E   ω 2,   and then ν  , E   3 ω 2, and   ν  2...  So ΔE  ω 0 meV    ν = 0   o =   h̄ c /   = 1   1 =   h̄ c/   =   = h̄ c ~ 1  
gap   separation   energy.  

So,   electrons   may   ideally   only   occupy   orbits   with   discrete   energy   values.  
And,   the   n   above   determines   the   integer   n   in   the   IQHE!      The   Landau   level   location   are   where 
the   IQHE   makes   its      jumps   in   cross   resistivity,   and   the   “spikes”   in   Figure   1   represent   directρxy  
resistivity   .      These   are   also   peaks   where   the   Landau   “density   of   states”   [DOS   =   g(E)   ]   orρxx  
“degeneracy”   is   high.   The   strangest   result   is   the   occurrence   of   a   “phase   transition”   of   extended 
states   at   every   Landau   Lever      band   center   (i.e.,   the   “spikes”).  

Note   that   the   energy   here   didn’t   depend   on   the   ,   so   degeneracies   can   exist.   Ifk    px = h̄ x  
LHO   eigenstates   are   labeled   by   ,   then   the   state   of   an   electron   can   be:ϕ| n >  

which   depends   on   the   quantum   numbers   n   and   (x, )  exp(ik x) ϕ (y )  Ψ y =   x n yo . kx As   the   n 
values   and   energy   levels   rise,   it   turns   out   that   the   now   fuzzy   wavefunctions   increase   in   radial 
size   as   well   [as      (wider   circles).      And   they   also   have      angular   momentum:2(n ) eB  < r2 >   =   + 1 h̄/  

.   This   radial   increase   turns   out   to   be   important   to   the   understanding   of   IQHE.Ψ n Ψ  Lz n  =   h̄ n  
As   mentioned   before,   these   Landau   levels   can   only   be   observed   for   very   low 

temperatures   and   very   strong   magnetic   fields:   .         It   is   important   to   estimate   howω > kT  h̄ c >    
many   sublevels   can   exist   in   a   Landau   level   (the   degeneracy   of   the   ground   state).   The   answer   is 

where   L   is   the   width   of   the   Hall   strip   [5]   and   Phi   is   a   tiny   quantum   of   magneticL L Φo,  N ~ B x y/    
flux.   If   due   to   Zeeman   energy   splitting,   it   is”typically   about   70   times   smaller   than   the   cyclotron 
energy”   [9]   for   GaAs.      The   degeneracy   increases   with   the   applied   magnetic   field   through   a 
characteristic   area.    “There   is   one   electron-state   per   Landau   level   per   flux   quantum.”          So,   in 
tests   where   the   B   field   ramps   up,   more   electrons   can   go   into   the   lower   LL’s.      That   is   why   the 
high   B   fields   of   Figure   1   reveal   the   low   labels   of   the   LL’s. 
Levels   are   characterized   by   integer   called   “filling   factors,”      where   n   is   the   surfacen eB     ν f = h /  
electron   density   and      is   “the   ratio   between   the   total   number   of   electrons   and   the   number   ofν f  

states   on   one   Landau   level.”   [17] 
 
 
 
“Anderson   Localization:”   
 

