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PREFACE

AT THE HEART OF THE UNIVERSE IS a steady, insistent beat: the sound
of cycles in sync. It pervades nature at every scale from the
nucleus to the cosmos. Every night along the tidal rivers of
Malaysia, thousands of �re�ies congregate in the mangroves and
�ash in unison, without any leader or cue from the environment.
Trillions of electrons march in lockstep in a superconductor,
enabling electricity to �ow through it with zero resistance. In the
solar system, gravitational synchrony can eject huge boulders out
of the asteroid belt and toward Earth; the cataclysmic impact of
one such meteor is thought to have killed the dinosaurs. Even our
bodies are symphonies of rhythm, kept alive by the relentless,
coordinated �ring of thousands of pacemaker cells in our hearts.
In every case, these feats of synchrony occur spontaneously,
almost as if nature has an eerie yearning for order.

And that raises a profound mystery: Scientists have long been
ba�ed by the existence of spontaneous order in the universe. The
laws of thermodynamics seem to dictate the opposite, that nature
should inexorably degenerate toward a state of greater disorder,
greater entropy. Yet all around us we see magni�cent structures
—galaxies, cells, ecosystems, human beings—that have somehow
managed to assemble themselves. This enigma bedevils all of
science today. Only in a few situations do we have a clear
understanding of how order arises on its own. The �rst case to
yield was a particular kind of order in physical space involving
perfectly repetitive architectures. It’s the kind of order that occurs
whenever the temperature drops below the freezing point and
trillions of water molecules spontaneously lock themselves into a
rigid, symmetrical crystal of ice. Explaining order in time,
however, has proved to be more problematic. Even the simplest
possibility, where the same things happen at the same times, has
turned out to be remarkably subtle. This is the order we call
synchrony.
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It may seem at �rst that there’s little to explain. You can agree
to meet a friend at a restaurant, and if both of you are punctual,
your arrivals will be synchronized. An equally mundane kind of
synchrony is triggered by a reaction to a common stimulus.
Pigeons startled by a car back�ring will all take o� at the same
time, and their wings may even �ap in sync for a while, but only
because they reacted the same way to the same noise. They’re not
actually communicating about their �apping rhythm and don’t
maintain their synchrony after the �rst few seconds. Other kinds
of transient sync can arise by chance. On a Sunday morning, the
bells of two di�erent churches may happen to ring at the same
time for a while, and then drift apart. Or while sitting in your car,
waiting to turn at a red light, you might notice that your blinker
is �ashing in perfect time with that of the car ahead of you, at
least for a few beats. Such sync is pure coincidence, and hardly
worth noting.

The impressive kind of sync is persistent. When two things keep
happening simultaneously for an extended period of time, the
synchrony is probably not an accident. Such persistent sync
comes easily to us human beings, and, for some reason, it often
gives us pleasure. We like to dance together, sing in a choir, play
in a band. In its most re�ned form, persistent sync can be
spectacular, as in the kickline of the Rockettes or the matched
movements of synchronized swimmers. The feeling of artistry is
heightened when the audience has no idea where the music is
going next, or what the next dance move will be. We interpret
persistent sync as a sign of intelligence, planning, and
choreography.

So when sync occurs among unconscious entities like electrons
or cells, it seems almost miraculous. It’s surprising enough to see
animals cooperating—thousands of crickets chirping in unison on
a summer night; the graceful undulating of schools of �sh—but
it’s even more shocking to see mobs of mindless things falling
into step by themselves. These phenomena are so incredible that
some commentators have been led to deny their existence,
attributing them to illusions, accidents, or perceptual errors.
Other observers have soared into mysticism, attributing sync to
supernatural forces in the cosmos.
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Until just a few years ago, the study of synchrony was a
splintered a�air, with biologists, physicists, mathematicians,
astronomers, engineers, and sociologists laboring in their separate
�elds, pursuing seemingly independent lines of inquiry. Yet little
by little, a science of sync has begun coalescing out of insights
from these and other disciplines. This new science centers on the
study of “coupled oscillators.” Groups of �re�ies, planets, or
pacemaker cells are all collections of oscillators—entities that
cycle automatically, that repeat themselves over and over again
at more or less regular time intervals. Fire�ies �ash; planets orbit;
pacemaker cells �re. Two or more oscillators are said to be
coupled if some physical or chemical process allows them to
in�uence one another. Fire�ies communicate with light. Planets
tug on one another with gravity. Heart cells pass electrical
currents back and forth. As these examples suggest, nature uses
every available channel to allow its oscillators to talk to one
another. And the result of those conversations is often synchrony,
in which all the oscillators begin to move as one.

Those of us working in this emerging �eld are asking such
questions as: How exactly do coupled oscillators synchronize
themselves, and under what conditions? When is sync impossible
and when is it inevitable? What other modes of organization are
to be expected when sync breaks down? And what are the
practical implications of all that we’re trying to learn?

I’ve been fascinated by such questions for 20 years, �rst as a
graduate student at Harvard University and then as a professor of
applied math at the Massachusetts Institute of Technology and
Cornell University, where I now teach and do research on chaos
and complexity theory. My interest in cycles goes back even
further than that, to an epiphany I had as a freshman in high
school. For one of the �rst experiments in Science I, Mr. diCurcio
gave each of us a stopwatch and a little toy pendulum, a tricky
gadget with an extensible arm that could be lengthened or
shortened in discrete steps, like one of those old telescopes you
see in pirate movies. Our assignment was to clock the pendulum’s
period—the time it takes for one swing back and forth—and to
�gure out how its period depends on its length: Does a longer
pendulum swing faster, slower, or stay the same? To �nd out, we
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set our pendulums to the shortest length, timed its period, and
plotted the result on a piece of graph paper. Then we repeated
the experiment for progressively longer pendulums, always
stretching the arm one click at a time. As I drew the fourth or
�fth dot on the graph paper, it suddenly dawned on me that a
pattern was emerging: The dots were falling on a parabolic curve.
The same parabolas that I was learning about in Algebra II were
secretly governing the motions of these pendulums. An
enveloping sensation of wonder and fear came over me. In that
moment of revelation, I became aware of a hidden but beautiful
world that can be seen only through mathematics. It was a
moment from which I have never really recovered.

Thirty years later, I’m still captivated by the mathematics of
nature, especially as manifested by things that move in cycles,
like the periodic swaying of the pendulum. But instead of a single
cycle, my research has taken me to the study of many of them
working together all at once—to the study of coupled oscillators.
My training leads me to make simple models, to replace the
bewildering complexity and richness of real �re�ies or
superconductors with idealized sets of equations that mimic their
group behavior. I try to use calculus and computers to see how
order emerges from chaos. What makes these puzzles so much fun
is that they lie at the edge of known mathematics. Two coupled
oscillators would be no challenge—their behavior has been
understood since the early 1950s. But for questions involving
hundreds or thousands of oscillators, we’re still in the dark. The
nonlinear dynamics of systems with that many variables is still
beyond us. Even with the help of supercomputers, the collective
behavior of gigantic systems of oscillators remains a forbidding
terra incognita.

Still, over the past decade, thanks to the combined e�orts of
mathematicians and physicists around the world, one special case
has �nally been worked out, opening the door to a deeper
understanding of sync. If we assume that all the oscillators in a
given group are nearly identical, and that they are all coupled
equally to one another, the dynamics become mathematically
tractable. In Parts I and II of this book, I tell the story of how my
colleagues and I solved this class of theoretical problems, and
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what their solutions imply for sync in the real world: in Part I for
living oscillators (cells, animals, and people) and then in Part II
with reference to inanimate oscillators (pendulums, planets,
lasers, and electrons). Part III deals with the frontiers of sync,
when we cast aside our earlier simplifying assumptions. This
realm is still largely unexplored, and includes situations where
the oscillators are replaced by chaotic systems, or where they are
coupled in less symmetrical ways—to their neighbors in three-
dimensional space, or in intricate networks that transcend
geography.

Sync is an attempt to synthesize a vast body of knowledge on
this subject created by scientists working across disciplines,
continents, and centuries. The science needed to understand sync
draws on the work of some of the greatest minds of the twentieth
century, many of whom are household names and others who
should be—the physicists Albert Einstein, Richard Feynman,
Brian Josephson, and Yoshiki Kuramoto; the mathematicians
Norbert Wiener and Paul Erdős; the social psychologist Stanley
Milgram; the chemist Boris Belousov; the chaos theorist Edward
Lorenz; and the biologists Charles Czeisler and Arthur Winfree.

My own research runs through the story, not because I have
any illusions about my place in history, but because I want to
give a feel for what it’s like to be working in the trenches of
science—the blind alleys, the twists and turns, the exhilaration of
discovery, the metamorphosis from student to colleague to
mentor. To convey the vitality of mathematics to a broad
spectrum of readers, I’ve avoided equations altogether, and rely
instead on metaphors and images from everyday life to illustrate
the key ideas.

My hope is that you’ll come to share some of my excitement
about the breathtaking diversity of synchronization in the natural
world, and the power of mathematics to explain it. Sync is both
strange and beautiful. It is strange because it seems to defy the
laws of physics (though in fact it relies on them, often in curious
ways). It is beautiful because it results in a kind of cosmic ballet
that plays out on stages that range from our bodies to the
universe as a whole. And it is also critically important. Our basic
understanding of sync has already spawned such technological
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wonders as the global positioning system; the laser; and the
world’s most sensitive detectors, used by doctors to pinpoint
diseased tissues in the brains of epileptics without the need for
surgery, by engineers to search for tiny cracks in airplane wings,
and by geologists to locate oil buried deep underground. By
investigating what happens when sync unravels, mathematicians
are helping cardiologists track down the cause of �brillation, a
deadly arrhythmia that kills hundreds of thousands of people
every year, suddenly and without warning, even those with no
history of heart disease. And this is just a sample of what we are
able to do today, thanks to our growing but still rudimentary
knowledge of sync.

I am deeply grateful for the opportunity to have worked with
so many brilliant and creative minds throughout my career. The
research described here was a joint e�ort with my advisers Art
Winfree, Richard Kronauer, Chuck Czeisler, and Nancy Kopell; my
collaborators Rennie Mirollo, Paul Matthews, Kurt Wiesenfeld,
Jim Swift, Kevin Cuomo, Al Oppenheim, and Tim Forrest; and my
former students Shinya Watanabe and Duncan Watts. Thanks for
being such wonderful companions on our journeys into the wilds
of sync.

Other scientists helped improve the book in various ways. Jack
Cowan shared his a�ectionate memories of Norbert Wiener at
MIT in the late 1950s and enlightened me with the untold but
very human story behind the double-dip spectrum. Lou Pecora
provided a blow-by-blow account of how he and Tom Carroll
were led to the discovery of synchronized chaos. Jim Thorp
answered my questions about the power grid with his usual
wisdom and good humor. Cedric Langbort kindly translated
Huygens’s correspondence about the sympathy of clocks. Joe
Burns, Erik Herzog, Chris Lobb, Charlie Marcus, Raj Roy, and Joe
Takahashi o�ered insightful comments on early drafts of the
manuscript. Margy Nelson prepared the illustrations with her
distinctive blend of scienti�c judgment and artistic �air. I’m
especially grateful to Art Winfree for sharing his playfulness and
his mastery of sync, and, above all, for his heroic and amazingly
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generous e�ort in reading the manuscript from cover to cover,
even under the most di�cult circumstances.

Thank you to Lindy Williams, Stephen Tien, Herbert Hui, Tom
Gilovich, and all my other friends who so patiently endured my
tribulations in the early stages; Karen Dashi� Gilovich, who
helped me �nd my voice; and Alan Alda, a terri�cally stimulating
partner in brainstorming sessions, who taught me a lot about how
to approach the creative process. (Though I never did manage to
follow his best piece of advice, about writing the �rst draft in one
long, happy belch. Maybe next time.)

My colleagues at Cornell, especially Richard Rand and my
department chairman, Tim Healey, have provided encouragement
and support throughout the exhausting process of writing this
book and have been patient with me whenever my mind seemed
to be elsewhere. Thanks for being so understanding.

My literary agents Katinka Matson and John Brockman have
been enthusiastic and helpful at every turn. John suggested the
main title for the book within a millisecond of hearing my
description of it. Katinka gently coached me through all aspects
of the book-writing process, from proposal to publication.

A writer could not ask for a better publication team than the
sta� at Hyperion Books. In particular, editorial assistant Kiera
Hepford was always gracious, upbeat, and e�cient. Art director
Phil Rose designed a cover that captures the essence of sync
memorably and beautifully. And thanks especially to my editor,
Will Schwalbe, whose keen eye, good taste, and sense of structure
improved the book in so many ways, and whose un�agging
excitement about this project spurred me on when I needed it
most.

Thanks to my family for their love and encouragement, and
especially to my dad, who has—as always—been on my side,
quietly cheering, smiling, urging me on. The incredible
sel�essness of my mother-in-law, Shirley Schi�man, made it
possible for me to work for long stretches without feeling guilty
about neglecting my baby girls. Thank you to my daughters:
Leah, for bringing me back down to earth by being a toddler; and
Joanna, for not being born too early or too late. My wife, Carole,
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has shown her love in countless ways—listening, reading,
coaxing, forgiving, teaching me how to create, how to loosen up,
how to let go. Her generosity of spirit gave me the freedom to be
consumed by a sometimes needy, always present obsession.

Finally, thank you to the citizens of the United States for your
trust and farsightedness. By supporting the American research
enterprise through agencies like the National Science Foundation,
your taxes give scientists the most precious gift we could hope for
—the chance to follow our imaginations wherever they may lead.
I hope you take as much pleasure in our discoveries as we do.
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I

LIVING SYNC

• One •

FIREFLIES AND THE INEVITABILITY OF SYNC

“Some twenty years ago I saw, or thought I saw, a synchronal or simultaneous
�ashing of �re�ies. I could hardly believe my eyes, for such a thing to occur

among insects is certainly contrary to all natural laws.”

SO WROTE PHILIP LAURENT IN THE JOURNAL Science in 1917, as he
joined the debate about this perplexing phenomenon. For 300
years, Western travelers to Southeast Asia had been returning
with tales of enormous congregations of �re�ies blinking on and
o� in unison, in displays that supposedly stretched for miles
along the riverbanks. These anecdotal reports, often written in
the romantic style favored by authors of travel books, provoked
widespread disbelief. How could thousands of �re�ies orchestrate
their �ashings so precisely and on such a vast scale? Now Laurent
felt certain he had solved the enigma: “The apparent
phenomenon was caused by the twitching or sudden lowering
and raising of my eyelids. The insects had nothing whatsoever to
do with it.”

In the years between 1915 and 1935, Science published 20
other articles on this mysterious form of mass synchrony. Some
dismissed the phenomenon as a �eeting coincidence. Others
ascribed it to peculiar atmospheric conditions of exceptional
humidity, calm, or darkness. A few believed there must be a
maestro, a �re�y that cues all the rest. As George Hudson wrote
in 1918, “If it is desired to get a body of men to sing or play
together in perfect rhythm they not only must have a leader but
must be trained to follow such a leader…. Do these insects inherit
a sense of rhythm more perfect than our own?” The naturalist
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Hugh Smith, who had lived in Thailand from 1923 to 1934 and
witnessed the displays countless times, wrote in exasperation that
“some of the published explanations are more remarkable than
the phenomenon itself.” But he confessed that he too was unable
to o�er any explanation.

For decades, no one could come up with a plausible theory.
Even as late as 1961, Joy Adamson, in her sequel to Born Free,
marveled at an African version of the same phenomenon, the �rst
ever described on that continent:

a great belt of light, some ten feet wide, formed by thousands upon
thousands of �re�ies whose green phosphorescence bridges the shoulder-
high grass… The �uorescent band composed of these tiny organisms lights
up and goes out with a precision that is perfectly synchronized, and one is
left wondering what means of communication they possess which enables
them to coordinate their shining as though controlled by a mechanical
device.

By the late 1960s, the pieces of the puzzle began to fall into
place. One clue was so obvious that nearly everyone missed it.
Synchronous �re�ies not only �ash in unison—they �ash in
rhythm, at a constant tempo. Even when isolated from one
another, they still keep to a steady beat. That implies that each
insect must have its own means of keeping time, some sort of
internal clock. This hypothetical oscillator is still unidenti�ed
anatomically but is presumed to be a cluster of neurons
somewhere in the �re�y’s tiny brain. Much like the natural
pacemaker in our hearts, the oscillator �res repetitively,
generating an electrical rhythm that travels downstream to the
�re�y’s lantern and ultimately triggers its periodic �ash.

The second clue came from the work of the biologist John
Buck, who did more than anyone else to make the study of
synchronous �re�ies scienti�cally respectable. In the mid-1960s,
he and his wife, Elisabeth, traveled to Thailand for the �rst time,
in hopes of seeing the spectacular displays for themselves. In an
informal but revealing experiment, they captured scores of
�re�ies along the tidal rivers near Bangkok and released them in
their darkened hotel room. The insects �itted about nervously,
then gradually settled down all over the walls and ceiling, always
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spacing themselves at least 10 centimeters apart. At �rst they
twinkled incoherently. As the Bucks watched in silent
wonderment, pairs and then trios began to pulse in unison.
Pockets of synchrony continued to emerge and grow, until as
many as a dozen �re�ies were blinking on and o� in perfect
concert.

These observations suggested that the �re�ies must somehow
be adjusting their rhythms in response to the �ashes of others. To
test that hypothesis directly, Buck and his colleagues later
conducted laboratory studies where they �ashed an arti�cial light
at a �re�y (to mimic the �ash of another) and measured its
response. They found that an individual �re�y will shift the
timing of its subsequent �ashes in a consistent, predictable
manner, and that the size and direction of the shift depend on
when in the cycle the stimulus was received. For some species,
the stimulus always advanced the �re�y’s rhythm, as if setting its
clock ahead; for other species, the clock could be either delayed
or advanced, depending on whether the �re�y was just about to
�ash, whether it was halfway between �ashes, and so on.

Taken together, the two clues suggested that the �ash rhythm
was regulated by an internal, resettable oscillator. And that
immediately suggested a possible synchronization mechanism: In
a congregation of �ashing �re�ies, every one is continually
sending and receiving signals, shifting the rhythms of others and
being shifted by them in turn. Out of the hubbub, sync somehow
emerges spontaneously.

Thus we are led to entertain an explanation that seemed
unthinkable just a few decades ago—the �re�ies organize
themselves. No maestro is required, and it doesn’t matter what
the weather is like. Sync occurs through mutual cuing, in the
same way that an orchestra can keep perfect time without a
conductor. What’s counterintuitive here is that the insects don’t
need to be intelligent. They have all the ingredients they need:
Each �re�y contains an oscillator, a little metronome, whose
timing adjusts automatically in response to the �ashes of others.
That’s it.

Except for one thing. It’s not at all obvious that the scenario
can work. Can perfect synchrony emerge from a cacophony of
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thousands of mindless metronomes? In 1989 my colleague Rennie
Mirollo and I proved that the answer is yes. Not only can it work
—it will always work, under certain conditions.

For reasons we don’t yet understand, the tendency to
synchronize is one of the most pervasive drives in the universe,
extending from atoms to animals, from people to planets. Female
friends or coworkers who spend a great deal of time together
often �nd that their menstrual periods tend to start around the
same day. Sperm swimming side by side en route to the egg beat
their tails in unison, in a primordial display of synchronized
swimming. Sometimes sync can be pernicious: Epilepsy is caused
by millions of brain cells discharging in pathological lockstep,
causing the rhythmic convulsions associated with seizures. Even
lifeless things can synchronize. The astounding coherence of a
laser beam comes from trillions of atoms pulsing in concert, all
emitting photons of the same phase and frequency. Over the
course of millennia, the incessant e�ects of the tides have locked
the moon’s spin to its orbit. It now turns on its axis at precisely
the same rate as it circles the earth, which is why we always see
the man in the moon and never its dark side.

On the surface, these phenomena might seem unrelated. After
all, the forces that synchronize brain cells have nothing to do
with those in a laser. But at a deeper level, there is a connection,
one that transcends the details of any particular mechanism. That
connection is mathematics. All the examples are variations on the
same mathematical theme: self-organization, the spontaneous
emergence of order out of chaos. By studying simple models of
�re�ies and other self-organizing systems, scientists are beginning
to unlock the secrets of this dazzling kind of order in the
universe.

The question about self-organization that Rennie and I explored
was originally posed by Charlie Peskin, an applied mathematician
at New York University’s Courant Institute. A soft-spoken man
with a neatly trimmed beard and an easy smile, Peskin is one of
the world’s most creative mathematical biologists. He loves to use
math and computers to plumb the mysteries of physiology: how
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the molecules and tissues and organs of the body perform their
exquisite functions. Whether he’s trying to work out how the
retina can detect the dimmest light imaginable, or how molecular
motors generate the forces in muscles, his trademark is his
versatility. He seems willing to try anything, whatever is required
to gain insight. If the math he needs does not exist, he’ll invent it.
If the problem requires a supercomputer, he’ll program it. If
existing procedures are too slow, he’ll devise faster ones.

Even his mathematical style is �exible and pragmatic. His most
celebrated work deals with the three-dimensional pattern of
blood �ow in the chambers of a pumping heart, complete with
realistic anatomy, valves, and �ber architecture. For that complex
problem he combined the brute force of a supercomputer
simulation with the �nesse of a wholly original numerical
scheme. On other problems, however, he has usually followed
Einstein’s dictum that everything should be made as simple as
possible, but not simpler. In those cases he opted for a minimalist
approach, neglecting all biological details except the truly
essential ones. It was in that minimalist spirit that Peskin
proposed a schematic model for how the pacemaker cells of the
heart might synchronize themselves.