In   general,   “electronic   conductivity   should   be   directly   proportional   to   the   electron   mean 
free   path   [4]   which   is   typically   ~   100   nm.      But,   in   1958,   Philip   Anderson   wrote   a   complicated 
paper   suggesting   that   electron   scattering   can   be   much   more   localized   in   the   presence   of   many 
crystal   defects.      Doped   semiconductors   is   one   example   of   a   disordered   crystal   lattice   (acting 
somewhat   like   random   potentials   at   crystal   sites).         In   Anderson’s   electron   localization,   the 
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electron   zigzags   between   impurities   resulting   in   a   smaller   mean   free   path   and   hence   greater 
resistance.   If   a   “localization   length”   is   labeled   as   A   short   localization,  then |ψ(r)|   .    ξ   2 ~ e |r| ξ/  
length   restricts   electron   propagation.   If   motion   is   free   across   the   entire   Hall   strip,   then   probability 
is   unlocalized   or   “extended”   and   constant.   In   the   presence   of   large   B   fields,   localization   is 
different ;   and   there   is   only   one   critical   energy   allowing   for   an   extended   state   (pretty   much   in   the 
center   of   a   DOS   peak   at   Landau   energy).      Disorder   broadens   the   DOS   peaks,   and   anything   to 
the   sides   of   dead-center   still   is   localized   with   only   the    middle    being   delocalized   (a   strange 
emergent   result   that   is   hard   to   understand   in   any   simple   way).  
 Impurity   scattering   dominates   at   very   low   temperatures.   It   happens   that   localization 
lengths    diverge    exactly   at   Landau   levels   whereas   in-between   these   levels,   direct   conductivity 
vanishes   and   Hall   body   electrons   are   localized.   That   means   that   the   plateaux   in   Figure   1   owe 
their   existence   to   localization   from   crystal   disorder.      Modeling   of   the   effects   of   impurities   can   be 
accomplished   by   using   a   random   potential   V(x)   in   the   electron   Hamiltonian   [1].      Quantized 
resistivity   persists   on   these   precise   plateaux   over   a   range   of   increasing   magnetic   field   strength, 
B,   and   charge   carrier   density,   n.  
 

The   details   of   LL   conductivity   are   very   tricky   and   subtle.   Between   two   adjacent   Landau 
energy   levels,   there   is   strong   Anderson   localization;   and   localization   blocks   conductivity.   Bulk 
states   are   insulating.      Exactly   at   the   Landau   level,   the   localization   length   diverges   into 
conductive   “extended   states.”      As   one   increases   electron   density   at   a   Landau   level,   the   filling 
gets   added   into   the   bulk   localized   states   caused   by   disorder   so   that   they   don’t   add   on   to   net 
transport   (Hall   conductivity   is   a   quantized   constant   >   0).      The   conductivity      getsνe h   σxy  =   2/  

“stuck.”   In-between   Landau   levels,    increasing   the   Fermi   level   only   occupies   localized   bulk 

states.      Only   the   narrow   centers   of   the   Landau   Levels   (LL’s)   have   current   carrying   extended 

states.      ,   zero   direct   resistivity   too. and σ 0, then ρ σ (σ σ )  0  σxx  0 xy  >     xx  =   xx/ xy
2  +   xx 

2 =     

 

Summarizing   the   above:  

Magnify   a   little   part   of   Figure    1    to   consider   just   one   of   the   plateaus      between   a   direct 

“spike”   on   the   left   and   another   spike   on   the   right.   The   spike   itself   results   from   a   sudden 

increase   of   “localization   length”   or   “extended   state”   phase   change   from   insulator   to   metal 

allowing   a   boost   in   conductivity   so   that      In> , σ e  along with ρ  and R   0.  ξ > 0   xx  ~ h/ 2  > 0 xx xx >    

the   plateau   we   have   the   emergence   of      fixed   (stuck,   persistent,   quantized)   non-zero 

resistivity   and   conductivity   for   topological   invariants 

means   strong   Anderson   localization. and σ  but also σ , ρ  and R   0.   And ξρxy xy xx    xx xx ~   ~ 0    

 

There   are   now   many   approaches   to   the   physics   of   localization   including   some   that   treat 
it   as   a    critical   phenomenon    using   a   size   varying   “scaling   function   --   as   in   quantum   field(g)"  β  
theory   (QFT).   In   1984,   Libby,   Levine   and   Pruisken   attacked   the   phase   change   problem 
incorporating   a   “theta   angle”   into   the   Anderson   model   [8].      This   is   an   idea   of   an   “instanton 
vacuum”   and   “nonlinear   sigma   model”   borrowed   from   quantum   chromodynamics   (QCD)   for 
quark   confinement   versus   deconfinement.            Then   there   is   a   “renormalization”   flow   diverging   at 
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the   Landau   energies   and   producing   quantization.   This   means   The   robustness   of   IQHE   plateaus 

is   seen   as   a   large   scale    emergence .      It   is   rather   amazing   that   ideas   from   high   energy   physics 

may   pertain   to   solid   state   physics,   but   they   are   gathering   experimental   validation   [11].   But   also 

recall   that   some   of   these   particle   physics   concepts   originally   came   from   Anderson’s   studies   in 

solid   state   physics   (e.g.,   the   Higgs   Symmetry   Breaking   idea).   Unfortunately,   Pruisken’s   field 

theory   is   qualitative   and   has   not   been   able   to   calculate   quantitative   results.      Numerical 

approaches   then   seem   best,   and   the   fluctuations   seem   to   be    multi-fractal    in   nature.  

The   insulator   to   metal   transition   looks   like   a   critical   point   phenomenon   of   the   form: 

ξ |E (E )|    where ξ agnetic length, E ritical pt. LL, E haracteristic  ξ/ o  =   o/ Ec 
2.33

o  ~ m   c = c   o = c   

energy   .   The   power   drop-off   is   a   universal   constant.   Despite   this   blow-up   to   infinite.33   ν 2  

delocalization,   longitudinal   conductivity   is   still   finite   e.g.,      The   IQHE   phase.54 e h  .   σxx  ~ 0 2/  

change   is   one   of   the   best   known   examples   of   a   quantum   critical   point   of   a   disordered   system,. 

In   this   case,   it   is   a   continuous   phase   transition   or   second   order   phase   transition   with   zero   latent 

heat   [12].  

 
 

 

Fermi   Level: 
 

Electrons   are   half   integer   spin   fermions   obeying   the   Pauli   exclusion   principle.   That 

means   that   two   electrons   with   the   same   quantum   numbers   cannot   get   too   close   to   each   other. 

The   number   of   states   per   unit   volume   with   a   given   energy   and   degeneracy (electron volts eV )    εi  

is   given   by   is   called   the(ε  )   gi i F (ε )g(ε  ) g(ε ) [1 xp[(ε ) kT ], where F (ε )    N i  =   i i =   i / + e i μ /   i   

Fermi-Dirac   distribution,   and   mu   is   “chemical   potential.”   The   term   “Fermi   energy”   usually   refers 

to   “the   (kinetic)   energy   difference   between   the    highest    and   lowest   occupied   single-particle   states 

in   a   quantum   system   of   non-interacting   fermions   defined   as    always   at   an    absolute   zero 

temperature.”   In   a   metal,   the   term   “lowest   occupied   state”   usually   means   the   bottom   of   the 

conduction   band. 

The   “Fermi   level”      or   “electrochemical   potential”   in   a   metal   at   absolute   zero   is   the   energy 

of   the   highest   occupied   single   particle   state   including   both   kinetic   and   potential   energy   (the 

energy   of   the   lowest   state).      It   is   the   surface   of   the   sea   of   electrons   such   that   no   single   electron 

can   rise   above   it.      So,   the   Fermi   level   is   the   total   chemical   potential   for   work   required   to   add   one 

electron   to   the   body.  