The heart’s natural pacemaker is a marvel of evolution, perhaps
the most impressive oscillator ever created. A cluster of about
10,000 cells called the sinoatrial node, its function is to generate
the electrical rhythm that commands the rest of the heart to beat,
and it must do so reliably, minute after minute, for three billion
beats in a lifetime. Unlike most of the cells in the heart, the
pacemaker cells oscillate automatically—isolated in a petri dish,
their voltage rises and falls in a regular rhythm.

All of which raises the issue, Why do we need so many of these
cells, if one can do the job by itself? Probably because a single
leader is not a robust design—a leader can malfunction or die.
Instead, evolution has produced a more reliable, democratic
system in which thousands of cells collectively set the pace. Of
course, democracy raises its own problems: Somehow the cells
have to coordinate their �rings; if they send con�icting signals,
the heart becomes deranged. And that’s the issue that Peskin
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wondered about: How do these cells, with no leader or outside
instructions, manage to get in sync?

Notice how similar this question is to the earlier one about
�re�ies. Both involve large populations of rhythmic individuals
that �re o� sudden pulses that jolt the rhythms of others in their
group, speeding them up or slowing them down according to
speci�c rules. In both cases, sync appears inevitable. The
challenge is to explain why this should be so.

In 1975, Peskin examined this question within the framework
of a simpli�ed model. Each pacemaker cell is abstracted as an
oscillating electrical circuit, equivalent to a capacitor in parallel
with a resistor. (A capacitor is a device for storing electrical
charge, and here plays a role akin to the cell’s membrane; a
resistor provides a pathway for current to �ow out of the cell,
analogous to so-called leakage channels in the membrane.) A
constant input current causes the capacitor to charge up,
increasing its voltage steadily. Meanwhile, as the voltage rises,
the amount of current leaking through the resistor increases, so
the rate of increase slows down. When the voltage reaches a
threshold, the capacitor discharges, and the voltage drops
instantly to zero—this pattern mimics the �ring of a pacemaker
cell and its subsequent return to baseline. Then the voltage starts
rising again, and the cycle begins anew. Viewed as a function of
time, the voltage cycle has two parts: a gentle ascent along a
charging curve (a graph shaped like half an arch, rising but
bowed downward), followed by a vertical drop back to baseline.

Next, Peskin idealized the cardiac pacemaker as an enormous
collection of these mathematical oscillators. For simplicity, he
assumed that all the oscillators are identical (and therefore follow
the same charging curve); that each oscillator is coupled equally
strongly to all the others; and that the oscillators a�ect one
another only when they �re. Speci�cally, when an oscillator �res,
it instantly kicks the voltages of all the others up by a �xed
amount. If any cell’s voltage exceeds the threshold, it �res
immediately.

What makes the problem so bewildering is that di�erent
oscillators are typically at di�erent stages in the cycle at any
given moment—some are on the
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brink of �ring, others are farther down on the charging curve,
and still others may be close to baseline. Once the lead oscillator
reaches threshold, it �res and kicks everyone else to di�erent
positions along the charging curve. The e�ects of the �ring are
mixed: Oscillators that were close to threshold are knocked closer
to the �ring oscillator, but those close to baseline are knocked
farther out of phase. In other words, a single �ring has
synchronizing e�ects for some oscillators and desynchronizing
e�ects for others. The long-term consequences of all these
rearrangements are impossible to fathom by common sense alone.

For a more vivid picture of what’s going on, imagine an
individual cell as analogous to a toilet tank �lling with water. As
the water pours in, its level rises steadily, as the voltage does in
the cell. Suppose that when the water reaches a certain height,
the toilet automatically �ushes. The sudden discharge returns the
water to its baseline level, at which point the tank begins �lling
again, creating a spontaneous oscillator. (To complete the
analogy, we also have to suppose that the tank is slightly leaky.
Water spills out through a small hole near the bottom of the tank.
It drains faster when there’s more water in the tank, which
implies that the tank �lls more slowly as it rises. This leakage is
not important for the oscillation itself—the apparatus would cycle
without it—but it turns out to be crucial for the synchronization
of many such oscillators.) Finally, imagine an army of 10,000 of
these oscillating toilets, rigged together by a system of pipes
connecting every tank to every other, so that when any one
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�ushes, it raises the water level equally in all the rest. If that
additional water lifts any of those over their threshold, they �ush
too.

It’s a bizarre image, a plumber’s version of a Rube Goldberg
machine, and the question becomes, What will this contraption
do, once started? Remain perpetually disorganized? Split into
battling factions, �ushing in turn?

Peskin conjectured that the system would always synchronize:
No matter how it was started, all the oscillators would end up
�ring in unison. Furthermore, he suspected that sync would occur
even if the oscillators were not quite identical. But when he tried
to prove his conjectures, he ran into technical obstacles. There
were no established mathematical procedures for handling large
systems of oscillators coupled by sudden, discontinuous impulses.
So he backed o� and focused on the simplest possible case: two
identical oscillators. Even here the mathematics was thorny. He
restricted the problem further by allowing only in�nitesimal kicks
and in�nitesimal leakage through the resistor. Now the problem
became manageable; for this special case, he proved that sync
was inevitable.

Peskin’s proof relies on an idea introduced by the French
mathematician Henri Poincaré, the founder of chaos theory.
Poincaré’s concept is the mathematical equivalent of strobe
photography. Take two identical oscillators, A and B, and chart
their evolution by taking a snapshot every time A �res. What
does the series of snapshots look like? Oscillator A has just �red,
so it always appears at baseline, at zero voltage. The voltage of B,
in contrast, changes from one snapshot to the next. By solving the
equations governing his model, Peskin found an explicit but
messy formula for the change in B’s voltage between snapshots.
The formula revealed that if the voltage is less than a certain
critical value, it will decrease steadily until it reaches zero,
whereas if it is larger, it will increase steadily until it reaches
threshold. In either case, B ends up synchronized with A. There is
one exception: If B’s voltage is precisely equal to the critical
voltage, then it can be driven neither up nor down and so stays
poised at criticality. The oscillators �re repeatedly half a cycle
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out of phase from each other. But this equilibrium is unstable:
The slightest nudge tips the system toward synchrony.

Despite Peskin’s successful analysis of the two-oscillator case,
the case of an arbitrary number of oscillators eluded proof for
another 15 years. During this time Peskin’s work went virtually
unnoticed. It lay buried in an obscure monograph—essentially a
photocopied set of his lecture notes—available only by request
from his department.

One day in 1989, I was �ipping through a book called The
Geometry of Biological Time, written by the theoretical biologist
Art Winfree, one of my heroes. At the time I was a postdoctoral
fellow in applied math at Harvard and feeling hungry for a new
problem to work on. Even though I’d been poring over Winfree’s
book for the past eight years, I still found it to be an endless
source of ideas and inspiration. It wasn’t just a summary of past
research on biological oscillators—it was a map for fortune
hunters, a guide to future discoveries. On practically every page,
Winfree pointed the way to good unsolved problems, with tips
about which ones were ripest.

And here was a lead I hadn’t noticed before: In a section on
oscillators communicating by rhythmic impulses, Winfree
mentioned the model for cardiac pacemaker cells that Peskin had
proposed in his monograph. Although Peskin had successfully
analyzed the case of two identical oscillators, wrote Winfree, “the
population problem awaits completion.”

That piqued my curiosity. What was this fundamental puzzle,
all set up, waiting to be solved? I’d never heard of Peskin’s work,
but it sounded extraordinary. Nobody else had ever tried to tackle
the mathematics of a population of “pulse-coupled” oscillators,
where the interactions are mediated by abrupt, pulsatile signals.
This was a noticeable hole in the literature of mathematical
biology, and an embarrassing one at that, given how common it
was for biological oscillators to interact in this way. Fire�ies
�ash. Crickets chirp. Neurons spike. All use sudden pulses to
communicate. Nevertheless, theorists shied away from pulse
coupling for mathematical reasons. Impulses make variables jump
discontinuously, and calculus has trouble coping with jumps—it
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works best for processes that change smoothly. Yet Peskin had
somehow found a way to analyze two oscillators that repeatedly
zap each other. How had he done it? And what blocked his path
for more than two?

Our library didn’t have a copy of his monograph, but Peskin
kindly mailed me the relevant pages. His analysis was sweet,
clear, and direct. But I quickly realized why he stopped at two:
Although his analysis was elegant, his formulas were already
becoming unwieldy. Three oscillators would be worse, and an
arbitrary number, n, seemed downright forbidding. I couldn’t see
how to extend his argument or bypass the complications.

To get a better feel for the problem, I ran it on the computer in
two di�erent ways. The �rst approach was to inch ahead and try
the three-oscillator problem, mimicking Peskin’s strategy, using
small kicks and leakage, and letting the computer handle all the
algebra. The formulas were horrible—some of them �lled several
pages—but with the computer’s help, I whittled them down to
something intelligible. The results showed that Peskin’s
conjecture was probably true for three oscillators. They also
showed that this was not the right way to proceed. The algebra,
even with the help of the computer, was becoming prohibitive.

The second approach was simulation. No formulas now, just let
the computer march the system forward in time, one small step
after another, then see what happens. Simulation is no substitute
for math—it could never provide a proof—but if Peskin’s
conjecture was false, this approach would save me a lot of time
by revealing a counterexample. This sort of evidence is extremely
valuable in math. When you’re trying to prove something, it helps
to know it’s true. That gives you the con�dence you need to keep
searching for a rigorous proof.

Programming the simulation was easy. When one oscillator
�res, it kicks all the others up by a certain, �xed amount. If any
of the kicked ones go over the threshold themselves, let those �re
too, and update the others accordingly. Otherwise, in between
�rings, use Peskin’s formulas to advance all the oscillators toward
their thresholds.
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I tried a population of 100 identical oscillators. With their
voltages initially scattered at random between baseline and
threshold, I plotted them as a swarm of dots arching toward
threshold, climbing up their common charging curve of voltage
versus time. Even with the help of computer graphics, I couldn’t
see a pattern in their collective motion—only a buzzing
confusion.

The problem here was too much information. And so I came to
appreciate another advantage of Peskin’s strobe method: Not only
does it simplify the analysis, it’s also the best way to visualize
how the system evolves. All the oscillators are invisible except at
the precise moments when one particular oscillator �res. At those
moments, an imaginary strobe light illuminates the rest of the
oscillators, revealing their instantaneous voltages. Then the whole
system lapses back into darkness until the next time that
distinguished oscillator �res. Peskin’s model has the property that
the oscillators �re in turn—no one ever jumps the queue—so 99
other oscillators �re in the dark before the next strobe �ash
occurs.

Viewed on the computer, these computations �ew by so rapidly
that the screen appeared to �icker, with 99 oscillators hopping
along the charging curve, changing their positions with each �ash
of the strobe. Now the pattern was unmistakable. The dots
clumped together, forming small pockets of sync that coalesced
into larger ones, like raindrops merging on a windowpane.

It was spooky—the system was synchronizing itself. Defying
Philip Laurent and all the other skeptics who had argued that
�re�y sync was impossible in principle, that such a thing was
“certainly contrary to all natural laws,” the computer was
showing that a mob of mindless little oscillators could fall into
step automatically. The e�ect was uncanny to watch. An onlooker
couldn’t help but feel that the oscillators were deliberately
cooperating, consciously striving for order, but they were not.
Each one was responding robotically to the impulses �red by
others, with no goal in mind.

To make sure I hadn’t gotten lucky on the �rst try, I repeated
the simulation dozens of times, for other random initial
conditions and for other numbers of oscillators. Sync every time.
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Peskin’s conjecture seemed to be right. The challenge now was to
prove it. Only an ironclad proof would demonstrate, in a way that
no computer ever could, that sync was inevitable; and the best
kind of proof would clarify why it was inevitable. I called my
friend Rennie Mirollo, a mathematician at Boston College.

Rennie and I had known each other for ten years. As grad
students at Harvard, we used to hang out together on weekends,
eating french fries at greasy spoons at 2 A.M., while talking about
math and women in roughly equal measure. But we never worked
together in those days. His training was in pure math while mine
was in applied math—we could understand each other, but not
completely.

For his doctoral studies, Rennie worked on a very abstract
problem and hoped to write his thesis about it. His instinct told
him that a certain theorem must be true, and he spent three years
trying to prove it. One day, he realized that it was false—he
found a counterexample that wrecked everything. Nothing could
be salvaged. Yet rather than be depressed, his reaction was to
switch to a new branch of mathematics, solve a key problem in it,
and write a thesis—all in one year.

Around 1987, Rennie and I began working together. Our
strengths were complementary. Usually I would propose the
problem, explain its scienti�c context, run computer simulations,
and suggest intuitive arguments. He would come up with
strategies to crack the problem wide open, and then �nd ways to
prove a theorem.

When I told him about my computer experiments on Peskin’s
model, he was eager at �rst, good-natured and curious. But once
he understood the question, he became impatient, like a boxer
waiting to enter the ring. He gave me a few more minutes to
summarize what I’d done, but before long, he insisted on looking
at it his own way.

Rennie simpli�ed the model ruthlessly. He had no patience for
all the details inherent in Peskin’s original circuit model, with its
capacitors and resistors and voltages. The only essential feature of
the model, he guessed, is that each oscillator follows a slowing
upward curve of voltage as it rises toward threshold. So he
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imposed that geometry from the start. He threw away the circuit
and replaced it with an abstract, voltagelike variable that
repeatedly builds up to a threshold, �res, and resets. Then he
imagined a collection of these variables, n of them, all identical,
and all interacting as before: Whenever one oscillator �res, it
pulls all the others up by a �xed amount, or up to threshold,
whichever is less.

This distilled model is not only clearer (which reduces the
algebra enormously); it’s also more broadly applicable. Instead of
a purely electrical interpretation in terms of voltage, we could
now think of the variable as measuring any oscillator’s readiness
to �re, whether a heart cell or a cricket, a neuron or a �re�y.

We were able to prove that this generalized system almost
always becomes synchronized, for any number of oscillators and
no matter how they are started. A key ingredient in the proof is
the notion of “absorption”—a shorthand for the idea that if one
oscillator kicks another over threshold, they will remain
synchronized forever, as if one had absorbed the other.
Absorptions were conspicuous in my computer experiments,
when the oscillators appeared to merge like raindrops. They are
also irrevocable: Once two oscillators �re together, they will
never drift apart on their own, because they have identical
dynamics; furthermore, they are identically coupled to all the
others, so even when they are kicked, they will stay in sync
because they are jolted equally. Thus absorptions act like a
ratchet, always bringing the system closer to synchrony.

The heart of the proof is an argument demonstrating that a
sequence of absorptions locks the oscillators together in ever-
growing clumps, until they �nally coalesce into one giant group.
If you’re not a mathematician, you might be wondering how to go
about proving something like that. There are an in�nite number
of di�erent ways to start the system, so how can all the
possibilities be covered? And what ensures that enough
absorptions will occur to carry the system all the way to ultimate
synchrony?

As I outline the reasoning below, don’t worry too much about
following the details. The point is just to give you a sense of how
such proofs are built. It’s not like what you might expect if your
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only experience was with high school geometry, which is often
taught in a mechanical, authoritarian way. Developing a
mathematical proof is actually a very creative process, full of
vague ideas and images, especially in the early stages. Rigor
comes later. (If you are not particularly interested in this, feel
free to skip ahead to page 30.)

The �rst step is to catalog all the possible starting
con�gurations. For instance, let’s reconsider the case of two
oscillators. Because of Peskin’s strobe trick, we know we don’t
need to watch the oscillators at all times. It’s enough to focus on
one moment in every cycle, which we choose to be the instant
immediately after oscillator A has �red and returned to baseline.
Then oscillator B could be at any “voltage” between baseline and
threshold. Visualizing B’s voltage as a point on a number line,
with baseline at 0 and threshold at 1, we see there’s a line
segment of di�erent possibilities. This one-dimensional segment
encompasses all possible starting conditions for the system
(because we know A is at 0, having just �red and reset to
baseline; the only variable is B, which must be somewhere along
the line segment between 0 and 1).

Three oscillators create a larger space of possibilities. Now we
need to know two numbers: Given that A has just �red and
returned to 0, we still need to specify the voltages of oscillators B
and C at that instant. Visualize those two possibilities, all
combinations of B’s and C’s voltages. What is the geometry
corresponding to a pair of numbers? We can think of them as the
two coordinates of a point in a two-dimensional space.

Picture the x, y plane, familiar from high school math. Here the
x-axis, plotted horizontally as usual, represents B’s voltage at the
moment that A �res. The y-axis, plotted vertically, represents C’s
voltage at the same instant. A pair of voltages is a single point in
this plane.

As we allow B and C to vary independently over all voltages
between 0 and 1 (to cover all possibilities), the corresponding
point moves around inside a square region, in the same way that
turning the two knobs on an Etch A Sketch moves the mechanical
pen across a square screen.
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The upshot is that with three oscillators, we have a square of
possible initial conditions: one axis for B, one for C. Notice that
we don’t need an axis for A, since it always starts at 0, by
de�nition of how we strobe the system.

The pattern is becoming clear. As we add more oscillators, we
need to add more dimensions to account for all the possibilities.
Four oscillators require a solid cube of initial conditions; �ve
require a four-dimensional hypercube; and in general, n
oscillators require an (n–1)-dimensional hypercube. That sounds
mind-boggling, and it is, if you try to picture it. But the
mathematical formalism handles all dimensions in the same way.
There are no new complications. So for concreteness, I’ll continue
to focus on the three-oscillator case, which contains all the main
ideas.

The next step is to translate the dynamics—the evolution of the
system in time—into the pictorial framework we’re developing.
The goal is to predict whether the system will end up in sync,
given an initial condition for oscillators B and C.

Imagine what happens if we let the system run. All the
oscillators rise toward threshold, �re, and reset to baseline; they
also respond to kicks from other oscillators. To eliminate
redundant information, we again exploit the strobe idea: Let the
system run in the dark until the next time A has �red and gone
back to 0, and B and C have responded. Then �ash the strobe and
take the next snapshot, recording the new positions of B and C.

The geometrical e�ect is that the old point in the square has
just hopped to a new point: the updated voltages of B and C. In
other words, the dynamical evolution of the system is tantamount
to a transformation that takes any given point in the square and
sends it to a new point, according to some complicated rule that
depends on the shape of the charging curve and the size of the
kicks.

The process can be repeated; the new point can be treated as an
initial point, then sent on its way by the transformation, over and
over again, hopping from place to place in the square in a series
of jerky steps. If the system is destined to sync, the point will
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eventually hop toward the lower left corner of the square—the
point with voltages (0,0)—meaning that each oscillator reaches
baseline simultaneously. (Why that corner? Because that’s where
oscillator A is. By de�nition of the strobe, A has just �red and
reset, so its voltage is 0. In the synchronized state, both of the
other oscillators have voltage 0 too.)

In principle, every initial point has a fate that can be
calculated. If all the oscillators end up �ring in sync, we say the
starting point is “good.” Otherwise, it’s “bad.” Rennie and I never
found a way to decide exactly which points were which, but we
did manage to prove that almost all points are good. Bad points
do exist, but they are so few and sparse that, taken all together,
they occupy no area. Or to put it another way, if you choose a
point at random, you have no chance of picking a bad one.

That might sound nonsensical: If bad points exist, you may be
thinking, surely with my luck I would choose one. But you
wouldn’t. It would be like throwing a dart at a dartboard and
requiring that it land precisely on the dividing line between two
scores. That’s unlikely enough, but now imagine that the line has
no thickness (as required if it is to have zero area) and now you
see why a random dart would never hit it.

It was Rennie’s idea to think about the bad points, even though
we were interested in the good ones. His strategy was reminiscent
of the artist’s concept of negative space: To understand the object,
understand the space around it. In particular, he found a way to
prove that the bad points occupy zero area.

To give the �avor of the argument, let’s concentrate on the
worst of the bad points, which I’ll call the “terrible” ones. These
are the most de�ant in resisting the urge to sync; they never
undergo any absorptions. When the system starts at a terrible
point, no pair of oscillators (let alone the whole population) ever
synchronizes.

To see why the terrible points have no area, think of them
collectively as a set, and examine what happens when we apply
the transformation to all the points in that set. Each terrible point
will hop somewhere, but it will still be terrible after the
transformation. That’s almost a tautology: If a point never leads
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to an absorption, then after one iteration of the transformation, it
still never leads to an absorption. Hence, the new point is terrible
too. Since the original set included all terrible points (by
de�nition), this new point must have been lurking somewhere in
there to begin with.

The conclusion is that the transformed set lies entirely inside
the original. In more visual terms, it’s like those “before” and
“after” pictures favored by advertisements for diet programs. The
transformed set—the slimmed-down “after” picture—is contained
entirely in the chubbier “before” picture, just as the diet
promised.

So far the argument hasn’t used any information about the
shape of the charging curve or the size of the kicks. When we
�nally take those details into account, we come to what seems at
�rst like a paradox, though it’s actually the clincher for the
argument. Rennie and I were able to prove that the
transformation from “before” to “after” works somewhat like the
enlarging function on a photocopier. Any set of points that you
feed into the transformation comes out larger afterward, in the
sense that its total area will be magni�ed by a factor larger than
1. It does not matter what set you choose (just as it doesn’t matter
what image you place on the photocopier); all sets get expanded
in area. In particular, the terrible set expands. But wait—that
means the terrible set becomes fatter, not skinnier, seemingly
contradicting what we said above. To be more precise, the
conundrum is that the transformed version of the terrible set has
to sit inside the original, yet its area also has to get larger, which
seems impossible. The only way these two conclusions could be
compatible is if the original set had zero area to begin with (the
“before” picture must have been a stick �gure). Then there’s no
contradiction—when multiplied by a number larger than 1, its
area is still zero, so the transformed set can �t inside the original.
And this is exactly what we wanted to show: The terrible points
occupy no area. So you’ll never choose them, if you pick an initial
condition at random. Nor will you pick any other bad points. And
that’s why sync is inevitable for this model.