In   solid   state   theory,   atoms   are   packed   close   together   so   that   their   previous   discrete 

energy   levels   merge   into   a   band   of   energies   such   as   the   valence   band.   In   semiconductors,   there 

is   an   energy   gap   between   a   valence   band   and   higher   conduction   band   and   the   Fermi   level   lies 

in   the   forbidden   gap.   In   metals,   there   is   no   gap   and   electrons   can   move   freely   (conduct).      An 

insulator   means   having   a   large   gap   (no   free   conducting   electrons).      With   temperature   added, 

thermal   energy   can   excite   electrons   in   a   band   and   the   Fermi   level   can   be   set   at   an   average 

occupancy   of      0.5   .   So   some   semiconductor   electrons   can   jump   up   to   the   conduction   band 

leaving   holes   in   the   valence   band.         Near   absolute   zero,   electrons   fill   to   the   Fermi   level   with   a 

number   of   sub-bands   below   it   depending   on   the   applied   B   field. 
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In   IQHE,   increasing   the   B   field   increases   the   degeneracy   of   each   LL.   That   means   that 

the   Fermi   level   will   fall   with   increasing   B   field.   When   the   Fermi   level   lies   between   Landau   energy 
levels,   then   all   lower   Landau   levels   will   be   filled.   Or   we   could   say   that   a   decreasing   B   implies 
that   each   LL   holds   fewer   electrons   and   the   Fermi   energy   will   go   up.   “But   rather   than   jumping   up 
to   the   next   Landau   level,   we   now   begin   to   populate   the   localized   states.      Since   these   states 
can’t   contribute   to   the   current,   the   conductivity   doesn’t   change.      This   leads   to   exactly   the   kind   of 
plateaux   that   are   observed   with   constant   conductivities   over   a   range   of   magnetic   field”   [9]. 
There   is   a   strange   conspiracy   that   the   “current   carried   by   the   extended   states   increases   to 
compensate   for   the   lack   of   current   transported   by   the   localized   states.   This   ensures   that   the 
resistivity   remains   quantized…”   [9].  
 
Edge   Potential   and   currents: 
 

Circular   motion   of   electrons   is   geometrically   blocked   at   the   side   edges   of   a   thin   Hall   strip. 
Essentially,   the   electron   performs   half   a   circle   there,   bounces   back   and   executes   another 
sequential   half   circle.      This   is   called   “skipping   motion”   in   which   electrons   can   only   move   in   one 
direction   and   cannot   backscatter   from   impurities.   The   net   result   is   a   dissipationless   edge   current 
flowing   forward   on   one   side   and   flowing   backwards   on   the   opposite   side   [1]   (chiral   motion).      This 
persistent   circulating   current   is   real   and   measurable.   Potential   V(x)   is   highest   at   these   edges, 
and   the   edge   material   acts   as   a   metal.   The   Landau   levels   are   pushed   up   at   the   edges   and   can 
rise   above   the   Fermi   level.   But   the   bulk   in-between   is   more   like   an   insulator.   Impurity   scattering 
is   low   at   these   edges,   but   yet   impurities   are   important   for   the   emergence   of   the   Hall   plateaux   [1]. 
The   population   of   edge   states   traverses   the   band   gap   between   the   valence   band   and 
conduction. 
 

On   an   energy   diagram   E   versus   distance   across   a   Hall   strip   ( ),   each   Landau   0 ≤ y ≤ W  
level   has   a   “bathtub”   shape   (flat   on   the   bottom   and   rising   strongly   in   energy   at   the   edges).      For   a 
given   Fermi   level,   several   of   these   bulk   LLs   may   lie   below   that   level.      For   example,   at   plateau   i   = 
2   may   have   LL   n   =   0   and   n   =   1   lying   below   it.      The   LL   extended   states   crossing   the   Fermi 
energy   level   correspond   to   the   transitions   between   plateaus   (the   “edge   states”).      Some   sources 
suggest   that   direct   current   may   be   “carried   entirely   by   the   edge   states.”      With   high   B   fields,   the 
electrons   that   carry   current   are   confined   to   the   edges   by   the   Lorentz   force,   one   for   each   LL. 