The same argument works for any number of oscillators, with
the slight modi�cation that area must be replaced by volume or
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hypervolume when there are four or more oscillators. In any case,
the probability of starting at a bad point is always zero. Hence
Peskin was right: In his model of identical, pulse-coupled
oscillators, everyone ends up �ring in unison.

In developing this proof, we found that Peskin’s leakage
assumption was crucial; otherwise the transformation from
“before” to “after” doesn’t expand area, and the whole argument
breaks down. And in fact, it has to break down, because the
theorem is false without that assumption. If the charging curve
had bowed up instead of down—if the voltage accelerates up to
threshold—our simulations showed the population doesn’t
necessarily synchronize. The oscillators can get stuck in a
random-looking pattern of disorganized �ring.

This delicate point often tripped up other mathematicians when
I �rst gave lectures about our work; before I had a chance to
explain it, some heckler (and usually there was one) would
interrupt and say the theorem is trivial, that of course the
oscillators will synchronize, since they’re all identical and
coupled equally to one another, and what else did I expect? But
that objection is too facile—it overlooks the subtle in�uence of
the charging curve’s shape. Only when the curve bends in the
right direction is sync inevitable. In biological terms, the shape of
the charging curve determines whether kicks are more potent at
the beginning of the cycle (near baseline) or at the end of the
cycle (near threshold). When the curve bows downward as in
Peskin’s model, a given kick in voltage translates to a larger shift
in phase for oscillators close to threshold, which in turn ensures
that the system will synchronize, though seeing why requires a
complicated calculation and is certainly not obvious.

Our proof of Peskin’s conjecture was the �rst rigorous result
about a population of oscillators coupled by sudden impulses.
With regard to real �re�ies or cardiac pacemaker cells, however,
the model is plainly simpli�ed. It assumes that the �ring of one
oscillator always kicks the others toward threshold, thereby
advancing their phases; real biological oscillators can generally
in�ict both advances or delays. Moreover, the Thai �re�ies that
are most adept at synchronizing—a species known as Pteroptyx
malaccae—use an altogether di�erent strategy: They continually
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adjust their clocks’ frequencies, not their phases, in response to
incoming �ashes. In e�ect they make them tick faster or slower,
rather than pushing the minute hands forward or back. By further
pretending that all oscillators are identical, the model neglects
the genetic variability inherent in any real population. And
�nally, assuming that all oscillators a�ect one another equally is
a crude approximation for heart cells, which primarily in�uence
their nearest neighbors. Given all the limitations of our analysis,
we were unprepared for the reaction it was about to provoke.

Within the next few years, more than 100 papers were written
on pulse-coupled oscillators by scientists in disciplines ranging
from neurobiology to geophysics. In neurobiology, theorists
studying models of neural networks had grown impatient with
the prevailing approach, in which neurons were described
coarsely by their average rates of �ring (the number of spikes per
second) instead of in terms of the actual timing of the spikes
themselves. The new framework of pulse-coupled oscillators �t
perfectly with the needs and mood of the time.

By an accident of scienti�c sociology, or maybe because of a
mysterious zeitgeist, in the early 1990s scientists in other �elds
were also thinking about these kinds of systems. For example, the
in�uential Caltech biophysicist John Hop�eld pointed out a
connection between pulse-coupled neurons and earthquakes. In a
simpli�ed model of an earthquake, crustal plates continually pull
on one another, building up stress until a threshold is crossed.
Then the plates slip suddenly, releasing their pent-up energy in a
burst. The whole process is reminiscent of the gradual rise and
sudden �ring of a neuron’s voltage. In the earthquake model, the
slippage of one plate may be enough to trigger others to slip (just
as neural �ring can set o� a chain reaction of other discharges in
the brain). These cascades of propagating events can give rise to
earthquakes (or epileptic seizures). Depending on the exact
con�guration of the other elements of the system, the result may
be a minor rumble or a massive quake.

The same mathematical structure cropped up in models of
other interacting systems, ranging from forest �res to mass
extinctions. In each case, an individual element is subjected to
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increasing pressure, builds up toward a threshold, then suddenly
relieves its stress and spreads it to others, potentially triggering a
domino e�ect. Models with this character were all the rage in
early 1990s. The statistics of the cascades—most very small, but a
few cataclysmic—were studied theoretically by the physicist Per
Bak and his collaborators, in connection with what they called
self-organized criticality.

Hop�eld’s insight was that self-organized criticality might be
intimately linked to synchronization in pulse-coupled oscillator
systems. The tantalizing possibility of a relationship between
those two areas spawned dozens of papers exploring the possible
ties. This episode exempli�es the ways that mathematics can
expose the underlying unity of phenomena that otherwise seem
unrelated.

Our work also attracted media attention, largely because of its
connection to �re�ies, which conjure up childhood memories of
summer evenings spent catching the glowing insects in glass jars.
As a result of this coverage, in 1992 I received a delightful letter
from a woman in Knoxville, Tennessee, named Lynn Faust. In her
gracious and unassuming way, she was about to shatter a myth
about synchronous �re�ies that had lasted for decades. She
wrote:

I am sure you are aware of this, but just in case, there is a type of group
synchrony lightning bug inside the Great Smoky Mountain National Park
near Elkmont, Tennessee. These bugs “start up” in mid June at around 10
pm nightly. They exhibit 6 seconds of total darkness; then in perfect
synchrony, thousands light up 6 rapid times in a 3 second period before all
going dark for 6 more seconds.

We have a cabin in Elkmont (due to be destroyed by the Park Service in
December 1992) and, as far as we know, it is only in this small area that
this particular type of group synchronized lightning bug exists. It is
beautiful.

These are very di�erent from our regular lightning bugs that just seem
to blink on and o� anytime after dusk.

She went on to say that across the creek from the cabin, �re�ies
high on the hillside start their sequence a little bit ahead of those
below, so light seems to ripple down “like a waterfall of �re�ies.”
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She wrote to the Park Service, desperately worried that their
plan to evict the Elkmont residents from their cabins could ruin
the habitat before any scientists had a chance to study it. The
spectacle was seen nowhere else in the park, not even a half mile
away, which suggested to Lynn that the local residents must be
doing something to enable it. She guessed that the key might be
freshly mowed lawns: For 50 years, Elkmont residents had
mowed their lawns roughly every two weeks. That allowed the
�re�y larvae to survive the winter by burrowing into the short,
mossy grass. They also hatched there in the spring and bred there
in the summer. In short, without the Elkmont residents around to
mow the grass, she argued, the �re�ies might be lost to science
forever. In support of her lawn hypothesis, she noted that the
highest concentrations of �re�ies were found

right up next to the cabins and extending out onto the mown lawn
areas… no larvae have been located at Uncle Lem Owenby’s former
homeplace where regular mowing no longer occurs. In the 15 years that
the forest has replaced lawn at Mayna McKinna’s cabin way up Jake’s
Creek she has noticed a marked decrease in “her” �re�y population.

Lynn was also driven by concerns over losing her cabin and
community. The Faust family had enjoyed the light show for 40
years. Every June, three generations would wrap themselves in
blankets and sit silently on their unlit porch, waiting for the
entertainment to begin.

What was so familiar to the Fausts was new to science. These
backyard observations were about to become the �rst well-
documented case of synchronous �re�ies in the Western
Hemisphere. In the decades since the controversy erupted in
Science magazine in the early 1900s, the dogma had been that the
phenomenon never occurs here, only in Asia and Africa. I put
Lynn in touch with Jonathan Copeland, a �re�y researcher at
nearby Georgia Southern University, who, along with his
collaborator Andy Moise� of University of Connecticut,
con�rmed that the �re�ies at the Faust cabin were synchronous,
lighting up within three-hundredths of a second of one another.

Although Elkmont was absorbed by the Great Smoky Mountain
National Park in 1992, the �re�ies have survived the change, and
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“The Light Show” has gone on to become a tourist attraction. As
for Lynn Faust, she continues to be tuned in to the pervasiveness
of sync in nature, and is still making her own discoveries. In a
1999 letter to me, she wrote: “Just another simple synchrony I
noticed this spring—when 4 turkey gobblers (these were
domestic) are together during the spring mating time they
congregate in a circle and gobble in synchrony after (what
appears to be) the head gobbler makes an initial gobble.”

Not everyone is so appreciative of the wonders of synchrony in
the animal world. On May 18, 1993, the tabloid National Enquirer
ran an article titled “Govt. Blows Your Tax $$ to Study Fire�ies in
Borneo—Not a Bright Idea!” The piece mocked the National
Science Foundation for funding one of Copeland’s grant
proposals, and reported that Representative Tom Petri,
Republican from Wisconsin, “doesn’t think the study is likely to
be very illuminating—and he wants to squash it. ‘Spending
taxpayers’ money studying �re�ies doesn’t sound like a very
bright idea to me.’”

It’s hard to blame Representative Petri for missing the point.
The value of studying �re�ies is endlessly surprising. For
example, before 1994, Internet engineers were vexed by
spontaneous pulsations in the tra�c between computers called
routers, until they realized that the machines were behaving like
�re�ies, exchanging periodic messages that were inadvertently
synchronizing them. Once the cause was identi�ed, it became
clear how to relieve the congestion. Electrical engineers devised a
decentralized architecture for clocking computer circuits more
e�ciently, by mimicking the �re�ies’ strategy for achieving
synchrony at low cost and high reliability. (The humble creatures
have even helped save human lives. Ironically, the same week
that Representative Petri’s quip appeared in the Enquirer, an
article in Time magazine reported that doctors were borrowing
the �re�y’s light-emitting enzyme, luciferase, to accelerate the
testing of drugs against resistant strains of tuberculosis.)

Beyond serving as an inspiration to engineers, the group
behavior of �re�ies has broader signi�cance for science as a
whole. It represents one of the few tractable instances of a
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complex, self-organizing system, where millions of interactions
occur simultaneously—when everyone changes the state of
everyone else. Virtually all the major unsolved problems in
science today have this intricate character. Consider the cascade
of biochemical reactions in a single cell and their disruption when
the cell turns cancerous; the booms and crashes of the stock
market; the emergence of consciousness from the interplay of
trillions of neurons in the brain; the origin of life from a
meshwork of chemical reactions in the primordial soup. All these
involve enormous numbers of players linked in complex webs. In
every case, astonishing patterns emerge spontaneously. The
richness of the world around us is due, in large part, to the
miracle of self-organization.

Unfortunately, our minds are bad at grasping these kinds of
problems. We’re accustomed to thinking in terms of centralized
control, clear chains of command, the straightforward logic of
cause and e�ect. But in huge, interconnected systems, where
every player ultimately a�ects every other, our standard ways of
thinking fall apart. Simple pictures and verbal arguments are too
feeble, too myopic. That’s what plagues us in economics when we
try to anticipate the e�ect of a tax cut or a change in interest
rates, or in ecology, when a new pesticide back�res and produces
dire, unintended consequences that propagate through the food
chain.

The �re�y problem poses many of the same conceptual
challenges, though of course it’s much easier than economics or
ecology. We have a much better idea about the nature of the
individuals (�re�ies) and their behavior (rhythmic �ashing) and
their interactions (resetting in response to light) than we do about
the global marketplace or ecological webs, with so many diverse
companies and species and unknown modes of interaction among
them. But it’s still not easy. In fact, it’s at the edge of what we
understand today. As such, it’s an ideal starting point for learning
how math can help us unravel the secrets of spontaneous order,
and a case study of what it can (and cannot) do for us at this
primitive, thrillingly early stage of exploration.
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Although synchrony is ubiquitous among living things, its
function is not always obvious. Why, for instance, should �re�ies
�ash in unison? Biologists have o�ered at least 10 plausible
explanations. The oldest one is called the beacon hypothesis. It
has been known for decades that only the males synchronize their
�ashes; so, according to this view, the light show is directed at
the females—a collective invitation to come hither. By blinking in
concert, the males reinforce that seductive signal, beaming it for
miles through the jungle canopy, luring females who might not
otherwise see any of them. This may be why synchrony is
common in densely vegetated areas (like the jungles of Thailand
and Malaysia, or the forest behind Lynn Faust’s cabin) but rare in
the open meadows of the eastern United States, where �re�ies
can easily tryst without it.

A second possible advantage of synchrony is that you might get
lucky—a female with eyes for your look-alike neighbor might
become confused and mate with you instead. For that matter,
synchrony could be equally bene�cial for confounding predators;
it’s always safest to blend in with a crowd. The latest theory is
that synchrony re�ects competition, not cooperation: Every �re�y
is trying to be the �rst to �ash (because females seem to prefer
that), but if everyone follows that strategy, sync automatically
ensues.

For many other creatures as well, communal sync is somehow
tied to reproduction. Periodical cicadas outwit their predators by
hiding underground for 17 years; then millions of them burst out
simultaneously in a monthlong mating frenzy and die. Groups of
male �ddler crabs, each of which sports a single, comically huge
claw, take best advantage of their natural endowments: They �irt
with a female by surrounding her and waving their gigantic claws
in unison. (The ritual looks like many maestros conducting a
single musician.)

In our own species, it is the females who do the synchronizing.
Most women are familiar with the phenomenon of menstrual
synchrony, in which sisters, roommates, close friends, or
coworkers �nd that their periods tend to start around the same
time. Long dismissed as anecdotal, menstrual synchrony was �rst
documented scienti�cally by Martha McClintock, then an
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undergraduate psychology major at Wellesley, an all-female
college in Massachusetts. She studied 135 fellow students and had
them keep records of their periods throughout the school year. In
October, the cycles of close friends and roommates started an
average of 8.5 days apart, but by March, the average spacing was
down to 5 days, a statistically signi�cant reduction. A control
group of randomly matched pairs of women showed no such
change.

There are various ideas about the mechanism of
synchronization, but the best guess is that it has something to do
with pheromones: unidenti�ed, odorless chemicals that somehow
convey a synchronizing signal. The �rst evidence for this came
from an experiment reported in 1980 by the biologist Michael
Russell. A colleague of his, Genevieve Switz, had noticed the
e�ect in her own life; when rooming with a female friend during
the summer, the friend’s period would lock on to hers, then drift
apart after they separated in the fall. This suggested that
Genevieve was a powerful synchronizer. Russell tried to
determine what it was about Genevieve that was so compelling.
For the experiment, Genevieve wore small cotton pads under her
arms and donated the accumulated sweat to Russell each day. He
then mixed it with a little alcohol and dabbed this “essence of
Genevieve” on the upper lip of female subjects, three times a
week for four months.

The results were startling: After four months, the subjects’
periods began an average of 3.4 days apart from Genevieve’s,
down from 9.3 days at the beginning of the experiment. In
contrast, the cycles of a control group (whose upper lips were
dabbed with alcohol only) showed no signi�cant change.
Evidently something in Genevieve’s sweat conveyed information
about the phase of her menstrual cycle, in such a way that it
tended to entrain the cycles of the other women who got wind of
it.

Later studies didn’t turn out so neatly. Some found statistical
evidence for synchrony, others did not. Skeptics have viewed the
con�icting data as evidence of the weakness or coincidental
nature of the phenomenon. Recent work by McClintock, now a
biologist at the University of Chicago, suggests quite the opposite,
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that menstrual sync is only the most conspicuous consequence of
a larger phenomenon: chemical communication between women.
In a 1998 experiment, McClintock and her colleague Kathleen
Stern found that if they took swabs from the armpits of women at
di�erent points in their menstrual cycles and dabbed them on the
upper lips of other women, the donor secretions shifted the phase
of the recipient’s cycle in a systematic way. Swabs taken from
women at the beginning of their cycles, in the follicular phase
before ovulation, tended to shorten the cycles of the women who
received them. In other words, the recipients ovulated several
days earlier than they would have otherwise, based on their prior
records. In contrast, swabs taken from women at the time of
ovulation prolonged the cycles of the bene�ciaries. And
secretions collected in the luteal phase, in the days before
menstruation, had no e�ect whatsoever.

The implication is that women in a close-knit group are always
pushing and pulling on one another’s cycles, unconsciously
engaging in a silent conversation mediated by pheromones. One
possible outcome is menstrual synchrony. But given that
pheromonal signals can nudge cycles together or drive them
apart, depending on when in the month the signals were
produced, it should come as no surprise that synchrony is not
inevitable here—asynchrony or even antisynchrony (with cycles
diametrically opposed) should be possible, and indeed, they too
have been observed.

The function of this chemical dialogue remains a mystery. It
could be that women unconsciously strive to ovulate and
conceive in step with their friends (to allow them to share child-
rearing and breast-feeding duties) and to keep out of step with
their enemies (to avoid competing with them for scarce
resources). Far-fetched as it sounds, this scenario is known to
occur with other mammals. Female rats in a synchronized group
produce larger and healthier o�spring than those reared by a solo
mother. Reproductive sync has bene�ts for all if the other females
in the group are cooperative.

From a mathematical perspective, McClintock’s data con�rm
what you probably already guessed: As coupled oscillators,
women are far subtler than �re�ies. The biochemical push and
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pull between them does not always coerce them into synchrony,
unlike the �re�y species in Southeast Asia that synchronize their
�ashes all night long, every night of the year. The inescapable
synchrony of those �re�ies (and of cardiac pacemaker cells) is
brutally in�exible, and for that reason, is rarely found in other
biological settings. Like women, most oscillators sync in some
circumstances and not in others.

So the model we considered earlier in this chapter is starting to
look far too simple. Although it helped us understand how sync
could be inevitable under certain conditions, it went too far—it
didn’t allow for anything else. A more re�ned theory of coupled
oscillators should predict whether a particular group of oscillators
will synchronize or not, and tell us what factors are decisive in
that regard.

The theory should also allow for the full range of ways that
oscillators interact. Recall that �re�ies hit each other with sudden
pulses—hammer blows of light—but then ignore one another
during the rest of their cycles, whereas women grapple with one
another’s oscillators at all times. Both types of coupling are
common in nature, but the existing model allows only for pulses.
An improved model should accommodate continuous interaction
as well.

Furthermore, we have assumed so far that all the oscillators in
a given population are strictly identical. But real oscillators are
always diverse, with a spectrum of natural cycle lengths. Just as
one woman may menstruate on a roughly 25-day cycle while
another goes 35 days between periods, all other kinds of
biological oscillators display a statistical distribution of cycle
lengths. Even electronic and mechanical oscillators that are
manufactured to be nominally identical never really are, due to
slight errors in fabrication, or variations in their material
properties.

Unfortunately, these complications ratchet up the mathematical
di�culties tremendously. It’s one thing to wish for a more
realistic model, and another to construct one that’s tractable. No
insight is gained if the model is as perplexing as the phenomena
it’s supposed to describe. This is what makes mathematical
modeling an art as well as a science: An elegant model strikes just
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the right compromise between simplicity and verisimilitude.
Today we have a beautiful model of sync that does precisely that.
Its creation was a collective enterprise that spanned three
decades, and required the e�orts of three pioneers, the �rst of
whom was one of the most visionary and eccentric thinkers of the
twentieth century.
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•Two•

BRAIN WAVES AND THE CONDITIONS FOR SYNC

NORBERT WIENER WAS NEVER QUITE A CELEBRITY. But when his book
Cybernetics appeared in the 1950s, it electri�ed the reading
public. The reviewer for the New York Times called it “seminal…
comparable in importance to Galileo or Malthus or Rousseau or
Mill.” Wiener proposed a uni�ed framework for thinking about
problems of communication and control, whether in nervous
systems or societies, animals or machines, computers or people. It
was more like a dream than a �nished theory, and it turned out
to be premature. Nobody today would say they work on
cybernetics, but the �rst half of the word lives on as the trendy
pre�x in cyberspace and cyberpunk.

Among scientists, Norbert Wiener will never be forgotten, for
reasons both serious and silly. On the serious side, his name is
enshrined in the terminology of advanced mathematics: Wiener
process, Paley-Wiener theorem, Wiener-Hopf technique, and so
on. A former child prodigy who received his Ph.D. from Harvard
at age 18, Wiener revolutionized the theory of random processes.
His analysis of Brownian motion, the erratic jiggling of molecules
in solution, went far beyond Albert Einstein’s intuitive approach
to the same problem, and his methods laid the foundation for
Richard Feynman’s work in quantum electrodynamics and for
Fisher Black and Myron Scholes’s Nobel Prizewinning work on
�nance.

On the silly side, mathematicians love to tell stories about
Wiener. Short and spherical, with thick glasses and a penchant for
smoking cigars, he could often be found riding his unicycle
through the corridors of MIT. Even in a profession whose
members are not known for their athleticism or common sense,
Wiener stood out. After failing to return dozens of consecutive
serves from his tennis partner, Wiener suggested that they switch
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rackets. He was so absentminded that when he and his family
moved from Cambridge to Newton, his wife wrote out their new
address and directions home from his o�ce, knowing full well he
would forget they had moved. Sure enough, Wiener used the note
as scrap paper for some calculations, threw it away, and walked
back to his old house. When he arrived, he realized he no longer
lived there, so he stopped a little girl on the street and asked her
if she knew where the Wieners had moved. She said, “Yes, Daddy,
come with me.”

Wiener is a central �gure in the science of sync, in part because
he asked a question that no one before him had dared to address.
Whereas earlier mathematicians had been content to work on
problems involving two coupled oscillators, Wiener tackled
problems involving millions of them. Perhaps even more
important, he was the �rst to point out the pervasiveness of sync
in the universe. Chirping crickets, croaking frogs, �ashing
�re�ies, gaps in the asteroid belt, generators in the power grid—
Wiener spotted sync in all of them. Super�cial di�erences did not
distract him. He was looking for transcendent principles. And he
thought he found one, while pondering the origin of human brain
waves.