 
   When   a   y-   potential   difference   is   introduced   across   the   width,   more   electrons   are 

introduced   across   the   width   and   accumulate   more   on   one   side   than   the   other   --   the   bathtub   is 
tilted   towards   one   side.      The   fermi   potential   is   the   same   on   both   sides.   Hall   voltage   gives   the 
Hall   conductivity      [1]      (and   the   appearance   that   current   is   carried   by   the   edgeV   e h  σxy = Ix/ H

=   2/  
states).      So,   the   bulk   of   the   electron   gas   is   an   insulator,   but   along   its   edge,   electrons   circulate   as 
an   example   of   the   quantization   of   Berry’s   phases   [22].   This   is   related   to   the   concept   of 
“topological   insulators”   with   conducting   edge   states   where   “spins   of   opposite   sign 
counter-propagate   along   the   edges.”   (quantum   spin   Hall   [QSH]   states) 
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The   most   important   observable   in   IQHE   is   that   cross-conductivity   is   quantized.   But   if   a 

cross   voltage   has   been   built   up   at   equilibrium,   why   should   there   still   be   any   current?      The 

answer   is   that   there   is   always   current   at   the   edges   of   the   Hall   width,   and   current   in-between   can 

flow   from   edge   to   edge.   That   flow   may   be   incremental   widthwise   from   one   LL   state   to   a   neighbor 

and   then   on   to   an   edge. 

 

Integer   Quantum   Hall   Effect: 

 
The   Quantum   Hall   state   is   the   simplest   example   of   a   topologically   ordered   state   and 

occurs   for   an   electron   gas   in   two   dimensions.   The   Hall   conductivity   changes   stepwise   with 

increasing   magnetic   field.      But,   for   ultra   thin   and   ultra   cold   samples,   the   physics   becomes 

quantum   mechanical   and   crosswise   Hall   conductance      can   change   by   integer   steps! 

   This   is   the   Integer   Quantum   Hall   Effect   (IQHE).      The   steps   or   plateaus   have  ν e h.   σxy =   2/  

incredibly   precise   values   enabling   ultra-fine   electrical   measurements.  

von   Klitzing   [2]   in   1980   was   the   first   to   discover   that   conductivity   here   was   exactly   quantized   and 

won   a   Nobel   prize   in   1985)      [again   see   Figure   1].  

A   big   question   is   “Why   do   the   steps   change   by   integer   multiples?”   and   “Why   are   the 

plateaus   broad?”   rather   than   changing   with   magnetic   field   like   the   Hall   formula.   Thouless   helped 

provide   answers   to   these   questions.      The   plateaus   are   broad   and   stable   due   to   Anderson 

localization   between   quantized   Landau   energies.   These   plateaus   exist   “when   the   Fermi   energy 

crosses   an   extended   state   level.”         Why   the   conductance   changes   by   integer   multiples   is   given 

by   advanced   topology   arguments   utilizing   Chern   theory   such   as   that   in   the   TKNN   formula.   The 

IQHE   conductance   is   robust   because   it   is   a   topological   invariant   of   the   system   immune   to 

deformations   [9].      A   plateau   means   that   the   delocalized   sub-bands   are   completely   filled.      The 

conduction   electrons   cannot   jump   from   one   energy   level   to   another,   since   there   are   no   available 

energy   levels   for   them.   As   a   result,   the   scattering   of   conduction   electrons,   with   loss   of   energy, 

cannot   happen.”   [17] 

Attempts   to   model   Quantum   Hall   transitions   included   an   early   use   of   semi-classical 

percolation   and   quantum   tunneling.   This   is   still   sometimes   used   but   no   longer   stressed. 

Delocalization   may   now   be   discussed   using   Topological   Field   Theory         [wikipedia].   There   is 

something   mysterious   about   half-filled   Landau   levels   that   makes   them   special   and   suddenly 

metallic.      No   theory   fully   explains   why   the   quantization   is   so   perfect   and   unaffected   by   the 

geometry   and   purity   of   the   material   [21]. 

 

 

“Laughlin   Gauge   Argument”:    

Most   explanations   of   Hall   quantization   are   advanced   and   difficult.      The   first   explanation 

is   the   simplest   and   most   referenced   [13]   --   but   still   tricky.      In   1981,   Laughlin   considered   a   2D 

rectangular   metal   strip   of   length   L   and   width   W   bent   into   a   circle   and   also   having   a   normal 

magnetic   field   Ho   everywhere   on   the   loop   (e.g.,   from   an   imaginary   magnetic   monopole).   He 

considers   the   “disordered   case   with   the   Fermi   level   in   a   mobility   gap..”   Let   there   be   a   current   I 

resulting   in   voltage   drop   V   across   the   width   by   the   Lorentz   force.   He   then   considers   what 
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happens   when   magnetic   flux   is   introduced   down   through   the   middle   of   the   circle   (where 
magnetic   flux   is   defined   as   the   field   times   the   cross   sectional   area).   For   this   we   need   to   first   look 
at   the   Aharonov-Bohm   (AB)   effect   of   the   vector   potential   A   on   electron   phase.      A   is   important 
because   of   canonical   momentum   in   the   Hamiltonian:      There   is   a   field   Bp A) 2m E y.  H = ( e

2/ + e o  
inside   the   solenoid   of   radius   R   but   no   magnetic   field   outside,   just   a   vector   potential      field.   For 
this   A   field   around   the   outside   of   a   solenoid   (or   uniform   A   field   around   the   ring   in   this   case)   at 
radius   rho: 

,   Then   the   AB   phase   change   will   be:B R 2ρ f lux circumference  ϕ L  Aout =   o
2/ =   / =   /  

AΔx AL   eϕ  .  e / h̄ = e / h̄ =   / h̄  
If   we   insist   that   the   phase   around   the   ring   be   a   single   valued   function   (rather   than   a   multivalued 
winding   function)   then   the   total   circle   phase   change   must   be   integer   multiples   of   2   pi.   So,  
B phase  n2π 2πeAL h, or A  nh eL  for extended states (or n  ALe h  e h).  A =   =   /   =   / =   / = ϕ /  

Now   add   one   magnetic   flux   quantum,    h/e   (so   delta   n=1).      Laughlin   says   that   this   sort   ofh e   Φ =   /  
gauge   invariance   requirement   maps   the   system   back   into   itself. 
This   is   an   interesting   result,   that   one   magnetic   flux   quantum   changes   the   AB   phase   by   one 
wavelength   around   L. 

Now   notice   that   power   =   dU/dt   =   VI,   but   .  dx  ϕ dt, so I   dU dϕ dU LdAV x =  ∮
 

L
Ex =   d /   =   / =   /  

 
 
Laughlin   then   claims   that   one   electron   per   LL   is   transferred   from   one   edge   of   the   strip   to   the 
other   edge   by   ratcheting   in   successive   stages   across   the   width   (shift   register).      This   shifting   is 
related   to   the   magnetic   lengths   and   y’s   discussed   above   under   “Landau   Levels”   .      Current   flow 
in   the   x   direction   drives   a   voltage   in   the   y   direction.   This   current   is   the   transfer   of   n   electrons 
across   the   width   so   that  

      (using   the   dt   from   Faraday’s   law   above).  ne Δt  neV Δϕ ne h   !  Iy =   / =   y/ =   2/  
So,   Hall   current   in   the   y   direction   is   quantized.  
[Of   course,   there   are   some   assumptions   and   details   left   out   and   still   to   be   addressed,   as   they 
are   in   references   [12]   [13   ]      ].         He   adds,   “At   the   edges   of   the   ribbon,   the   effective   gap   collapses 
and   communication   between   the   extended   states   and   the   local   Fermi   level   is   reestablished.”  
 

Many   articles   present   the   above   argument   as   a   “Corbino   Annulus”   instead   of   a   ring.   This 
model   originated   in   a   1911   study   on   magnetoresistance.   Insertion   of   central   flux   then   causes 
migration   of   charge   from   the   inside   radius   to   the   outside.  
 