In the late 1950s, no one really knew why the brain should
oscillate at all. But decades earlier, physiologists had discovered
that if you attach two electrodes to di�erent points on a person’s
scalp, there’s a tiny voltage between them, and that voltage
�uctuates in time. When the technology of electronic ampli�ers
became su�ciently well developed, these tiny electrical
�uctuations, or “brain waves,” could be conveniently displayed
on a strip-chart recorder, where a small pen bobs up and down as
a sheet of paper scrolls by. (The same technology is used in lie
detector tests and heart monitoring, and should be familiar to
anyone who has ever watched a television show that’s set in a
hospital.)

Electroencephalographers, the experts who measure brain
waves, became very good at noticing characteristic patterns in
these tracings of brain activity. One pattern, the so-called alpha
rhythm, occurs in people who are awake but relaxed with their
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eyes closed. Subjectively, it feels like a pleasant, spacey state. On
a strip chart, it looks like a prominent oscillation of roughly 10
cycles a second.

Wiener wanted to study the alpha rhythm in much �ner detail,
because he had a hunch about what its function might be: He
thought it was the sound of the brain’s master clock ticking. Just
as a computer needs a clock to synchronize the passing of
messages among its thousands of components, Wiener supposed
that the brain would coordinate its myriad neural activities by
forcing them all to march to the beat of a centralized drummer.
Individual neurons could not possibly serve that purpose: They
were known to be sloppy oscillators at best, too imprecise to
function as clocks. Wiener hypothesized instead that the brain
ingeniously builds an accurate clock from an enormous number of
sloppy ones. Somewhere in the brain, he proposed, there might
be millions of specialized oscillators, maybe individual neurons or
small clusters of them, all discharging about 10 times a second.
Like any other biological population, these oscillators were bound
to be diverse: Some would be inherently faster than others,
preferring to �re 12 times a second, while others might run slow,
�ring only 8 times a second, though most would be somewhere in
the middle, with natural frequencies close to 10 cycles a second.
Left to their own devices, this motley bunch of neural oscillators
would �re o� impulses at disparate rates, producing an electrical
racket akin to the sound of an orchestra tuning up before a
performance. To work together as an accurate clock, these
hypothetical oscillators would need to cooperate, to sense one
another’s electrical rhythms and react accordingly so as to stay in
step. Wiener’s notion was that the oscillators would
spontaneously synchronize by pulling on one another’s
frequencies. If an oscillator was running too fast, the rest of the
group would slow it down; if it was going too slowly, the others
would speed it up.

To test whether this mechanism of frequency pulling actually
operated in the brain, Wiener proposed looking for a telltale
signature that it should leave on the alpha rhythm. An analogy
with politics helps at this point. Think of the natural frequencies
of the oscillators as being like the spectrum of political leanings
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in a hypothetical society. The most extreme left-wing radicals
correspond to a tiny cohort of oscillators that would like to run
at, say, 8 cycles per second. Inching to the right on the spectrum,
we encounter a larger subpopulation of liberals at 9 cycles per
second, a dominant core of centrists at 10, back down to a
smaller group of conservatives at 11, and only a handful of
rightwing zealots at 12 cycles per second. For simplicity, let’s
suppose that a graph of the number of people in each category
follows the familiar bell curve, dominated by a powerful center,
and tapering o� symmetrically as we move out to the right and
left wings.

Keep in mind that this picture shows innate tendencies only.
These are the

attitudes that people would hold, or the frequencies that
oscillators would exhibit, if they were completely shielded from
the in�uences of others.

Now let individuals begin to pull on one another, and suppose
(though politics rarely seems to work this way) that these
oscillators can alter their frequencies. Through the persuasion of
others, a slow oscillator can be convinced to run faster, and a
faster one can be encouraged to slow down. Then, when the
spectrum is measured, it will no longer resemble a bell curve.
Wiener guessed that it would look something like this:
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To make sense of this graph’s peculiar shape, remember that
most oscillators were near the middle of the bell curve to begin
with. By pulling on one another’s frequencies, many of them
collapsed into the absolute center, forming a powerful
mainstream consensus (the tall and narrow peak). Their
combined in�uence on the rest of the population was strong
enough to recruit a few moderates from either wing (increasing
the height of the peak still further, and reducing the curve at the
home positions of the moderates, causing the dips on both sides
of the peak). Nevertheless, the consensus was not compelling
enough to dislodge the most recalcitrant extremists on the fringes
(shown as the shoulders on both ends of the spectrum).

Wiener predicted that the alpha rhythm would show this same
peculiar peak and double dip in its spectrum of frequencies. If so,
that would constitute strong evidence for his idea that the alpha
rhythm is caused by synchronization between oscillators of
diverse natural frequencies. To see if he was right, he would need
a way to measure the spectrum with unprecedented precision.
Here Wiener planned to exploit an experimental technique that
his coworker Walter Rosenblith, an electrical engineer at MIT,
had developed several years earlier. Rosenblith had found a way
to record brain waves on magnetic tape, rather than on paper,
which meant that the data could be processed electronically,
yielding the �rst quantitative calculation of the brain wave
spectrum. In contrast, all previous work was qualitative: it relied
on pattern recognition, subjective judgments by trained human
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experts who had learned to spot patterns in brain wave squiggles.
Now, with Rosenblith’s approach, the calculation could be
automated and made objective.

In a monograph he wrote in 1958, Wiener announced the
results, though his presentation was suspiciously sketchy. Instead
of showing the actual data (as any other scientist would have, if
the �ndings were truly convincing), he drew a cartoon version of
the measured spectrum, essentially the same as the diagram
shown above. The results seemed a bit too pat, too good to be
true. Wiener seemed to be hiding something.

Yet his writing betrayed no lack of con�dence. He argued that
frequency pulling was a universal mechanism of self-organization,
operating not only on oscillators in the brain, but everywhere in
nature, both among living things and nonliving ones. In an
evangelical plea, he urged biologists to conduct experiments on
frogs, crickets, and even the �re�ies of Southeast Asia, long
before the reality of their synchronous �ashing had been
established in the scienti�c literature. “Without daring to
pronounce on the outcome of experiments which have not been
made, this line of research strikes me as promising and not too
di�cult,” he wrote in 1961.

His next task was to hammer out a detailed theory of frequency
pulling. Unfortunately, when he tried to back up his intuition
with rigorous mathematics, he ran into insurmountable
di�culties. He did present some rough calculations, but they
were awkward and led nowhere. Wiener died in 1964 without
having solved his pet problem. A year later, a college student
would discover the right way to approach it.

At the time, Art Winfree was a senior majoring in engineering
physics at Cornell. He had long dreamed of becoming a biologist,
but instead of choosing the conventional route, he opted for hard-
core training in math and physics, hoping to acquire a di�erent
set of tools. Electronics and computers, quantum mechanics and
di�erential equations: these were things that most biologists
never picked up.

When Winfree thought about the problem of group sync, he
thought about the oscillators themselves, not merely their
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frequencies. In this respect, his conceptualization of the problem
was much more explicit than Wiener’s. He didn’t just label each
oscillator by how fast it tended to run (its location on the political
spectrum, in the earlier analogy). Instead, he pictured it running
step by step through its cycle, which is, after all, the
quintessential thing that every oscillator does. Right away, that
raised complications that would have repulsed nearly anyone
else. But that’s the advantage of youth—you don’t know what’s
impossible.

His model was deliberately broad-brush. He intended it to be
general enough to apply to any population of biological
oscillators. The only way to capture the common features of
chorusing crickets, �ashing �re�ies, pulsing pacemaker neurons,
and the like was to ignore all their biochemical di�erences and to
focus instead on the two things that all biological oscillators
share: the ability to send and receive signals.

What makes the problem so confusing is that both of these
properties change throughout an oscillator’s cycle; in�uence and
sensitivity are both functions of phase. For instance, a �re�y’s
cycle consists of a sudden �ash, then an interval of darkness
while it is recharging its �ash organ, then another �ash, and so
on. Experiments have shown that �re�ies on the receiving end
take heed of another’s �ash, and ignore the darkness. So in
Winfree’s mathematical description, the “in�uence function”
would vary between two levels: large during the �ash portion of
the cycle, and nearly zero during the darkness. Similarly, a
“sensitivity function” encodes how an oscillator responds to the
signals it receives. Seeing a �ash during one part of its cycle
might cause a �re�y to speed up its internal timer. Seen at
another time, the same stimulus might slow the timer down, or
have no e�ect at all. Those two functions were all Win-free
needed to characterize an oscillator in his model. Once they were
selected, the oscillator’s behavior was determined, both as a
sender and a receiver of signals.

To make these ideas as concrete as possible, picture an
oscillator as being like a jogger running around a circular track.
The di�erent locations on the track represent di�erent phases in
the oscillator’s cycle of biological activity. For example, if the
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track represents the menstrual cycle, one place would correspond
to ovulation. Another, halfway around the track, would
correspond to menstruation, with in-between places
corresponding to intermediate hormonal events. After one lap,
the runner is back at ovulation again. Or if the track is supposed
to represent the �ash rhythm of a �re�y, di�erent locations
would signify the �ash itself followed by the various stages of
biochemical recovery as the insect’s �ash organ recharges and
builds up to its next �ring.

In this way of thinking, two coupled oscillators are like joggers
that continually shout instructions to each other as they run. The
things they shout, and how loud they shout them, are determined
by their current locations on the track; this information is
encapsulated in Winfree’s in�uence function. For example, if the
value of one runner’s in�uence function is currently small and
positive, he shouts to the other one, “Hey, please go a little bit
faster.” On the other hand, a large negative value for the
in�uence function means “You’re going much too fast—slow
down!” And a zero value of in�uence means the runner says
nothing at all to his partner. As time passes, both runners
advance around the track, so the instructions they shout keep
changing from moment to moment.

This framework is extremely general. It can accommodate the
pulselike interactions used by �re�ies, crickets, and neurons
(analogous to a sudden shriek, followed by silence for the rest of
the cycle), or the ongoing push and pull of pheromones
discovered by McClintock and Stern for the menstrual cycle (an
ever-changing series of requests to speed up or slow down).

Meanwhile, both runners listen as well as shout. How they
react to an incoming message is determined by Winfree’s other
function, the sensitivity function, which also varies from place to
place along the track. When sensitivity happens to be high and
positive, a runner is compliant and will follow whatever
directions are coming at him at that moment. If sensitivity is zero,
he ignores the instructions. And if sensitivity is negative, he is
contrary: He speeds up when told to slow down, and vice versa.
Here too, the model is very general, much more so than the
Peskin model discussed in the last chapter, which assumed that
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oscillators always advance when kicked by a pulse. In Winfree’s
model, oscillators can advance or delay, depending on where they
are in their cycle when they receive a pulse. Experiments have
shown this is how most real biological oscillators behave.

For simplicity, Winfree further assumed that all the oscillators
in a given population have the same in�uence and sensitivity
functions. But he did allow for diversity in the same way that
Wiener did before him: He assumed that the natural frequencies
of the oscillators were randomly distributed across the
population, according to a bell-shaped curve. In terms of the track
analogy, you should visualize this population of oscillators as a
running club with thousands of members on the track at the same
time. Most of the runners are of average speed, but the club also
includes some fast guys, former track stars in high school, and
some slowpokes, trying to get back in shape after years of sloth.
In other words, there is a distribution of natural abilities of the
runners in the club, just as there is a distribution of natural
frequencies of the oscillators in the biological population.

As if all this weren’t complicated enough, there’s one �nal
aspect of the model that still needs to be speci�ed: the
connectivity. Winfree had to make an assumption about who is
shouting at whom, and who is listening to whom. That would
vary a lot, depending on what biological example he had in mind.
Take circadian (roughly 24 hour) rhythms: In that case, Winfree
guessed there might be clock cells all over the body, each
secreting chemicals into the bloodstream on a daily cycle. Every
cell would be bathed in the combined secretions of all the others;
in e�ect, every cell communicates with every other. On the other
hand, crickets pay most attention to the chirps coming from their
immediate neighbors. And for oscillating neurons in the brain,
the tangle of interconnections was unfathomable.

Winfree sidestepped these questions of connectivity and cut to
the simplest problem, recognizing that it would still be �endishly
di�cult. What would happen, he wondered, if each oscillator
were in�uenced equally by all the others? It would be as if each
runner were responding to the combined shouting of all the
others, rather than just to the people running near him. Or to use
a more realistic analogy, imagine sitting in a crowded concert
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hall after a magni�cent performance. If the audience starts to
clap in unison, you will be driven by the thunderous rhythm of
the whole room, rather than by the couple sitting next to you.

Winfree wrote equations for his system of oscillators,
describing how fast each one moves through its cycle. At any
instant, an oscillator’s speed is determined by three contributions:
its preferred pace, which is proportional to its natural frequency;
its current sensitivity to any incoming in�uences (which depends
on where it is in its cycle); and the total in�uence exerted by all
the other oscillators (which depends on where they all are in
their cycles). It’s a tremendous amount of mathematical
bookkeeping, but in principle, the behavior of the entire system
for all time is determined by the current locations of all the
oscillators. In other words, complete knowledge of the present
enables complete prediction of the future—at least in principle.

The calculation proceeds methodically. Given the locations of
all the oscillators, we can compute their instantaneous speeds
from Winfree’s equations. Those speeds then tell us how far
everyone will advance in the next instant. (Pretend that an
instant is just a very short time interval, and that all the
oscillators move steadily during that time. Then the distance each
oscillator travels around the circle equals its speed times the
duration of the trip, just as it would for cars cruising down a
highway.) So all the oscillators can now be advanced to their new
phases, and the calculation is repeated, over and over again,
marching forward an instant at a time. Conceptually at least, if
we iterate this process long enough, we will see what fate holds
for this community of oscillators.

What I’ve just described is called a system of di�erential
equations. Such equations arise whenever we have rules for
speeds depending on current positions. Problems like this have
been studied since the time of Isaac Newton, originally in
connection with the motion of planets in the solar system. There,
each planet pulls on all the others by gravity, changing their
locations, which in turn changes the gravitational forces between
them, and so on—a hall of mirrors much like Winfree’s oscillators
with their ever-changing phases and forces of in�uence and
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sensitivity. It was precisely to solve ba�ing problems like this
that Newton invented calculus. In one of the great achievements
of Western science, he solved the “two-body problem” and proved
that the orbit of the earth around the sun was an ellipse, just as
Kepler had claimed before him. Curiously, however, the three-
body problem turned out to be utterly intractable. For two
centuries, the world’s best mathematicians and physicists tried to
�nd formulas for the motions of three mutually gravitating
planets, until the late 1800s when the French mathematician
Henri Poincaré proved that the task was futile. No such formulas
could exist.

Since then, we’ve come to realize that most systems of
di�erential equations are unsolvable, in that same sense; it’s
impossible to �nd a formula for the answer. There is, however,
one spectacular exception. Linear di�erential equations are
solvable. The technical meaning of linear need not concern us just
yet; what matters is that linear equations are inherently modular.
That is, a big, messy linear problem can always be broken into
smaller, more manageable parts. Then each part can be solved
separately, and all the little answers can be recombined to solve
the bigger problem. So it’s literally true that in a linear problem,
the whole is exactly equal to the sum of the parts.

The hitch, though, is that linear systems are incapable of rich
behavior. The spread of infectious diseases, the intense coherence
of a laser beam, the roiling motion of a turbulent �uid: All of
these are governed by nonlinear equations. Whenever the whole is
di�erent from the sum of the parts—whenever there’s
cooperation or competition going on—the governing equations
must be nonlinear.

So it was hardly surprising that when Winfree looked at his
di�erential equations for biological oscillators, he saw they were
nonlinear. All the linear techniques he had learned in his physics
and engineering classes were of no use to him now; he would
never be able to �nd formulas for this problem. And as for
nonlinear techniques, the few that were available were restricted
to very small systems, like a single oscillator or two coupled
oscillators. For the kind of question he was asking, about the
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population dynamics of thousands of interacting nonlinear
oscillators, he would have to �nd his own way.

Winfree used a computer to simulate his model. Instead of
math, it was more like doing an experiment. The computer would
keep track of the oscillators as they ran around the circle at their
variable speeds. The machine didn’t care about linear or
nonlinear, formulas or no formulas. It would just chug along,
marching forward by one small step at a time, providing a good
approximation to the model’s true behavior. Winfree hoped the
results might give him some intuition about how the oscillators
would behave. At least he could see what would happen, even if
he could not quite understand why.

Actually, one limiting case is easy to understand. If the
oscillators completely ignore one another, they di�use all over
the circular track, because every one runs at its preferred speed,
una�ected by the others. The faster ones overtake the slower ones
and eventually lap them. In the long run, there are oscillators
everywhere. Such a system is said to be incoherent. It’s like the
way that American concert audiences applaud. We tend to ignore
one another, and clap at whatever rate feels personally
comfortable. The overall e�ect is a steady, arrhythmic clamor.

Winfree’s simulations often settled into this same sort of
incoherence, even when the oscillators were allowed to in�uence
one another. For various combinations of sensitivity and
in�uence functions, the population actively opposed
synchronization. Even if all the oscillators were started in phase,
they bucked the conformity and disorganized themselves. The
population insisted on anarchy.

But for other in�uence and sensitivity pairs, Winfree found that
the population would spontaneously synchronize. No matter how
the oscillators were phased initially, some of them always
congealed into a tight clump and ran around the circle together.
Now the population acted more like an Eastern European concert
audience, in which synchronized applause bursts out without any
prompting.

In cases like this, synchronization occurred cooperatively. Once
a few oscillators happened to sync by chance, their combined,
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coherent shouting stood out above the background din, and
exerted a stronger e�ect on all the others. This nucleus recruited
other oscillators toward them, which made the nucleus even
larger and ampli�ed its signal. The resulting positive feedback
process led to a runaway, accelerating outbreak of synchrony, in
which many oscillators rushed to join the emerging consensus.
Some oscillators nonetheless remained unsynchronized because
their natural frequencies were too extreme for the coupling to
pull them in. The end result was a population split into a
synchronized pack and a disorganized band of fringe oscillators.

When the system was self-synchronizing, Winfree found that no
oscillator was indispensable. There was no boss. Any oscillator
could be removed and the process would still work. Furthermore,
the pack did not necessarily run at the speed of its fastest
member. Depending on the choice of in�uence and sensitivity
functions, the group could run at a pace nearer to the average
speed of those in the pack, or it could go faster or slower than
any of its members. It was all wonderfully counterintuitive.
Group synchronization was not hierarchical, but it wasn’t always
purely democratic either.

Winfree’s most important discovery came as a result of a
strange and truly imaginative thought-experiment. Instead of a
single population of oscillators, characterized by a single bell
curve of natural frequencies, he imagined a family of such
populations, each more homogeneous than the preceding one. Or
in terms of our analogy, imagine many di�erent running clubs.
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The �rst is extremely diverse, with members ranging widely in
ability. He found that a club like this could never sync. None of
its members could ever run as a pack, even if their in�uence and
sensitivity functions predisposed them to do so. They would end
up shouting and listening in vain; their heterogeneity would
overwhelm their mutual desire to run together and scatter them
all over the circle, just as if they were ignoring one another and
running at their preferred speeds.

Now examine a club that is similar to the �rst but slightly more
uniform. Its members have the same in�uence and sensitivity
functions, but their abilities fall on a narrower and taller bell
curve (meaning that more runners are just average, with fewer
extreme slowpokes or track stars). You would think that this club
should stand a better chance of synchronizing, at least in part, but
Winfree found otherwise. As he considered increasingly
homogeneous populations of oscillators, no sync occurred until he
reached a critical point, a threshold of diversity. Then, suddenly,
some of the oscillators spontaneously locked their frequencies and
ran around together. As he made the distribution even narrower,
more and more oscillators were co-opted into the synchronized
pack.
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In developing this description, Winfree discovered an
unexpected link between biology and physics. He realized that
mutual synchronization is analogous to a phase transition, like
the freezing of water into ice. Think for a moment about how
astonishing the phenomenon of freezing really is. When the
temperature is just 1 degree above the freezing point, water
molecules roam freely, colliding and tumbling over one another.
At that temperature, water is a liquid. But now cool it ever so
slightly below the freezing point and suddenly, as if by magic, a
new form of matter is born. Trillions of molecules spontaneously
snap into formation, creating a rigid lattice, the solid crystal we
call ice. Similarly, sync occurs abruptly, not gradually, as the
width of the frequency distribution is lowered through the critical
value. In this analogy, the width of the distribution is akin to
temperature, and the oscillators are like water molecules. The
main di�erence is that when the oscillators freeze into sync, they
line up in time, not space. Seeing that conceptual switch was a
creative part of Winfree’s analogy.

With this discovery, Winfree forged a connection between two
great bodies of thought that had rarely noticed each other in the
past. One was nonlinear dynamics, the study of the complex ways
that systems can evolve over time; the other was statistical
mechanics, the branch of physics that deals with the collective
behavior of enormous systems of atoms, molecules, or other
simple units. Each subject had strengths that complemented the
other’s weaknesses. Nonlinear dynamics worked well for small
systems with only a handful of variables, but it couldn’t handle
the large constellations of particles that were child’s play for
statistical mechanics. On the other hand, statistical mechanics
was wonderful for analyzing systems that had relaxed to
equilibrium, but it couldn’t cope with the incessant ups and
downs of anything that oscillated or otherwise kept changing in
time.

Winfree had now paved the way to a hybrid theory, which
promised to be far more powerful than either one separately. This
was to be a crucial step in the development of a science that
could �nally contend with the mysteries of spontaneous order in
time as well as in space. And at a more practical level, it meant
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that the analytical techniques of statistical physics could now be
brought to bear on the puzzle of how brain cells, �re�ies, and
other living things manage to synchronize with one another.

A few years later, a young Japanese physicist named Yoshiki
Kuramoto learned of Winfree’s work. He too was fascinated by
self-organization in time, and he wanted to �nd a way to
penetrate to its mathematical core. In 1975 he focused on a
simpler, more abstract version of Winfree’s model, and in a
dazzling display of ingenuity, he showed how to solve it exactly.

This was a stunning achievement. Here was a system of
in�nitely many di�erential equations, all nonlinear, all coupled
together. Such things are hardly ever solvable. The few
exceptions that do exist are like diamonds, prized for their
beauty, and for the rare glimpse they provide of the inner facets
of nonlinearity. In this case, Kuramoto’s analysis revealed the
essence of group synchronization.

At �rst glance, it’s hard to see what’s so special about the
structure of Kuramoto’s model. As in Wiener’s work, it still
describes a huge population of oscillators with a bell-shaped
distribution of natural frequencies; as in Win-free’s model, every
oscillator interacts equally with every other. Kuramoto’s key
innovation was to replace Winfree’s in�uence and sensitivity
formulation with a special kind of interaction, a highly
symmetrical rule that embodies and re�nes Wiener’s concept of
frequency pulling.

The nature of the interaction is easiest to understand for a
population of just two oscillators. Picture them as friends jogging
together on a circular track. Being friends, they want to chat as
they jog, so each makes adjustments to his preferred speed.
Kuramoto’s rule is that the leading one slows down a bit, while
the trailing one speeds up by the same amount. (To be more
precise, the amount of the adjustment is given by the sine
function of the angle between them, multiplied by a number
called the coupling strength, which determines the maximum
possible adjustment.) This corrective action tends to synchronize
the oscillators. Still, if the di�erence in their natural speeds is too
large compared with the coupling strength, they won’t be able to
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compensate for their di�erent abilities. The faster one will
gradually drift away from the slower one and lap him, in which
case they should both think about �nding new jogging partners.

What makes this rule so mathematically obliging is its
symmetry. There are no distinguished places on the track, unlike
in Winfree’s original formulation, where di�erent locations
correspond to di�erent salient events in a biological cycle of
activity. For Kuramoto, all locations are indistinguishable. There
are no landmarks. In e�ect, the runners have no way of knowing
where they are, so they run in silence—no shouting or listening
anymore—but they do watch each other carefully. Wherever they
are on the track, they make the appropriate adjustments to their
speeds, using a formula that depends only on the separation
between them, not on where they happen to be.

Now imagine a much larger population of oscillators, and as
before, picture it as a running club with members of diverse
abilities. The interaction rule is that each runner looks at all the
others, computes a tentative velocity correction relative to each,
and averages them all to obtain the correction that will actually
be made. For instance, suppose the runners happen to form a
fairly tight pack at some moment. Kuramoto’s rule tells the leader
to slow down from his preferred speed, a sensible thing since
everyone is behind him. A runner in the middle of the pack
receives mixed messages, some telling him to speed up, others to
slow down. A runner at the back feels the peer pressure to go
faster.

All these corrections are happening instant by instant, oscillator
by oscillator. To make the problem of coordinating themselves
interesting, suppose the runners agree to start at random places
on the track. There’s no pack initially. Even if a pack forms, it
will not necessarily be arranged with the fastest ones in front; any
arrangement is possible. The pack will keep shifting shape all the
while, changing leaders, as the runners sort themselves out.

It’s not obvious what will happen after a long time. The track
stars may peel o� and begin lapping the main pack, while the
dawdlers fall behind. Or there may not even be a pack. The range
of speeds may be so broad that the whole club falls apart, causing
runners to di�use all over the circle. In that case, everyone
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receives such mixed messages—go faster, go slower—that the
velocity corrections cancel out, leaving everyone to run at his
own favorite pace.

In his analysis of this confusing situation, Kuramoto found it
helpful to quantify the degree of synchronization with a single
number called the order parameter.

Intuitively, everyone running shoulder to shoulder is a tighter
form of sync than if the pack is spread out, and so should receive
a higher sync score, a higher order parameter. The numerical
value of the order parameter is always somewhere between 0 and
1, and is calculated from a mathematical formula that depends on
everyone’s relative position. At one extreme, when everyone is in
perfect sync, running in unison, the order parameter equals 1. A
looser pack has order parameter less than 1. At the opposite
extreme, with runners scattered randomly all over the track, the
order parameter equals 0.

Unlike Winfree, Kuramoto did not use a computer to provide
hints about how the system would behave. He was guided by
intuition alone. That makes his guess about the eventual outcome
even more prescient: Kuramoto predicted that in the long run, the
population would always settle into a state that’s as steady as
possible. The runners are still going, but their relative positions in
the pack are not changing, so the order parameter is constant.
Furthermore, the pack itself coasts at some compromise speed
determined by its members. Kuramoto guessed this speed should
be constant too.
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In a daring mathematical leap, Kuramoto sought only those
solutions of his equations that matched his intuition. If a solution
did not have a constant order parameter and constant pack speed,
he wasn’t interested in it. He knew what he was looking for, and
he was going to ignore everything else. It was a bold way to
reason, because if the truth lay elsewhere, he would miss it. The
other danger was that he might come up empty-handed; there
might not be any solutions of the type he desired. Nevertheless,
he guessed that there were, and he set out to �nd them. To give
himself as much �exibility as possible, he did not specify in
advance what the values of the order parameter or the pack speed
must be, only that they be constant. Determining their values was
part of the problem.

He found that the system could satisfy his demands in two very
di�erent ways. The order parameter could equal 0 forever,
meaning that the population is totally and permanently
disorganized. No pack ever forms. You’d see runners of all speeds
everywhere on the track. This is as far from sync as the system
could be. Surprisingly, this “incoherent state” is always a possible
outcome, no matter how diverse or similar the runners are. Even
if they are identical, incoherence can persist forever, once
initially arranged. The intuition is that the runners have nothing
to latch on to, no pack to draw them in, so by default each person
runs at his natural speed and the whole population remains as
disorderly as before. The other possibility is a “partially
synchronized” state consisting of three groups: a synchronized
pack of average runners; a slower, desynchronized swarm of
dawdlers; and a faster, desynchronized swarm of sprinters. Unlike
incoherence, this state is not always possible. Kuramoto found
that it exists only up to a certain threshold of diversity. If the bell
curve is broader than this threshold, meaning that the club
membership is too diverse, the partially synchronized state
disappears. The implication is that in a population of �re�ies or
brain cells, the oscillators have to be similar enough or nobody
will synchronize at all.

In one stroke, Kuramoto had vindicated both Wiener and
Winfree. The partially synchronized state is exactly what Wiener
had in mind when he modeled the alpha rhythm of brain waves.
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The narrow peak at the center of Wiener’s spectrum corresponds
to the synchronized pack, and the tails on either side correspond
to the desynchronized oscillators that are too fast or slow to be
recruited. The phase transition that Winfree had discovered was
the same as the threshold that Kuramoto was now �nding. As
they both realized, a synchronized pack cannot form unless the
population is homogeneous enough. Wiener had missed that
important point.

Beyond seeing the phase transition, what was new and
delightful was that Kuramoto could derive an exact formula for it.
Furthermore, he could calculate precisely how ordered the pack
would be, as a function of the width of the bell curve. His
formulas showed that a tiny synchronized nucleus is born at
threshold, with order parameter barely above 0. As the diversity
is reduced and the oscillators become more similar, the order
parameter rises as the synchronized pack conscripts more of the
population. Finally, at a width of absolute zero (corresponding to
identical oscillators), Kuramoto’s formula predicts a state of
perfect order, with everyone in sync.

Soon after I �nished my Ph.D. in 1986, I began a postdoctoral
fellowship with Nancy Kopell, a mathematician at Boston
University. Nancy was in her early forties, just entering the prime
of her career. Attractive, funny, an incisive thinker and engaging
lecturer, she was starting to be recognized as one of the best
mathematical biologists around. (In particular, she and her
collaborator Bard Ermentrout were creating a stir by bringing
new mathematical techniques to the study of the nervous system.)
We’d met a few times at conferences, and she seemed like an
ideal mentor for this next stage in my career, when my goal was
to deepen my training in mathematics. When I mentioned that I’d
like to work on a problem about populations of oscillators, she
suggested that I look into Kuramoto’s model.

I was instantly infatuated with it. In my graduate school
courses, we were always taught that large nonlinear systems were
monsters, practically impossible to solve. Yet here was one, and it
was beautiful. It didn’t even seem that hard to understand. As I
read through Kuramoto’s argument, I felt like I was following
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him, line by line. Nancy smiled at my enthusiasm, and then
gently pointed out all the soft spots in Kuramoto’s argument, all
the unjusti�ed leaps of logic. There were plenty of opportunities
here for a budding mathematician. My job would be to put
Kuramoto’s intuitions on a �rmer footing. I worked with Nancy
for the next year, trying to prove a theorem that we were both
convinced must be true. Though I never managed to solve that
problem, I did �nd myself growing obsessed with the model.

Even after my postdoctoral fellowship was over, I continued to
think about the model, o� and on, for the next several years. The
aspect that enchanted me had to do with the emergence of order
out of randomness. How can a system of millions of particles
spontaneously organize itself? The question sounds mystical, with
religious overtones reminiscent of the story of creation in the
Bible, where in the beginning the Earth was unformed and void: a
condition that the ancient Greeks called chaos.

We may never understand the origins of order in the real
universe, but in the imaginary universe of the Kuramoto model,
the problem simpli�es so much that we can address it
mathematically. Here the genesis question becomes, How does
incoherence give birth to synchrony? It dawned on me one day
that there was a straightforward way to frame the question as an
exercise in di�erential equations: I needed to view incoherence as
an equilibrium state and then calculate its stability.

To clarify the mathematical meanings of those familiar words,
equilibrium and stability, consider some examples from around the
house. Imagine placing a glass of water on the kitchen table. For
a second or two the water sloshes around in the glass, then comes
to rest. Now the water surface is �at and horizontal. This is an
equilibrium state, in the sense that the water will stay like that
inde�nitely. The equilibrium is additionally said to be stable
because if we shake the glass a little and then stop, the water
surface will return to level. Thus, equilibrium means nothing
changes; stability means slight disturbances die out. Now try
another example. Take a pencil and sharpen it, then stand it
upright and carefully balance it on its point. Let go. If the pencil
is poised perfectly, it will continue standing upright, so by
de�nition this is also an equilibrium state. But obviously it’s
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unstable: The slightest breeze will tip the pencil over and it won’t
re-right itself.

For the Kuramoto model, incoherence is an equilibrium state; if
the oscillators of each frequency are spaced evenly around the
circle, they will stay evenly spaced forever. Although the
oscillators run around the circle, their uniform spacing is
unaltered. The nagging unsolved problem was whether this
equilibrium is stable like the water in the glass, or unstable like
the pencil balancing on its point. If it is unstable, it would mean
that sync would emerge spontaneously, that the runners would
eventually wind up in a pack.

That question had been festering for 15 years. Kuramoto
himself had openly wondered about it. In his book he wrote that
he could not see how to start. The question was bewildering,
because there were in�nitely many di�erent ways for oscillators
to be arranged incoherently. That was the rub. Incoherence was
not a single state; it was a family of in�nitely many states.

For years I couldn’t see how to make any progress on the
stability problem. Then, late one night, in the twilight before
sleep, a strange image came to me: The oscillators aren’t really
like runners; they are like molecules in a �uid. Just as water is
made of trillions of discrete molecules, this �ctitious “oscillator
�uid” would be made of trillions of discrete dots running around
the circle. The image was actually weirder than that. I needed to
imagine a di�erent �uid for each frequency in the distribution.
In�nitely many di�erent frequencies, like the blend of colors in
the rainbow. So I pictured a rainbow of colored �uids, all swirling
around the same circle, never mixing because oscillators never
change their natural frequency. The advantage of this psychedelic
formulation is that incoherence becomes a single state. Not an
in�nite family anymore, just one state of uniform density, with
each colored �uid spread evenly around the circle.

I jumped out of bed and grabbed a pencil and paper. Dreamy
ideas are often illusions, but this one felt right. The �rst step was
to adapt the laws of �uid mechanics to my imaginary oscillator
�uid. Then I wrote out the equations to set up the standard test
for stability: disturb the system from equilibrium, solve the
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equations for the disturbances (these equations are solvable
because they’re linear, even if the original system is not), and
check whether the disturbances grow or decay.

The equations showed that the answer depends on how similar
the oscillators are. If they’re identical, or nearly so, I found that
the disturbances grow exponentially fast as oscillators clump
together in phase, in an embryonic form of sync. Then out
popped a formula for the exponential growth rate (analogous to
the interest rate for how fast your money compounds in the
bank). No one had ever found such a formula before. It was a
de�nite prediction, either right or wrong. The next morning I
would check it on the computer.

My hand was sweating as I wrote each new line of the
calculation. It’s all working. I’m seeing the birth of order. Then I
paused. Is there a critical frequency spread at which the growth
rate falls to zero, and incoherence is no longer unstable? Yes—the
critical condition occurs at the same threshold that Kuramoto
found. That was very reassuring. I had just found a new way to
calculate the phase transition, the freezing point where
spontaneous synchronization �rst occurs.

A few hours after the sun came up I called my collaborator
Rennie Mirollo to �ll him in. I started to describe my ideas about
oscillator �uid, but it wasn’t long before he interrupted. “What is
this sophistry?” As a pure mathematician he had never studied
�uid mechanics, and he liked his equations straight up, with no
imagery attached. The whole calculation sounded �shy to him.
But I was sure it was right. Later that day I went to the o�ce and
con�rmed that the predicted growth rates were in perfect
agreement with the results of computer simulations. Rennie
quickly made his peace with oscillator �uid.

Together we worked out the stability of the incoherent state on
the other side of the threshold, where the spread of frequencies is
large, analogous to temperatures above the freezing point. We
expected that incoherence should now become stable. But the
equations were telling us instead that it was “neutrally stable”—a
very rare, borderline case in which transient disturbances neither
grow nor decay.
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For example, picture a marble sitting at the bottom of a smooth
hemispherical punch bowl. If you displace the marble from the
bottom, it rolls back: The bottom is a point of stable equilibrium.
Now suppose the bowl has an adjustable shape; by turning a
knob, you can gradually morph it into a �atter shape, one with
less curvature, like a giant contact lens. The bottom is still stable,
but less so: A displaced marble rolls back more slowly. As you
continue to turn the knob, the shape droops �atter and �atter,
becoming dead level at a critical setting of the knob, and then
droops so much that it becomes an upside-down contact lens, a
gentle dome, �nally becoming an upside-down hemisphere.
During the morphing process, the bottom of the bowl has turned
into the top of the dome. Now a displaced marble would roll
down the side; the equilibrium has become unstable. The switch
occurred at the critical boundary between stability and
instability, when the contact lens was completely �attened. At
that one setting of the knob, and only that one, the equilibrium is
neither stable nor unstable. It’s in a state of limbo: It’s neutrally
stable. A marble displaced from neutral equilibrium doesn’t roll
back, but it doesn’t roll away either.

As this metaphor suggests, neutral stability normally occurs
only at transitions, at critical settings of a system’s parameters
(the “knobs” that control its properties). But the Kuramoto model
was breaking this rule. Its incoherent state was doggedly staying
neutrally stable, even as we widened the bell curve to make the
population more diverse. Turning that knob over a wide range of
parameters made no di�erence.

We discussed this startling result with Paul Matthews, an
instructor in applied math at MIT. Paul ran some computer
simulations that only deepened the mystery. He tested the
stability a di�erent way, by computing the long-term behavior of
the order parameter, and found that it decayed exponentially fast
—normally the signature of stability, not neutral stability. Now
we were truly mysti�ed. Incoherence was neutral by one
measure, yet stable by another.

A few weeks later, Paul gave a lecture at the University of
Warwick in his home country of England, where he described all
our strange results. One of the professors in the audience, George
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Rowlands, told Paul that what we were seeing was not so strange:
It’s called Landau damping, and plasma physicists have known
about it for 45 years.

None of us knew much about plasmas, but we had all heard of
Landau. Lev Landau was one of the supreme physicists of the
twentieth century. In an era of specialization he had mastered
every branch of theoretical physics, from subatomic particles to
turbulence in �uids. He was a �amboyant, ornery genius whose
career ended on January 7, 1962, when he was nearly killed in a
car accident near Moscow. The crash shattered eleven bones,
fractured his skull, punctured his chest, ruptured his bladder, and
sent him into a coma. His brain waves went �at for 100 days, but
his doctors maintained him on a respirator and would not let him
die. On four occasions he was pronounced dead, only to be
revived by heroic measures each time. Later that same year he
was awarded the Nobel Prize for discoveries he had made a
decade earlier, in which he used quantum theory to explain the
weird behavior of super�uid helium at temperatures close to
absolute zero. He was �nally released from the hospital in
October 1964; he never fully recovered and died a few years
later.

Among his many contributions, in the late 1940s Landau had
predicted a counterintuitive phenomenon about plasmas. Plasmas
are sometimes called the fourth state of matter, farther up the
temperature scale from solids, liquids, and gases. They’re found in
the sun and in thermonuclear fusion reactors, where ordinary
atoms are boiled into an ionized gas made of roughly equal
numbers of electrons and positively charged ions. The paradoxical
phenomenon that now bears his name arises when electrostatic
waves travel through a highly rare�ed plasma. Landau showed
that the waves could decay even if there were no collisions
between the particles and no friction or dissipation of any kind.
What George Rowlands had realized was that Landau damping is
governed by essentially the same mathematical mechanism as the
decay to incoherence in the Kuramoto model: The electrons in the
plasma play the role of the oscillators, and the size of the ripples
in the electric �eld they generate plays the role of the order
parameter.
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It seems amazing that there should be a link between the
violent world of superhot plasmas in the sun, where atoms
routinely have their electrons stripped o�, and the peaceful world
of biological oscillators, where �re�ies pulse silently along a
riverbank. The players are di�erent, but their abstract patterns of
interaction are the same. Once that link was exposed, we were
able to transfer Landau’s techniques to the Kuramoto model,
answering a riddle that had lingered for years. There was also a
payback from biology to physics. John David Crawford, a
physicist at the University of Pittsburgh, was able to apply
insights won from the study of biological synchrony to solve a
long-standing problem about the behavior of plasmas.

The theories of how biological oscillators sync with one
another have been successful from a mathematical perspective.
They have shed light on one of nature’s most fundamental
mechanisms of self-organization. Still, a more tough-minded
question is whether the models describe reality faithfully. Do they
predict phenomena that agree with data from real �re�ies, heart
cells, or neurons?

We don’t know. There have been no tests so far. The
experiments are di�cult because they require measurements at
the level of individual animals or cells, especially their natural
frequencies and their responses to stimuli of varying strength and
timing; and at the level of the entire network, to quantify the
interactions between oscillators and the resulting collective
behavior. It’s particularly hard to measure interactions between
pairs of oscillators. If they are left in the network, the
measurements may be confounded by the in�uences of other
oscillators; if they are removed from the network, surgically or
otherwise, the surrounding oscillators and connections among
them may be damaged in the process. Furthermore, the
connectivity of networks is typically unknown, except for a few
small systems of neurons. Without knowing who is interacting
with whom, it’s impossible to test the models quantitatively. In a
tree full of �re�ies, for example, you would have to �gure out
exactly which bugs can see which, measure all their intrinsic �ash
rates one by one, and �nally measure each insect’s sensitivity and
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in�uence functions. No one has even tried this experiment for
two �re�ies, let alone a whole congregation of them.

A more qualitative test would be to con�rm or refute the
existence of a phase transition. The prediction is that the degree
of synchronization should increase sharply, not gradually, as
either the coupling strength or the frequency spread is tuned
through a critical value. Here too, the experiment would be
tricky. To change the coupling strength between �re�ies, you
could put them in a darkened room, and then adjust the ambient
light level with a dimmer so that the insects would see each other
more or less well. That’s easy enough, but measuring all the
simultaneous �ash patterns of the insects would be taxing;
without that information, there would be no way to determine
the degree of synchronization, and hence whether a transition
had occurred. The analogous experiment might be easier with
neurons, but there you’d have to record from each cell
simultaneously (again, technically very di�cult) while
administering drugs to uncouple them progressively, while taking
care to ensure that the drugs don’t change any other properties of
the cells besides their mutual coupling. No one has tried it yet.

Or one could look for Wiener’s spectrum of frequencies, with its
narrow central peak arising from a dip on either side. That was
the cornerstone piece of evidence for his theory of frequency
pulling, and given its central role, it always seemed odd to me
that I’d never heard about its being replicated. And something
else was suspicious. If Wiener and his collaborators had really
found the smoking gun—the double-dip spectrum that he
believed to be the mark of synchronization—why didn’t he let the
data speak for itself? In his 1958 book, Nonlinear Problems in
Random Theory, he o�ered the schematic picture of the spectrum
we have seen earlier, with its perfectly symmetrical peak rising
from a perfectly symmetrical double-dip, all centered at exactly
10 cycles per second. No one could be fooled by that. His graph
didn’t even include tick marks on the axes. Then, in the 1961
edition of Cybernetics, he �nally presented some real data
(presumably the most convincing example he had), yet his
beloved dip was nowhere in sight.
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Some years ago, I asked Paul Rapp, a mathematical biologist
and an expert on brain waves, if he had ever run across that
spectrum in his own measurements. No, he had not, but he
thought it should be easy to �nd, if it were real. He conducted a
series of new experiments, speci�cally looking for the e�ect, and
even with today’s improved technology, he couldn’t �nd it. So
was Wiener deluding himself? Was the dip nothing more than a
�gment of his fertile imagination? I didn’t want to believe that, so
it came as a relief to learn the inside story about what really
happened back in 1958.