 
 
Fractional   Quantum   Hall   Effect   (FQH). 

 
Beyond   the   Integer   QHE:             In   1982,   Stormer   and   Tsui   first   discovered   a   new   quantum   Hall   effect 
showing   that   the   ratio   of   electrons   to   magnetic   flux   quanta   can   occur   in   p/q   integers   like   ⅓   or   ⅖   ! 
Particles   can   act   as   if   they   had   a   fraction   of   the   charge   on   the   electron.   This   is   a   new   state   of 
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matter.   Remember   from   above   that   the   IQHE   identified   one   electron   state   to   a   Landau   level   and 

a   magnetic   flux   quanta.      In   general,   the   microscopic   origin   of   the   FQH   remains   unknown,   a   big 

work   in   progress.   But      Laughlin   presented   reasoning   for   the   special   case   of   a   1/q   state   and 

eventually   won   a   Nobel   prize   (along   with   Tsui   and   St rmer).      The   FQH   requires   aö  

“many-electron   wave   function”   (like   the   1983   Laughlin   example)   resulting   in   fractionally   charged 

“quasiparticles.”      This   is   a   type   of   Bose-Einstein   condensate   in   which   electrons   are   bound   with 

an   odd   number   of   vortices   which   can   have   neighboring   depleted   charge   regions   leading   to 

effectively   fractional   charge. 

 

   Resulting   composites   may   be   “anyons”   that   are   neither   fermions   nor   bosons.   This   is   dominant 

in   FQE   theory,   but   no   anyon   has   been   conclusively   seen   experimentally.      If   they   do   indeed   exist, 

the   FQH   is   the   place   to   find   them.   The   IQHE   depends   on   absence   of   electron-to-electron 

interaction,   but   the   FQH   depends   on   it   and   wants   smoother   surfaces.      The   vast   number   of 

fractional   FQE   bands   currently   requires   doing   experiment   first   and   trying   to   formulate   theory 

patterns   second.      IQHE   and   FQH   are   examples   of   emergent   collective   order   supposedly   not 

deducible   from   fundamental   physics   but   only   from   experiment.   This   follows   the   new   philosophy 

of   Philip   Anderson’s    “More   is   Different”    and   Robert   Laughlin’s   “The   end   of   reductionism.”      The 

FQH   phenomenon   are   very   similar   to   IQHE   except   for   the   transfer   of   fractional   quantum 

numbers.  

 

 

FQE   is   an   example   of   “topological   order”   with   patterns   of   long-range   entanglements,   and 

the   changing   from   pattern   to   pattern   requires   a   phase   transition.   This   concept   lies   beyond   that   of 

topological   insulators,   topological   superconductors,   and   traditional   Landau   symmetry   breaking. 

It   may   also   include   high   temperature   superconductivity   and   also   the   IQHE   above   with   a   “Chern 

number   of   the   filled   energy   band.”   FQE   has   Chern-Simons   gauge   theories   as   their   effective   low 

energy   theory.      Topological   order   has   “quantized   non-Abelian   geometric   phases   of   degenerate 

ground   states.”   (Wikepedia). 

For   the   IQHE,   we   depend   on   material   disorder.   But   FQE   needs   minimal   disorder   (cleaner 

samples)   to   show   its   fractional   value   plateaus.  

 

Kosterlitz-Thouless   (KT)   Transition:              Earlier   Work.  