While attending an applied math conference in July 2001, I
happened to strike up a conversation with Jack Cowan, a
theoretical biologist who has long worked on mathematical
models of the brain. Given the likelihood that he would know a
great deal about the alpha rhythm, I asked whether he was
familiar with Wiener’s old theory. Oh yes, he said with a smile—
he had been at MIT as a postdoctoral fellow at the time. Wiener
had buttonholed him and lectured him “two hundred times”
about that peculiar spectrum. “Norbert loved to capture people to
provide an audience for himself.”

Cowan arrived at MIT in the fall of 1958 to work as a
postdoctoral fellow in the communications biophysics group led
by Walter Rosenblith. Around that time, Margaret Z. Freeman, a
research associate in Rosenblith’s group, made the �rst
measurements of the spectrum, and it was she who discovered the
signature peak and double dip, much to Wiener’s delight. Though
the results were still in preliminary form, Wiener happily crowed
about them in his 1958 book.

Unfortunately, Freeman’s results were wrong. “Other people
tried to replicate her �ndings,” Cowan told me, “and when they
couldn’t, the whole thing sort of �zzled out.” Freeman had made
an error in her computations. When she checked them again, the
dip disappeared.

It was too late for a retraction. Wiener had already published
his book showing the schematic drawing of the spectrum. But
three years later, in Cybernetics, he would have a chance to
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correct the error. This time, he chose to show real data. Here’s
how he describes the spectrum:

When we inspect the curve, we �nd a remarkable drop in power in the
neighborhood of frequency 9.05 cycles per second. The point at which the
spectrum substantially fades out is very sharp and gives an objective
quantity which can be veri�ed with much greater accuracy than any
quantity so far occurring in electroencephalography.

That’s the sound of Wiener at his con�dent best, the ex-prodigy
teaching the encephalographers a thing or two. But then his
language turns tentative, his mood subjunctive:

There is a certain amount of indication that in other curves which we
have obtained, but which are of somewhat questionable reliability in their
details, this sudden fall-o� of power is followed quite shortly by a sudden
rise, so that between them we have a dip in the curve. Whether this be the
case or not, there is a strong suggestion that the power in the peak
corresponds to a pulling of the power away from the region where the
curve is low.

When I �rst read this ten years ago, I was struck by the crabbed
language. It’s not like him—normally Wiener’s writing is bold and
direct. But when I read it now, the passage seems almost
poignant. I think I can hear the sound of a man struggling with
himself, a scientist clinging to an idea that he knows must be
right, while summoning the strength to be intellectually honest.
Although the dip is nowhere to be found, he asks us to believe
that it occurs in other records, but he won’t allow himself to push
too hard; he admits that those other records are “questionable”
and says that there’s only a “certain amount of indication” of a
dip in them. And whether the dip was there or not, the last
sentence shows that he was not going to give up on the idea that
oscillators synchronize by pulling on one another’s frequencies.
He felt sure that it was a universal mechanism for sync. It was
bound to be important. He refused to fall victim to what T. H.
Huxley called “the great tragedy of science—the slaying of a
beautiful theory by an ugly fact.”

Wiener was like a prophet, with a vision of how the world
should work. We see that tendency in other great scientists.
Galileo would not have discovered that a body in motion tends to
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stay in motion (the law of inertia) if he had been content to
describe what really happens (friction causes things to stop). By
disregarding the inessential, he discovered the most fundamental
law of mechanics. Gregor Mendel discovered the laws of genetics
by studying the inheritance patterns of peas. Some modern
statisticians have questioned his data, calling it too clean to be
credible, while others suggest more generously that Mendel
carefully chose the peas that would best illustrate the principles
he sought to propound. Whichever version you believe, it seems
clear that Mendel knew exactly what he was looking for.

Although Wiener was wrong about the alpha rhythm, the irony
is that he was right about a di�erent kind of rhythm in the brain.
In 1995, the biologists David Welsh and Steve Reppert at
Massachusetts General Hospital discovered that the brain does
contain a population of oscillators with distributed natural
frequencies, which do pull one another into synchrony, and
which do make a more accurate oscillator en masse than
individually. Wiener anticipated all that, but he missed an
important detail: Instead of cycling 10 times per second, these
cells cycle about a million times slower. These are the cells of the
circadian pacemaker, the internal chronometer that keeps us in
sync with the world around us.
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• Three •

SLEEP AND THE DAILY STRUGGLE FOR SYNC

LIKE ALL NEWBORNS, MY DAUGHTER LEAH WAS an anarchist for the
�rst three months of her life. She fed and slept on no discernible
schedule. By the time she was 11 months old, she slept through
the night, though with one small problem: She’d invariably wake
my wife and me up at 5:20 A.M. She’d grab the rails of her crib,
hoist herself up to a standing position, and tactfully cough a few
times to signal that she was ready for her morning bottle. We
knew we shouldn’t complain (many parents endure far worse),
yet we still wished that she’d get up at least an hour later. To
coax her in that direction, we tried keeping her up late one night.
Naturally this strategy back�red: The same little coughs wafted
out of her bedroom at precisely 5:20 the next morning, but
because she had slept less, she punished us with crankiness for
the rest of the day.

Both of these timing problems were fundamentally failures of
synchronization. As a newborn, Leah couldn’t synchronize at all;
her sleep-wake and feeding rhythms (to the extent she had any)
wandered erratically relative to the world’s daily cycles. At 11
months she presented the opposite problem: Now her rhythms
were all too stubbornly synchronized, welded to a particular 24-
hour pattern that we happened to �nd oppressive.

And it’s not only babies and their parents who su�er from
disrupted sync and its attendant sleep disorders. American society
is gradually coming to realize that teenagers love to stay up late
and have trouble getting up for school in the morning, not
because of their sluggish natures or moral turpitude but because
their internal body clocks are set di�erently, somewhere in a time
zone to the west of us. At the other end of the spectrum, many
elderly people wake up in the early morning while it’s still pitch-



74

black outside, and then can’t fall back asleep, tired as they may
be.

Other kinds of sync disorders have nothing to do with age. We
bring some of these on ourselves, with our round-the-clock work
schedules. Think of the medical and family problems that plague
tens of millions of nurses, truck drivers, nuclear power plant
operators, and other workers who rotate between day and night
shifts; the industrial accidents at Bhopal, Chernobyl, and Three
Mile Island, all of which occurred between midnight and 4 A.M.;
the fuzzy-headedness and errors in judgment caused by jet lag:
These too are the by-products of deranged sync, of mismatches
between our bodies and the demands of the new 24-hour society.

When you start to think about it, it’s miraculous how easily we
stay in step with the world. Blind people, however, don’t take this
for granted: Most of them are unable to keep to a 24-hour
schedule. They roll in and out of phase with the rest of society
every few weeks, which can make it di�cult to maintain jobs and
social obligations. As one blind woman put it, “Being blind is
okay, although something of an inconvenience. Having a free-
running sleep cycle can be awful.”

So the rest of us should cherish the miracle of sync. Of course,
we rarely give it a thought, since it occurs spontaneously.
Millions of years of evolution have tuned our bodies to harmonize
automatically with the cycle of day and night. But how does this
work? We speak about body clocks, but are they real or just
�gures of speech? Where are they located: In our brains or in
every cell? What is their biochemical mechanism? How do they
synchronize one another, and what aligns them to the cycle of
day and night? After decades of research, much of it slow and
frustrating, the answers to some of these mysteries are �nally
within reach. The study of biological clocks has become one of
the hottest �elds in science today.

The picture that is emerging suggests that we are like wheels
within wheels, hierarchies of living oscillators. Or to put it more
vividly, the human body is like an enormous orchestra. The
musicians are individual cells, all born with a sense of 24-hour
rhythm. The players are grouped into various sections. Instead of
strings and woodwinds, we have kidneys and livers, each
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composed of thousands of cellular oscillators, similar within an
organ, di�erent across organs, all keeping a 24-hour biochemical
beat but entering and exiting at just the right times. Within each
organ, suites of genes are active or idle at di�erent times of day,
ensuring that the organ’s characteristic proteins are manufactured
on schedule. The conductor for this symphony is the circadian
pacemaker, a neural cluster of thousands of clock cells in the
brain, themselves synchronized into a coherent unit.

Sync enters at three di�erent levels. At the lowest, most
microscopic level, the cells within a particular organ are mutually
synchronized; their chemical and electrical rhythms vary in
lockstep. At the next level, synchrony occurs between the various
organs, in the sense that they all keep to the same period, even
though the cells have di�erentiated into disparate types. This
kind of sync occurs within the body itself, and so is called
internal synchronization. It doesn’t mean that all the organs are
active at the same times. On the contrary, some are silent while
others are going strong. The sync is in the sense of period
matching, keeping the same beat, just as musicians keep the beat
in their heads even when they are quietly awaiting their turn to
play. Finally, the third level of synchrony is that between our
bodies and the world around us. Under normal conditions of
living on a regular schedule, seeing sunlight, sleeping at night,
and so on, the entire body is synchronized to the 24-hour day,
driven mainly by the cycle of light and darkness. This process of
external synchronization, of falling in step with the outside
world, is called entrainment.

At the moment, our best theories of human circadian rhythms
are more descriptive than mathematical. That is by necessity—we
lack a deep understanding of the system’s architecture and
dynamics. Its hierarchical organization appears to be far more
complex than anything envisaged by the simple models of
oscillator populations discussed earlier. A congregation of �re�ies
could be approximated as a collection of self-sustained oscillators,
all of which are identical or nearly so, all �ring at about the same
time. In that sense, the level of complexity associated with
synchronous �re�ies is comparable to that of a single organ, or in
musical terms, a single section of the orchestra. We are just
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beginning to learn how the sections play together as an ensemble,
and how the pacemaker orchestrates them all. In other words, we
are trying to learn the rules of the circadian symphony.

We know that such rules exist, because we can see their
manifestations at a larger scale, in the behavior of a whole,
integrated human body: in our daily rhythms of sleep and
wakefulness, hormone �uctuations, digestion, alertness, dexterity,
and cognitive performance. At this higher level, scientists have
recently discovered cryptic regularities in the timing of human
sleep-wake cycles and other circadian rhythms, even though the
microscopic basis for these laws remains enigmatic. In that
respect, our present situation parallels the early development of
genetics. Mendel discovered that various characteristics of pea
plants were passed on to their o�spring according to certain
mathematical laws, and realized that these patterns could be
explained by postulating hypothetical entities called genes that
recombined according to certain rules. All this was done long
before any knowledge about the reality of genes and their
physical embodiment in strings of DNA. Similarly, we now know
that human circadian rhythms obey their own kinds of laws,
though we remain in the dark about their fundamental
biochemical basis.

With respect to sync’s impact on our everyday lives, one of the
most immediate issues is how the circadian pacemaker a�ects
sleep. That part of the puzzle has been largely worked out, thanks
to dramatic experiments in which brave volunteers lived alone for
months in underground caves or clockless, windowless
apartments, isolated from all knowledge of the time of day, free
to sleep and wake whenever they felt like it. The results of those
studies turned out to be so bizarre, yet laced with such tantalizing
hints of pattern, that Art Winfree was led to proclaim, “A Rosetta
stone has appeared in our midst.” By deciphering the circadian
code, scientists and doctors are learning how to design better
shift-work schedules and treat some forms of insomnia that were
previously intractable. They have even explained some of life’s
little mysteries—like why so many cultures take an afternoon
siesta, or why we often have trouble falling asleep on Sunday
nights.
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On February 14, 1972, Michel Si�re gazed across the arid
landscape near Del Rio, Texas, and savored the last sunlight he
would see for six months. Then he smiled bravely for the
television cameras, hugged his mother and kissed his wife good-
bye before descending down the 100-foot vertical shaft into the
bowels of Midnight Cave. Awaiting him underground was a
campsite stocked with scienti�c equipment, furniture, a nylon
tent, freezers, food, and 780 one-gallon jugs of water.

Si�re, a French geologist and sleep researcher, was about to be
his own guinea pig in the most elaborate time-isolation
experiment ever performed. Assisted by NASA, he and his
research team wanted to study the basic rhythms of human life in
the absence of clocks, calendars, and all other daily time cues.
He’d tried this once before. Ten years earlier, in the �rst such
experiment ever conducted on a human subject, he endured two
lonely months in the numbing cold of an underground cave in the
Alps, only to emerge, as he put it, a “half-crazed, disjointed
marionette.” That ordeal had provided the �rst scienti�c evidence
that human beings have innate circadian clocks, with a cycle
length slightly longer than 24 hours.

Now, in the constant balminess of Midnight Cave, where the
temperature was always 70 degrees Fahrenheit, Si�re hoped for a
more pleasant experience. If anything, it was worse this time. His
mind nearly collapsed from the strain of six months alone in a
cave. His record player broke and his books became too
mildewed to handle. To relieve the boredom, he tried to capture
his one companion, a tiny mouse, by enticing it with some jam,
only to kill it inadvertently when the makeshift cage—a casserole
dish—struck its head. The months of lethargy and bitterness wore
on. On day 79, Si�re phoned his collaborators on the surface,
begging to be released—“J’en ai marre!” (I’ve had enough!) Yes,
yes, all is well, everything is going �ne, they told him. Squinting
in the darkness, breathing cave dust mixed with bat guano, he
began to consider suicide. On the �nal day of the experiment,
nature almost accommodated him: He received a blast of
electricity through the electrodes recording his heart rhythm,
perhaps when a distant lightning bolt struck the surface of the
earth and leaked into the wires. It was a measure of how far his
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wits had deteriorated that it took three more shocks before he
thought to disconnect the equipment.

Fortunately, the experiment produced some remarkable results.
During his �rst �ve weeks in the cave, Si�re unknowingly lived
on a 26-hour cycle. He woke up about two hours later each day
and drifted around the clock relative to the outside world, but
otherwise maintained a normal schedule, sleeping about a third
of the time.

Meanwhile his body temperature waxed and waned, just as it
normally does in everyone, every day. This may come as a
surprise: Contrary to what many of us have been taught, body
temperature in a healthy person does not stay constant at 98.6
degrees Fahrenheit, or at any other number; it typically undulates
through a range of about 1.5 degrees over the course of a day,
even if we lie in bed and don’t exert ourselves. As the physician
William Ogle �rst reported in 1866, “There is a rise in the early
mornings while we are still asleep, and a fall in the evening while
we are still awake…. They are not due to variations in light; they
are probably produced by periodic variations in the activity of the
organic functions.”

Now Si�re was con�rming what Ogle had so presciently
guessed a century earlier about the origin of the body
temperature cycle. In the constant conditions of his cave, Si�re
was oblivious to day and night, and had no other clock to go on
besides the internal rhythms of his own physiology. Divorced
from the in�uence of the 24-hour world outside, his “organic
functions”—as re�ected by his body temperature—oscillated in
sync with his sleep-wake cycle at the same idiosyncratic 26-hour
period. In fact, he always went to bed when his temperature
bottomed out, although he was unaware of this.

At this stage in the experiment Si�re was behaving like a
hamster or a fruit �y or any other organism that has ever been
studied in time isolation. Some creatures cycle a bit faster than 24
hours, some a bit slower—hence the term circadian rhythm, from
the Latin: circa means “about,” and dies means “a day.” For
example, a laboratory mouse con�ned to a cage and kept in
constant darkness will happily jump on its running wheel at a
predictable time, about half an hour earlier than the day before,
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and then run for miles. Thus the mouse has a circadian rhythm of
activity with an intrinsic period of 23.5 hours. A mimosa plant
kept in constant arti�cial light will open and close its leaves on a
cycle of 22 hours. Virtually all living things, from monkeys to
microbes, show similarly persistent rhythms when allowed to
“free-run” in the absence of time cues.

On day 37 of his experiment, however, Si�re lost his
resemblance to all other species. His body did something strange,
something uniquely human: His sleep and body temperature
rhythms came unglued. He stayed up way past the nadir of his
body temperature cycle, essentially pulling an all-nighter, after
which he slept for 15 hours, double his usual amount. For the
next month, he bounced back and forth on a wild schedule,
sometimes keeping to his original 26-hour pattern, only to follow
it, unaccountably, with yet another whopping sleep-wake cycle,
40 or 50 hours long. Yet Si�re perceived none of this. And
through it all, his temperature rhythm never budged from its 26-
hour pace.

This weird phenomenon is called spontaneous internal
desynchronization. Its implication is that two circadian rhythms
(sleep and body temperature) can run at di�erent periods in the
same organism. Ever since it was �rst reported by the German
biologist Jürgen Ascho� in 1965, researchers have been
perplexed by this sudden breakdown of the body’s temporal
order, all the more so since plants and animals never
desynchronize internally. When Si�re examined his own data, he
too was mysti�ed. “Jagged, seemingly random,” was how he
described it three years later.

We now know that Si�re’s sleep-wake cycle was not random. In
fact, it obeyed beautifully simple mathematical rules. What’s even
more astonishing, the same rules have been found to hold for all
human subjects who have ever been studied in time isolation. The
�rst hints of this universal structure were uncovered by a young
graduate student working at a hospital in New York, a newcomer
who would go on to become the world’s leading authority on
human circadian rhythms.
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In the mid-1970s, Elliot Weitzman and his student Charles
Czeisler decided to try their hand at time-isolation experiments.
There were only three other groups in the world working in this
�eld: Si�re’s in France, Ascho�’s in Germany, and one led by
John Mills in England. It was an expensive, elaborate
undertaking, to say the least, but the potential payo�s to human
medicine and biology were compelling.

On the �fth �oor of one of the old wings at Monte�ore Hospital
in the Bronx, Weitzman and Czeisler built a soundproofed,
windowless facility consisting of three one-bedroom suites and a
control room in the middle. They placed ads in the paper to
recruit candidate subjects, hoping to attract craftsmen, artists, or
graduate students with a thesis to �nish: in short, anyone with a
long-term project or some other good reason to get away from the
world for one to six months. The subjects had to be screened
psychologically. It would be disastrous if someone freaked out
and had to quit the experiment in the middle, since the studies
cost about $1,000 a day.

In return, these subjects enjoyed a life of pampered leisure.
They were paid a few hundred dollars a week, given room and
board, and allowed to live as they wished. They could wake up
and sleep whenever they pleased. They could read, work,
exercise, or listen to music, and ask for meals to be brought to
them. They could even read newspapers or magazines, provided
that the reading matter was long out of date. On the other hand,
they could not wear watches, make phone calls, or listen to the
radio or watch television, since those could be used to determine
what time it was. The point of the time-isolation protocol was to
observe human circadian rhythms in their most pristine form,
uncorrupted by the in�uences of the outside world. For the same
reason, the subjects were forbidden to drink co�ee, tea, or
alcohol, or to take sleeping pills, stimulants, or recreational
drugs, all of which can disrupt the normal rhythm of sleep and
wakefulness. (Earlier studies on animals indicated that alcohol
and ca�eine might even reset the circadian clock itself, though
this e�ect seems to be minor compared with the familiar sedative
or stimulant action of these chemical agents.)
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Day after day, week after week, Weitzman and Czeisler
monitored the subjects’ alertness when they were awake, brain
waves when they were asleep, and body temperature and
hormone levels around the clock. For instance, to track the
rapidly �uctuating pro�les of growth hormone and cortisol (the
body’s stress hormone), they stuck an indwelling catheter in the
subject’s arm for the duration of the experiment, so that lab
technicians could withdraw tiny blood samples every 20 minutes.
Meanwhile, a rectal probe (like a piece of string) measured the
subject’s core body temperature continuously. To prevent
spurious blips in the temperature record, subjects were told to
remove the probe in the shower or if they needed to masturbate.

Unlike Si�re in the cave, they were not socially isolated and
did not su�er any psychological injuries. They could chat with
the technicians and often befriended them. Of course, the sta�
had to be careful not to disclose anything about the time of day.
For example, the male doctors and technicians always shaved
before entering the apartment so that their �ve o’clock shadows
would not be a tip-o�. All sta� members greeted the subject by
saying hello, not good morning or good evening, and a computer
assigned them to work at random hours, so the subject couldn’t
tell what time it was by who was on duty. (Given their crazy
schedules, it might have been equally interesting to study the
sta�’s circadian rhythms.)

One of the former subjects recalled what the experience was
like:

When I was out of college I was broke and this was a way of making
some money…. I spent a lot of time reading and writing to make up some
incompletes. I got more done in a month than I normally did in a whole
semester. I thought it was important to have a certain routine to maintain
a measure of sanity, so I wore a shirt and tie, and shaved every day. One
of my biggest problems was that my pants were wool and I couldn’t get
the creases pressed. So sometimes I walked around with a shirt and tie and
shorts!

Sometimes I felt like a prisoner, trading my youth for money. Although I
didn’t feel crazy, I thought others might think I was. I’m quite comfortable
with myself a little con�ned. I was happy as a clam. I could tell they were
also a little strange, more interested in my urine samples than in some
fascinating dreams.
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They took blood samples every �fteen minutes. I had a catheter in my
arm, and a butt probe, and all these things were attached to a movable
pole. The �rst few days there was a de�nite presence but after the �rst
week it became a part of you. It was like having a tail….

I never knew what time it was and I didn’t worry about it, except one
time a technician came in with tuna �sh on his breath and bloodshot eyes.
I said, “Pretty tough night, eh?”

Of the �rst 12 subjects that Czeisler and Weitzman studied, 6 of
them internally desynchronized. For whatever reason, these
subjects repeatedly stayed awake and asleep for extraordinarily
long times, just as Si�re had done in Midnight Cave. A few
maintained that odd schedule inde�nitely, resulting in sleep-wake
cycles that were 40 hours long, on average. Others regularly
alternated between long cycles and more conventional ones,
while still others would systematically lengthen their cycles as the
experiment progressed, until they were sleeping only once every
two days, without realizing it. There seemed to be no rhyme or
reason to any of this.

Czeisler was especially intrigued by the long sleep episodes.
Why would someone sleep for 15 hours straight? Could it be
explained by how long the subject was awake beforehand? That
would make sense: After staying up late, the subject might need
to sleep more. But when Czeisler graphed the duration of sleep
against the duration of prior wakefulness, he saw nothing. The
graph was a blob. Although a statistical test for correlation
showed a weak tendency for long sleeps to follow long wakes, it
was unconvincing. By eyeballing the data, he could spot plenty of
counterexamples where longer wakes were followed by shorter
sleeps.

Meanwhile, the round-the-clock physiological measurements
showed that the subjects’ rhythms of body temperature, cortisol
secretion, and alertness always remained rock-solid, running with
a period just a little bit longer than 24 hours. No matter how
erratic the sleep-wake cycle became, these three internal rhythms
were always remarkably stable. More than that, they always
moved in lockstep: Their periods were identical. That had to be a
clue.
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Czeisler tried another approach. He graphed the sleep and body
temperature cycles together in a two-dimensional format called a
raster plot. Circadian biologists had been making this type of plot
for decades. It was the standard way to depict the leaf-opening
rhythm of a plant or the wheel-running rhythm of a mouse, but it
hadn’t been used much for humans. The term comes from an
analogy with television technology, where a process called
rastering converts a continuous torrent of electronic information
into a two-dimensional picture. Similarly, a raster plot takes the
stream of data coming from an experiment and converts it into a
two-dimensional graph. The raster chops the data into 24-hour
blocks, and then stacks them vertically like a pile of bricks.

Day 1 is on the top of the pile, with day 2 directly below it, and
so on, continuing until the last day of the experiment at the
bottom of the pile. To summarize the subject’s circadian rhythms
on a given day, a black bar shows the hours when he was asleep,
and a gray bar shows when his body temperature dipped below
its average value. The virtue of raster plots is that any repetitive
patterns in the data jump out at you. A strict 24-hour rhythm is
instantly recognizable as a vertical stripe of bars, all starting and
ending at the same time of day. A rhythm longer than 24 hours is
a diagonal stripe that slopes down to the right.
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When Czeisler made a raster plot for one of his desynchronized
subjects, he immediately noticed that all the long sleep episodes
—the mysterious ones—lined up diagonally. So did the short
sleeps, but on a di�erent line. And both lines ran parallel to a
diagonal stripe formed by the trough of the body temperature
rhythm.

The implication was startling. Even though the sleep-wake
cycle had osten-

sibly come unglued from the temperature cycle, there was an
ongoing, consistent relationship between them: Long sleeps
always began at high temperature and short sleeps at low
temperature. Czeisler checked the records for his other subjects,
and the same rule worked every time. He reanalyzed old data
published by the groups in France, Germany, and England. The
rule had been hiding in there all along.

Czeisler had cracked the circadian code. By studying sleep in
relation to the cycle of body temperature (rather than in relation
to the time of day or any other external variable), he had
discovered a natural reference frame, a natural measure of what
time it is in the body. When viewed from this perspective, data
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that had previously appeared “jagged” and “random” suddenly
lined up and snapped into place. How long a subject stayed
asleep did not depend on how long he had been awake
beforehand; it depended on when he fell asleep in relation to his
cycle of body temperature.

To �esh out the mathematical form of the relationship, Czeisler
made another graph, now plotting the duration of dozens of
di�erent sleep episodes versus the phase of the body temperature
cycle at bedtime. In other words, he took all the sleeps that began
when body temperature was low, and grouped them together.
Then he did the same thing for sleeps that began near the
temperature maximum, and so on. This allowed him to compare
apples to apples; his raster plot had already shown him that sleep
episodes beginning at similar phases in the temperature cycle
should be similar in duration. He pooled the data from all his
desynchronized subjects—some young, some old, some who had
lived on 30-hour cycles, some on 40. Despite their drastic
individual di�erences in all other respects, their sleep durations
fell neatly into a single cloud of data points, a slightly blurred
version of a universal mathematical curve.

Whenever the subjects happened to go to bed near the peak of
their temperature cycle, the subsequent sleep episode was always
very long, averaging 15 hours. Conversely, when they fell asleep
near the time of minimum temperature, they slept much less,
about 8 hours on average. Viewed across all phases, the cloud of
sleep durations resembled a sawtooth-shaped wave.

That was unexpected. Unlike the body temperature cycle,
which had the
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more familiar appearance of a sine wave, the cloud was strikingly
asymmetrical. Sleep duration jumped vertically from 7 hours to
18 hours for episodes beginning about 9–10 hours after the
temperature minimum, followed by a gradual, ramping descent
back down to shorter sleeps.

The ramp implies something counterintuitive. When subjects go
to sleep later in their body temperature cycles, they actually sleep
less, even though they have been awake longer. The same
peculiar pattern has been observed in the irregular sleep of train
drivers and other night-shift workers, and you may have noticed
it in your own sleep after a late-night party. When you �nally get
to bed, hoping for a long recovery sleep, you’re exasperated to
�nd yourself waking up after only 5 or 6 hours of tossing and
turning. The problem is that the body’s internal alarm clock is
ringing. Time-isolated subjects nearly always awaken in the �rst
few hours after their temperature starts rising, at around the same
time that cortisol (the body’s stress hormone) is being secreted
maximally and alertness is revving up. The same is true during
24-hour entrainment. So if we go to sleep later, we tend to wake
up sooner, because the alarm starts ringing whether we’ve slept
enough or not.
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That’s the rough explanation for the descending ramp. To
understand the vertical jump, where sleep duration can be either
very short or very long or anywhere in between, imagine that you
stay up all night until the following afternoon. Then, if you allow
yourself a little mid-afternoon nap, it might be just that—a nap—
or you might conk o� for the rest of the afternoon, all evening,
and sleep clear through to the following morning.

This explanation relies on an implicit conversion between the
time of day and “circadian phase” (the phase of the body
temperature cycle, the only measure of time that has
physiological meaning in conditions of protracted time-isolation).
To extrapolate to the real world, where both the sleep-wake cycle
and the body temperature cycle are entrained to the 24-hour
clock, we need to reference all biological events to the low point
in body temperature. The proper conversion formula emerged
from Czeisler’s later studies: For people who are entrained to the
24-hour day, body temperature typically reaches its lowest point
about 1 or 2 hours before the time of habitual wake-up. For
example, much of the labor force wakes up at around 6 or 7 A.M.
Hence, for those people, minimum body temperature probably
occurs between 4 and 6 A.M. The jump in sleep duration is
predicted to occur about 9–10 hours after that, which translates
to a clock time of 1–4 P.M. As claimed, that’s nap time.

Czeisler and Weitzman found that many other physiological
and cognitive rhythms were linked to the phase of the body
temperature cycle. For instance, they asked their subjects to
assess their alertness at frequent times while they were awake.
The subject was handed a non-numeric, continuous vertical scale
marked only “very alert” at the top, and “very sleepy” at the
bottom, and asked to draw a line at the appropriate level.
(Numbers were omitted on the scale to discourage the subject
from automatically repeating his previous assessments.) The
results showed that alertness goes hand in hand with body
temperature: It’s low when temperature is low and high when
temperature is high.

Again using the conversion formula above to translate
circadian phase to clock time, these time-isolation data predict
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that during 24-hour entrainment, minimum alertness should
occur around the time of the temperature trough, namely, 4 to 6
A.M. That’s a notorious time of day. The accident at the Three
Mile Island nuclear-power plant occurred then, with a crew that
had been on night duty for just a few days. Chernobyl, Bhopal,
Exxon Valdez: All those disasters occurred in the middle of the
night, and were tied to human error. Field studies show that from
3 to 5 A.M., workers are slowest to answer a telephone, slowest to
respond to a warning signal, and most apt to read a meter wrong.
It’s a bad time to be awake, especially if you are required to do
something monotonous and important. Shift workers call it the
zombie zone.

Even if you’ve never worked the night shift, you’ve probably
noticed your alertness rhythm during an all-nighter. The later you
stay up, the groggier you become. At some point, usually between
3 and 6 A.M., your eyes start to itch. The desire to sleep becomes
overwhelming. After even more sleep deprivation, out of nowhere
comes a second wind and you start to feel better. You’ve just gone
through the trough of your circadian cycle. Now alertness starts
to rise, along with temperature and cortisol secretion. The
interesting point is that this same sleepy time shows up in the
time-isolation data, even though the subjects are well rested and
are not working the night shift. The zombie zone is built into our
biology.

Along with modulating alertness and the duration of sleep, the
circadian clock also regulates the internal structure of sleep,
speci�cally the propensity for rapid-eye movement (REM) sleep.
REM is a bizarre state, perhaps more so than most people realize.
We dream vividly, and our eyes dart from side to side. Our
breathing and heart rate �uctuate erratically. Spinal inhibition
paralyzes the body—a good thing, since it prevents us from acting
out our dreams. (In experiments on cats where the spinal
inhibition was blocked, they ran around while still in REM, as if
chasing imaginary mice.) Men normally have erections during
REM sleep. That involuntary tumescence enables doctors to
distinguish psychological from physical impotence; they wrap a
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roll of postage stamps around the penis at bedtime, and if the
patient wakes up with torn stamps, the problem is psychological.

REM is as di�erent from non-REM sleep as it is from
wakefulness. Sleep used to be viewed as a bland, uniform state,
with the body and brain shut down for the night. Going to bed
was like putting the car in the garage and turning o� the engine.
Now we know that the engine—the brain—is never turned o�. In
non-REM sleep, the car (the body) is in the garage with the
engine running, but set in neutral so the car won’t move. In REM
sleep, the car is in the garage with the engine running, and both
the gas pedal and the brake are �oored. (The gas pedal represents
the brain revving furiously; the brake is the spinal inhibition that
keeps the body from moving.)

REM sleep has its own rhythm of occurrence, much faster than
the circadian rhythm. The brain cycles through various stages of
sleep about every 90 minutes. After we crawl into bed, we �rst
slip from wake into light sleep; then into deep sleep, where the
brain waves are large and slow; and then back out to light sleep
and into REM for the �rst of several dreams. The �rst dream
period is usually short, about 10 or 20 minutes. The REM
episodes generally lengthen as the night goes on, so that by the
early morning hours, we may be treated to a full hour of surreal
entertainment, or possibly a horror movie.

For people who are normally entrained to the 24-hour day, the
peak time for REM is in the early morning, near the end of sleep.
That explains why we so often wake up after a long dream, and
why men so often wake up erect. But this commonplace
association of REM with the end of sleep is actually the wrong
generalization. That is not the law of REM. The correct law was
discovered by Czeisler and Weitzman in their time-isolation
experiments. When they initially measured the brain waves of
their subjects, they were shocked to �nd that REM accumulated
most rapidly near the beginning of sleep, not near the end.
Moreover, that’s when the longest REM episodes occurred. Both
results seemed topsy-turvy, counter to everything taught in
medical school. In fact, REM at the onset of sleep is normally very
rare and diagnostic of narcolepsy, a debilitating sleep disorder.
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The paradoxical results began to make sense when Czeisler and
Weitzman realized what the true law of REM is. The propensity
for REM is synchronized to the body temperature cycle, not to
sleep itself. The brain doesn’t care whether it is the end of sleep
or the beginning—what matters is what time it is in the body.
The rule is that REM is most likely just after the part of the
temperature cycle when your body is coldest. In 24-hour
entrainment, that’s the circadian phase when most people wake
up, which is why REM is so common at the end of sleep. In
contrast, free-running subjects often fall asleep around the
temperature minimum, which is why they often have REM at
sleep onset. There’s nothing pathological about it.

The circadian rhythms of sleep duration, alertness, and REM
propensity are not the only ones to march in lockstep with the
body temperature cycle. Later studies demonstrated that our
rhythms of short-term memory, the secretion of the brain
hormone melatonin, and several other cognitive and
physiological functions also run at the same period and maintain
constant phase relationships to the temperature cycle and to one
another. There is only one simple way to explain how all these
disparate rhythms could be so tightly linked: They must all be
controlled by the same biological clock.

For many years, this circadian pacemaker was nothing more
than a hypothetical entity. Its existence was inferred indirectly,
just as atoms were in the nineteenth century. The search for its
location in the body always had the potential to degenerate into
an endless chase based on a wrongheaded question. After all,
early experiments on single-celled algae had shown that even
they could exhibit circadian rhythms. So for more complex,
multicellular creatures like ourselves, it might be that the whole
organism is made of trillions of clocks. In other words, we might
not have a clock; we might be a clock.

And that spooky thought is turning out to be right. For 30 years
we’ve known that adrenal glands and liver cells can display
circadian rhythms of their own, even when they are removed
from the body and kept alive in a dish. The same now appears to
be true of heart cells and kidney cells. Clock genes are turning up
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in tissues everywhere in the bodies of fruit �ies and small
mammals like mice and hamsters; presumably we, too, are
congregations of circadian oscillators.

Still, there has always been strong reason to believe that, in
mammals at least, all these peripheral clocks are ruled by a single
master, probably localized somewhere in the part of the brain
called the hypothalamus. As far back as the early 1900s, doctors
had noticed that patients with tumors in this area su�ered from
irregular sleep-wake cycles. An even more telling piece of
evidence came from the work of Curt Richter, a biologist at Johns
Hopkins University, who spent almost 60 years stalking the
circadian pacemaker. In an arduous and gruesome series of
experiments, Richter blinded rats and then systematically
removed their adrenals, pituitaries, thyroids, or gonads; induced
convulsions; and administered electroshock, alcoholic stupor, and
prolonged anesthesia. After sewing the rats back up and returning
them to their cages, he found that none of these horri�c
interventions altered their free-running activity rhythms. The
clock was still ticking. Then he cut their brains in one location
after another, testing whether any individual lesion disrupted
their circadian rhythms. None of the nicks made any di�erence.
The rats went right on feeding, drinking, and running
rhythmically—except when the lesions were placed in the front
part of the hypothalamus. Then the rats became arrhythmic.

In the 1970s, other researchers pinpointed the clock even more
precisely. Guided by the fact that cycles of light and dark could
entrain circadian rhythms, they injected the eyes of rats with
radioactively labeled amino acids, hoping to trace the neural
pathways from the retina back to the putative clock. Along with
the expected pathways to the brain’s visual centers, they also
found a monosynaptic pathway—a neural hotline—to the
suprachiasmatic nuclei, two tiny clusters of neurons in the front
of the hypothalamus. This neural architecture was extremely
suggestive. Apparently the clock was so important to an animal’s
survival that evolution had joined it to the eyes by a dedicated
line, rather than pausing to make several synaptic hops. To settle
the matter once and for all, the researchers then surgically
destroyed the suprachiasmatic nuclei and found that the rat’s
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circadian rhythms disappeared along with it. The master clock
had �nally been found.

The details of how the pacemaker works are still sketchy. It’s
known that many of the thousands of neurons in the
suprachiasmatic nuclei are oscillators. They spontaneously cycle
through a cadence of electrical �ring each day, driven by the
waxing and waning concentrations of molecules called clock
proteins. These molecular circadian rhythms are themselves
generated by an interlocking set of biochemical feedback loops,
involving DNA transcription and translation of something like
eight clock genes (at last count—this research is in constant �ux).
Then, somehow, thousands of these oscillating “clock cells”
manage to synchronize their electrical activity, coupled perhaps
by chemical di�usion of a neurotransmitter called GABA. Finally,
the collective electrical rhythm of the pacemaker is conveyed—
again, through unknown means—to the peripheral oscillators in
the liver, kidney, and other organs throughout the body,
disciplining them to run at the same period as the master clock.

The explanation of Czeisler’s results, then, is that all the
rhythms he was measuring were coordinated by a single circadian
pacemaker. The body temperature cycle is a reliable marker for
it; that’s why all the other rhythms lined up when viewed in that
natural reference frame. We still have no idea how the pacemaker
biochemically determines the duration of sleep or the propensity
for REM. All that must wait for another day.

For now, we can only be awed by the performance of this
brilliant maestro, mysteriously orchestrating dozens of rhythms
inside us. When everything is working right—when we’re not jet-
lagged or otherwise desynchronized—the performance of the
pacemaker is breathtaking. Consider how it steers the body
through the most biologically stressful moment of every day: the
moment of awakening. On the pacemaker’s command, body
temperature has already begun rising two hours earlier. The
adrenal gland secretes a burst of cortisol to rouse us for the
battles ahead. The internal alarm clock starts ringing. Rhythms of
cognitive function, memory, dexterity—all turn on and begin to
climb. As we go through the rest of the day, virtually every organ
system and physiological function ebbs and �ows on a predictable
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schedule. The silent symphony inside us explains why cancer
chemotherapy is most e�ective at certain hours (re�ecting
rhythms in DNA synthesis and other cellular processes), and why
heart attacks are most probable around 9 A.M. (blood pressure
peaks then). Births are most likely to occur in the early morning,
around 3–4 A.M.; the same is true of deaths, with the curious
implication that we all tend to live an exact, whole number of
days.

It’s a tidy story, except for one loose end: We still haven’t
explained what’s going on when people spontaneously
desynchronize, as Si�re did in Midnight Cave. When that
happens, the timing of sleep seems to disobey the pacemaker’s
commands altogether. Can that really be so, or is there another
secret hiding in the data, a missing key to the circadian code?
This was the problem I dreamed about solving for my Ph.D.

In the fall of 1982, I arrived at Harvard as a new graduate
student in applied mathematics. Across the river in Boston, Chuck
Czeisler was just starting as a new assistant professor at Harvard
Medical School and Brigham and Women’s Hospital. I had heard
about Chuck while working over the summer with Art Win-free,
who had himself done pioneering work on circadian rhythms.
Win-free was especially impressed with Czeisler’s recent
discovery of the law of sleep duration, and showcased it in a
review article in Nature, one of the world’s top scienti�c journals.
I remember how it stunned me. It seemed amazing that despite
the vagaries of human psychology and volition, the sleep-wake
cycle could obey such a simple and universal pattern. Internal
desynchronization might look erratic on the surface, but at a
deeper level it was subtly structured. Maybe other laws were
waiting to be discovered. The prospect was exhilarating.

I felt like I’d landed in the right place at the right time. Along
with the recent addition of Czeisler, the faculty included Richard
Kronauer, a mechanical engineer who had developed the leading
mathematical model of human circadian rhythms; Martin Moore-
Ede, a physiologist with expertise in the circadian rhythms of
squirrel monkeys; and Woody Hastings, a cell biologist who had
spent 35 years pursuing the molecular mechanisms of the
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circadian clock. They were all friendly with one another, and
cotaught a course at the medical school, attended by a gaggle of
their graduate students and postdocs, all hungry for research
opportunities.

I met Czeisler on the �rst day of the course. Tall and in his
early thirties, with a Clark Gable mustache, he looked “like a
movie star” (according to my mother, when she saw him
interviewed on television years later). And more to the point,
after his brilliant Ph.D. work, Czeisler seemed destined for
academic stardom. Brigham and Women’s Hospital gave him an
entire �oor of the Old Boston Lying-In Hospital for his lab space.
When he took me to see it, we were greeted by the sound of
jackhammers. Construction workers were busy converting the
space into a time-isolation facility, along the lines of what
Weitzman had done at Monte�ore.

It would be at least a year until Czeisler could run any new
studies. But in the meantime, there were plenty of nagging riddles
about the existing data. In particular, Winfree kept harping on a
fundamental asymmetry: Sleep duration was predictable, but
wake duration was not. Even with the bene�t of hindsight, no
one had found a way to predict how long a desynchronized
subject might stay awake. And that meant that half of the sleep-
wake cycle was still an enigma.

To begin looking for a law of wake duration, I collected all the
data I could �nd. Czeisler generously shared his old records from
Monte�ore, plus some data that the French team had sent him.
Winfree passed along a few data sets that he had come across. But
for the most part, I scoured the scienti�c literature for published
examples of internal desynchronization. Gathering all this
information took about a year. Those were the days before
digitizers and enlarging photocopiers, so the process was tedious.
I’d �nd a journal article containing a raster plot. Then I’d have a
photographer shoot a picture of it and blow it up so I could
accurately measure the durations of all the sleep and wake
episodes, using a ruler and magnifying glass.

Eventually I compiled a huge database of desynchronized sleep-
wake cycles, and began searching it for patterns. I tried plotting
wake duration against any prior variable that seemed plausible:
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the length of the prior sleep episode, or the phase of the body
temperature cycle at the moment of waking. Sadly, those graphs
revealed nothing. Later I looked for relationships between wake
duration and two prior variables. Again, nothing. If a law of wake
duration exists, it has remained elusive to this day.

Throughout this fruitless chase, I kept meeting with my new
adviser, Richard Kronauer, a silver-haired scientist of great
con�dence and optimism. He always had time for me, and he
loved poring over data—that was fun for both of us. He also had
a pet model of how human circadian rhythms worked. That was
not as much fun—especially when I would irritate him with the
discrepancies between his model and the data I had assembled.
He’d raise his voice. My face would redden. Both of us could be
stubborn.