 

Before   1960,   it   was   believed   that   long   range   order   in   two   dimensional   solids   was 

impossible.      In   the   1970’s,   a   new   “topological   order”   was   discovered   in   which   2D   vortices   and 

anti-vortices   (which   are   not   whirlpools)   pair   together   allowing   unexpected   2D   superfluidity   and 

superconductivity.      A   1972      “KT”   paper   was   titled,   “Long   range   order   and   metastability   in   two 

dimensional   solids   and   superfluids”   [15].      The   authors   first   considered   standard   dislocation 

theory   and   the   pairing   of   “up   and   down”   dislocations   but   noticed   that   their   observations   should 

also   pertain   to   vortices   in   superfluids   as   well.      At   low   temperatures,   pairs   of   “opposite” 

dislocations   pair   up   closely,   but   at   high   temperatures   they   freely   separate   and   allow   a   viscous 

response.   They   studied   what   is   called   the   XY   model   (2D   classical   rotor   or   spin   model)   on   a   2D 
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lattice.      The   KT   transition   lies   between   high   temperature   direction   correlations   (which   decay 
exponentially   fast)   and   power-law   low   temperature   decay.      A   Russian,   Vadim    Berezinskii,   did 
similar   work   resulting   in   the   name   “BKT   transition.”      It   was   noted   that   superfluid   vortices   can   form 
above   a   critical   temperature   but   not   below   it.      Or,   vortices   and   anti-vortices   are   free   above   a   critical 
temperature   but   paired   very   close   below   it.   This   is   a   collective   phase   field   unbinding   effect   that   is 
universal   in   variables   regardless   of   the   chosen   system   being   studied   and   correlation   lengths   diverge 
exponentially   [15].         Again,   renormalization   group   equations   seem   to   apply.  

A   KT   transition   has   been   confirmed   experimentally   in   proximity-coupled    Josephson   junction 
arrays,   and      “quasi-long   range   order”   has   been   applied   to   thin   films   of   superfluid   helium,   thin-film 
superconductors,   and   other   systems. 
 
Duncan   Haldane:   
 

Duncan   Haldane   is   a   British   physicist   who   did   his   initial   work   on   one-dimensional   chains, 
and   1D   seems   less   glamorous   than   the   2D   electron   gas   problems   discussed   above.    In   1981, 
Duncan   Haldane   realized   that   he   could   apply   KT   ideas      “to   the   quantum   mechanical   1D   spin   chain   if 
he   turned   one   of   the   spatial   dimensions   into   time.   Then   the   vortices   of   KT   would   become   tunneling 
events   between   different   topological   states.”   [19]. 

In   1986,   neutron   scattering   was   applied   to   a   mixture   CsNiCl   which   has   magnetic   1D   chains 
making   it   a   quasi-1D   compound   and   verified   some   of   Haldane’s   theories.       He   later   discovered 
many   interesting   and   unexpected   new   properties   [17]   which   contributed   to   later   advances   in 
condensed   matter   physics   and   also   had   similarities   to   the   2D   physics.         Haldane   was   the 
youngest   of   the   three   winners   (b   1951)   and   had   studied   under   Philip   Anderson.      Examples   of   his 
1D   problems   include   chains   of   magnetic   atoms,   large   spin   Heisenberg   anti-ferromagnet,   chains 
of   fermions   versus   bosons,   1D   conductors   (quantum   wires   and   now   carbon   nanotubes),   and   1D 
electron   gas.      His   1982   paper   on   spin   chains   showed   topological   properties   due   to   “the 
collective   action   of   the   whole   chain.”   There   are   “topologically   protected   excitations   that   behave 
like   Majorana   fermions,   which   are   their   own   antiparticle.”      He   has   also   been   contributing   to   the 
understanding   of   the   fractional   quantum   Hall   effect   (FQE).   Advanced   topological   topics   being 
used   include:   Chern   Simons   theory,      O(3)   non-linear   sigma   model,   solitons,   and   instantons.   And 
like   the   previous   discussion,   there   are   analogies   of   these   solid   state   concepts   in   high   energy 
physics.       For   example,   Laughlin   believes   that   the   quark   charges   of   ⅓   and   ⅔   e   may   have   an   origin 
similar   to   that   of   the   effectively   fractional   electron   charges   in   the   FQE.  
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