One of Kronauer’s favorite ideas was that there were two
particular times in the circadian cycle when people would not fall
asleep. Forbidden zones, he called them. He’d take out his ruler
and draw some parallel lines on a raster plot and say, “Look, the
subject never falls asleep in this band or that one.” I was skeptical
—it’s easy to �nd such patterns if you already believe in them.
Kronauer was aware of the human proclivity for self-deception,
but he insisted that the zones were in speci�c, consistent places,
the same for every subject.

There was no need to bicker. My database could settle the
question. If the forbidden zones were real, they should show up
as two valleys in the distribution of bedtimes chosen during
internal desynchronization. At the opposite extreme, if the
subjects were equally likely to fall asleep anywhere in the
circadian temperature cycle, the distribution should be �at.

Kronauer was right. When I graphed the relative frequency of
sleep onsets as a function of circadian phase, two prominent
valleys emerged, each about 2–3 hours wide, centered about 5
hours after and 8 hours before the time of minimum temperature.

While not strictly forbidden, sleep was far less likely to begin in
either of these zones. The corresponding clock times could be
estimated by applying the conversion formula mentioned
previously: The temperature minimum occurs
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about 1–2 hours before habitual awaking. So for someone who
sleeps from 11 P.M. to 7 A.M. each night, the data predicted a
“morning forbidden zone” at around 10–11 A.M., and an “evening
forbidden zone” at around 9–10 P.M., just an hour or two before
bedtime.

The distribution also showed two peaks, representing the
sleepiest times in the cycle, in the sense that these were the
bedtimes the subjects selected most often (without realizing it, of
course, since they were in time isolation). A broad peak centered
around the temperature trough coincided with the zombie zone,
indicating that this window of minimum alertness was also the
time of maximum sleepiness. A second peak occurred about 9–10
hours after minimum temperature, corresponding to siesta time,
2–3 P.M. in the outside world. The intriguing suggestion is that we
become sleepy in the mid-afternoon, not because we have eaten a
big lunch, or because it is hot outside, but because our circadian
pacemaker demands it.

When Kronauer and I saw that the timing of afternoon naps
coincided with a sleepiness peak in the desynchronization data,
we knew we were on to something. It wasn’t obvious that results
obtained from time isolation should have anything to say about
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life in the real world. After all, the conditions are totally
di�erent. During entrainment, the rhythms of sleep and body
temperature are phase-locked to each other and to the time of
day, whereas during internal desynchronization, sleep runs at a
di�erent period from temperature, and both run at periods longer
than 24 hours. Still, the conversion formula gave a correct
prediction of the nap phase, so perhaps we could extrapolate to
the rest of the sleepiness rhythm. If so, that meant we should �nd
real-world counterparts of both forbidden zones.

A few weeks later, at a sleep research meeting, I heard a lecture
about the hourly distribution of single-vehicle truck accidents,
and there it was—the same distribution we had been looking at.
(A single-vehicle accident means that the truck jackknifed,
overturned, crashed into a bridge abutment, or veered into a
ditch of its own accord. It did not collide with another vehicle.
The driver probably dozed o� at the wheel.) The statistics showed
that truck drivers are much more likely to have a single-vehicle
accident at 5 A.M. than during regular daytime hours. The second
most likely time is between 1 P.M. and 4 P.M., the nap phase. The
fewest accidents occur at 10 A.M. and 9 P.M., corresponding to the
times predicted for the morning and evening forbidden zones.
The explanation seemed clear: Drivers rarely nod o� then. Like
the zombie zone and the siesta, the forbidden zones must be built
into our circadian cycle.

Around the same time, Mary Carskadon, a sleep researcher at
Bradley Hospital and Brown University Medical School, was
studying the brain waves of subjects on a “constant routine,” a
protocol designed to unmask the circadian component of the
temperature cycle by �attening the subject’s behavior and
environment as much as possible. Subjects are kept awake in a
constant supine posture (propped up in bed) in constant indoor
light for 40 hours, and fed hourly portions of a nutrient drink.
Although they are supposed to stay awake the whole time, they
don’t—they occasionally drop o� into a “microsleep.” For a few
seconds the brain falls asleep and the EEG pattern changes
suddenly.

Carskadon found that these unintended sleep episodes are more
likely to occur at certain times of day. When she graphed the
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hourly distribution of microsleeps during the last 22 hours of the
experiment (by which time the subject was sleep-deprived), she
found peaks at the zombie zone and nap phase, and valleys at the
two forbidden zones.

Everything was �tting together. The same distribution showed
up in microsleeps, in tra�c accidents, and in bedtimes chosen
during internal desynchronization. Apparently all three re�ected
the brain’s innate circadian rhythm of sleepiness and wakefulness.

Given that the evening forbidden zone is precariously close to
habitual bedtime—just an hour or two before it—Kronauer and I
wondered if it might be implicated in some forms of insomnia. So
far we had no evidence for that. Our time-isolation data showed
only that desynchronized subjects seldom chose to go to bed
about 8 hours before their temperature minimum. The question
remained: If people deliberately tried to fall asleep then, would
they �nd it di�cult?

The answer was already in the literature. In the mid-1970s,
several researchers had placed subjects on severely shortened
sleep-wake schedules to test their ability to fall asleep at many
times of the day and night. For example, Carskadon and William
Dement put Stanford college students on a “90-minute day”—a
grueling regimen of 30 minutes of bedrest followed by 60
minutes of enforced wakefulness, then back to bed for another 30
minutes, and so on, 16 times a day, around the clock for over �ve
calendar days. Sometimes the subjects made good use of their
precious 30 minutes in bed, and fell asleep as soon as their heads
hit the pillow. At other times, they could not fall asleep at all,
despite being exhausted. Their ability to sleep varied
rhythmically each day, and correlated strongly with the phase of
their body temperature cycle. The worst time was about 8 hours
before the temperature minimum, around 10:30 at night for these
college students. Paradoxically, the hardest time to fall asleep was
right before their regular bedtime. That surprised Carskadon and
Dement, but now it made sense—they had been seeing the
powerful e�ects of the evening forbidden zone.

Kronauer found further evidence that the forbidden zone could
cause sleep-onset insomnia. In an experiment conducted at the
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Cornell Institute of Chronobiology, Je� Fookson and his
colleagues entrained a healthy 21-year-old man to a rigid 23.5-
hour day. In other words, while sequestered in a time-isolation
facility, he was placed on a strict regimen that involved his going
to bed and being awakened a half hour earlier each day. No naps
were allowed—only a single, consolidated block of bedrest for
7.75 hours on each cycle. He frequently couldn’t take advantage
of his time in bed: If he didn’t fall asleep immediately, he tossed
and turned for about 3 hours. As the experiment dragged on, his
sleep de�cit grew, yet he continued to su�er from insomnia at
bedtime. The subject complained bitterly about the imposed
schedule—something was wrong, though he didn’t know what—
and threatened to quit the experiment. All this from a mere half-
hour shortening of his day!

Kronauer’s explanation was that the short schedule wrenched
the subject’s internal phase relations out of whack, anchoring the
evening forbidden zone at his scheduled bedtime, making it hard
for him to fall asleep. To understand how speeding up the
schedule could have this e�ect, think of the circadian pacemaker
as a reluctant dog being dragged around a circular track by a fast-
walking owner. (Like the poky dog, this subject’s pacemaker
tended to dawdle through its circadian cycle every 24.7 hours,
whereas the outside world tugged it along impatiently, aiming to
�nish a lap every 24 hours.) Now if the owner speeds up and
walks even more briskly, the dog does too, but it stretches the
leash and lags farther behind. For the pacemaker, this means that
when the schedule speeds up from 24 hours to 23.5 hours, all
events tied to the pacemaker (including the forbidden zones) will
similarly lag behind and shift to later times, relative to the
schedule. Hence, a forbidden zone that had been safely perched a
few hours ahead of bedtime would now be sitting precariously
close to it, or even right on top of it. And it would have to stay
there, anchored in this awful condition, until something broke the
leash and freed it from entrainment. The �nal part of the
experiment supported this interpretation. When the imposed
cycle was mercifully shortened to 23 hours, the subject’s
temperature rhythm broke loose—it could not synchronize to
such a short schedule. Consequently his forbidden zone unlocked
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from his bedtime, his insomnia disappeared, and his mood
brightened.

There are people in the real world with the same sort of
insomnia as this subject, and for the same reason. He had an
intrinsic circadian period of 24.7 hours and had trouble living on
a 23.5-hour day; by the same token, people with intrinsic periods
near 25.2 hours living in a 24-hour world could well �nd
themselves trying to fall asleep in a forbidden zone. That may be
the explanation for the “delayed sleep phase syndrome” estimated
to a�ict hundreds of thousands of people. Its su�erers are able to
sleep well but only at the wrong time of day, like 4 A.M. to noon.
This makes it practically impossible for them to hold any job that
requires alertness in the morning.

With the evening zone so close to habitual bedtime, even
people without sleep disorders may sometimes �nd themselves
trying to fall asleep when it’s most di�cult. If you’ve ever gone to
bed a few hours early, perhaps because you need to wake up
early to catch a plane, you may have noticed how hard it is to fall
asleep. The problem is not only that you’re excited about the
upcoming trip; you’re also trying to sleep at the worst time in
your circadian cycle. The same thing explains why Sunday night
is the worst for insomnia. By staying up late and sleeping in on
the weekend, you may have inadvertently allowed your circadian
pacemaker and its evening forbidden zone to drift later and
possibly intrude on your regular weekday bedtime.

Many people su�er from other forms of deranged
synchronization to the 24-hour day, or a lack of synchronization
altogether. Shift workers in particular are befuddled by mixed
messages. When they’re working nights, their circadian
pacemakers tell them to sleep during the daytime, but sunlight
and tra�c noise (and their children) tell them otherwise. In fact,
shift work poses major problems for all industrialized societies,
problems that will only grow worse. Economics is pushing us to a
24-hour society, with factories and businesses and �nancial
markets operating round the clock. About a quarter of the U.S.
workforce already lives on these unnatural schedules. Although
the economic bene�ts are obvious, it’s harder to quantify the
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costs to society and to the workers themselves. These include
disrupted family and social lives, gastrointestinal problems, sleep
disorders, and the costs of blunders committed while operating in
the zombie zone, sometimes with catastrophic consequences.

A candidate for the worst schedule ever is that used by the U.S.
Navy on nuclear submarines. The sailors are assigned to 6 hours
of duty followed by 12 hours of rest—in other words, they are
required to live on an 18-hour day. The pacemaker cannot
possibly entrain to such a short cycle, and the sailors live in a
perpetual state of desynchronization. The navy’s rationale is that
an 8-hour shift is too long to maintain vigilance, and there is only
room on the sub for 3 shifts of men, hence the 18-hour (3 times
6) schedule. The medical consequences of life on an 18-hour day
are unknown, but some indication of the problem is the
tremendously high turnover of enlisted men in U.S. submarine
crews (about 33 percent to 50 percent per voyage), with only a
small number returning for more than two or three of the 90-day
missions. Meanwhile, the o�cers typically live on a 24-hour
schedule and tolerate submarine duty much longer, often
spending years on active duty.

Sunlight is by far the most important cue for keeping our
bodies in sync. Its e�ect on the pacemaker varies across the
circadian cycle, a clever evolutionary design that ensures that the
internal clock is always reset in the right direction. Speci�cally,
sunlight in the subjective morning speeds the clock up (as if to
tell the body, you missed sunrise today so I’ll wake you earlier
tomorrow). Sunlight in the middle of the day has little e�ect on
the clock, and sunlight in the evening slows it down. Some
correction is needed each day, because the human circadian
pacemaker tends to run a bit slow, with a natural period slightly
longer than 24 hours. Scientists are still trying to work out
exactly how light entrains the pacemaker, but in outline, we
know that light strikes the eyes and produces a chemical change
in photoreceptors in the retina, which then forward an electrical
signal along neural pathways to the suprachiasmatic nuclei in the
hypothalamus, the site of the pacemaker. Surprisingly, the
photoreceptors have not yet been identi�ed. They are not the
rods and cones we use for vision; blind mice with a genetic
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disorder that destroys their rods and cones can still entrain to a
light-dark cycle.

Further evidence of the synchronizing e�ect of light can be
inferred from the fact that 80 percent of blind people have
chronic sleep disorders. Unable to reset their clocks by the
necessary amount each day, they have trouble sleeping or staying
alert at the socially appropriate times. Their complaints are
periodic; for two or three weeks of every month, when they’re out
of step with the world, their daytimes are riddled with
uncontrollable naps, their nighttimes plagued by fractured sleep.
But gradually their biological clocks drift so late that they come
back into harmony with the rest of society. Then they feel �ne for
a week or two before the next wave crashes in.

Remarkably, the other 20 percent of blind people do manage to
synchronize to the light-dark cycle. The likely explanation is that
the circadian photoreceptors in their retinas are intact, even if
their rods and cones are not. This allows light to work its
resetting action on the clock, by striking the eyes and then
traveling down the neural pathways to the pacemaker. In other
words, although these people lack sight, they can still perceive
light in a nonvisual, circadian sense. The evidence for this
surprising idea comes from recent studies involving melatonin, a
brain hormone produced by the pineal gland. In sighted people,
the secretion of melatonin ebbs and �ows on a daily cycle, with
peak output in the dark of night while we’re asleep. This
circadian rhythm is driven by the master clock, just like body
temperature, alertness, and so many other physiological
functions. In that sense, melatonin levels provide another proxy
for the pacemaker. Furthermore, the secretion of melatonin is
responsive to light—it plummets whenever bright light enters the
eyes. (Here, “bright” means light of typical daytime intensity,
much brighter than typical indoor light but otherwise nothing
extraordinary.) In 1995, Czeisler and his colleagues tested the
melatonin suppression response of totally blind subjects by
exposing them to bright light at a time when the melatonin levels
in their blood were high. Most subjects showed no suppression at
all, as one would have expected: The light was not getting
through to their clocks. But among that special subpopulation of
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blind people who somehow manage to sync to the 24-hour day,
the light turned o� the melatonin secretion, just as it does in
normally sighted people. The implication is that there are two
pathways from the eyes to the brain: one for conscious vision and
the other for circadian entrainment. This hypothesis is consistent
with the known anatomy of the mammalian brain; the neural
hotline to the pacemaker is separate from the brain’s visual
pathways.

Just as blind people are teaching us about the nature of the
circadian photoreceptor, a population a�ected by a di�erent
syndrome is illuminating the inner workings of the clock itself.
Scientists have recently found the �rst gene linked to a human
circadian rhythm by studying patients with a rare disorder,
discovered in 1999, called “familial advanced sleep phase
syndrome.” Family members a�icted by it are extreme morning-
types, falling asleep at around 7:30 P.M. and waking
spontaneously at 4:30 A.M. Lab studies showed that the circadian
clocks in these people run fast, with a period about an hour
shorter than normal, suggesting a genetic mutation in clock
function. A research team at the University of Utah led by Louis
J. Ptacek traced the mutation to a single gene, hPer2, whose
protein product is believed to play an essential role in the
molecular feedback loops that generate circadian oscillations in
single cells.

Some other families with the syndrome do not possess
mutations of that gene, which means that some other mutant
genes probably exist. Once enough mutants are available, we can
expect scientists to make rapid progress in dissecting the
molecular and genetic basis of human circadian rhythms. And
that will inevitably lead to more e�ective treatments for jet lag,
shift work, and sleep and psychiatric disorders associated with
derangements of daily sync.



104

II

DISCOVERING SYNC

• Four •

THE SYMPATHETIC UNIVERSE

THE SCIENCE OF SYNC HAS COME A long way since Androsthenes, the
scribe for Alexander the Great, gave the �rst written description
of a biological rhythm. Around the fourth century B.C., while on
the march to India, he observed that the leaves of tamarind trees
always opened during the day and closed at night. It would take
another two millennia before mankind would stumble across an
eerier kind of sync, the synchronization between things that
aren’t even alive.

Some of the pivotal discoveries in the history of science were
made by serendipity. Think of Alexander Fleming, who, as we all
know, discovered penicillin when an airborne mold contaminated
his experiment and killed the bacteria he was studying. Or take
Arno Penzias and Robert Wilson, scraping the pigeon droppings
o� their giant radio antenna at Bell Laboratories, trying to
eliminate the annoying background hiss that seemed to be
coming from outer space in every direction, until they realized
that they were hearing the birth cry of the universe, the 14-
billion-year-old echo of the big bang.

Although the role of serendipity is familiar, what’s not so well
appreciated is how di�erent serendipity is from luck. Serendipity
is not just an apparent aptitude for making fortunate discoveries
accidentally, as my dictionary de�nes it. Serendipitous
discoveries are always made by people in a particular frame of
mind, people who are focused and alert because they’re searching
for something. They just happen to �nd something else.
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So it was with the discovery of inanimate sync. In February of
1665 the Dutch physicist Christiaan Huygens was con�ned to his
bedroom for several days, ailing with what he delicately
described, in a letter to his friend Sir Robert Moray, as a “slight
indisposition.” He’d fallen behind on his correspondence—he
owed Moray three letters—and now he was writing with the news
of a strange phenomenon he’d observed while cooped up in his
room, a “marvelous thing which will surprise you.”

In the room with him were two pendulum clocks—the two
most accurate timekeepers ever built. Huygens had invented the
pendulum clock a decade earlier, and now, with its help, he
hoped to solve the greatest technological challenge of his day: the
problem of determining longitude at sea. As beautifully recounted
by Dava Sobel in her best-selling book Longitude, a solution to the
longitude problem took on the gravest importance in the Age of
Exploration, as more ships sailed across the oceans to trade with
other nations, to wage war, and to conquer new territories.
Unlike latitude, which measures a ship’s angular distance from
the equator and which is easily gauged from the length of the day
or the height of the sun above the horizon, longitude—the ship’s
angular position east or west on the globe—is de�ned arbitrarily,
with no intrinsic counterpart in the environment. Sailors could
not use the stars or sun or any other physical cues to determine
their longitude, even aided by the best charts and compasses.
Without any way to establish their whereabouts at sea, even the
�nest captains lost their way and drifted hundreds of miles o�
course or ran aground on rocky shores. Those keeping to familiar
routes were easy prey for pirates. The governments of Portugal,
England, Spain, and Holland o�ered vast rewards for a workable
solution. Although the puzzle was tackled by some of the leading
scientists of the era—Galileo, Giovanni Domenico Cassini, Isaac
Newton, Edmond Halley—it remained unsolved for over four
centuries.

Now Huygens was pursuing a solution along the lines originally
suggested by the Flemish astronomer Gemma Frisius, who
realized in 1530 that longitude could be determined, at least in
principle, by accurate timekeeping. Suppose a ship had an
onboard clock that was set correctly upon departure from the
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home port, and that always ran true thereafter. By carrying
“home time” out to sea in this way, a navigator could determine
longitude by consulting the clock at the exact moment of local
noon, when the sun is highest in the sky. Since the Earth takes 24
hours to complete 360 degrees of rotation, each hour of
discrepancy between local time and home time corresponds to 15
degrees of longitude. In terms of distance, 15 degrees translates to
a thousand miles at the equator, so for this strategy to be
practical, the clock had to be accurate to within a few seconds a
day. The challenge was to devise a mechanical clock that never
wavered, despite the heaving of the ship on violent seas, and
despite the assaults of ever-changing humidity, pressure, and
temperature, which can rust a clock’s gears, expand its springs, or
thicken its lubricating oil, causing it to speed up, slow down, or
stop.

All clocks of the 1500s and early 1600s were woefully
inadequate. The best of them would lose or gain �fteen minutes a
day, even under ideal conditions. Huygens’s new pendulum
clocks, however, were a hundred times more accurate. A solution
to the longitude problem �nally appeared to be within reach. On
a sea trial in 1664, conducted in partnership with the Royal
Society of London (and a cooperative captain), two of Huygens’s
specially designed maritime clocks sailed to the Cape Verde
Islands, o� the west coast of Africa, and successfully tracked the
longitude thoughout. The two-clock design provided useful
redundancy; in case one of the clocks stopped or needed to be
cleaned, the other could still keep accurate time. Unfortunately,
later tests revealed the clocks to be temperamental. They
performed well in favorable weather, but stormy seas bothered
the swinging of their pendulums.

Meanwhile, Huygens remained in The Hague and corresponded
with the Royal Society through Sir Robert Moray, both to inquire
about the results of the ongoing sea trials, and to report on his
latest attempts to perfect the design of his clocks. It was around
that time, on a quiet day in late February 1665, that serendipity
struck. In a letter to his father, Huygens wrote:

Being obliged to stay in my room for several days and also occupied in
making observations on my two newly made clocks, I have noticed an



107

admirable e�ect which no one could have ever thought of. It is that these
two clocks hanging next to one another separated by one or two feet keep
an agreement so exact that the pendulums always oscillate together
without variation. After admiring this for a while, I �nally �gured out that
it occurs through a kind of sympathy: mixing up the swings of the
pendulums, I have found that within a half hour they always return to
consonance and remain so constantly afterwards for as long as I let them
go. I then separated them, hanging one at the end of the room and the
other �fteen feet away, and noticed that in a day there was �ve seconds
di�erence between them. Consequently their earlier agreement must in my
opinion have been caused by an imperceptible agitation of the air
produced by the motion of the pendulums. The clocks are always shut in
their boxes, each weighing a total of less than 100 pounds. When in
consonance, the pendulums do not oscillate parallel to one another, but
instead they approach and separate in opposite directions.

In a letter to his friend R. F. de Sluse on February 24, 1665,
Huygens described the sympathy e�ect as “miraculous.” On
February 27, he dashed o� the letter to Moray, asking him to
convey the observations to the Royal Society.

Over the next week Huygens conducted a series of experiments
to explore what might be causing the sympathy. He hung both
clocks from hooks embedded in the same wooden beam, and
found that when he turned them at 90 degrees to one another, or
separated them by more than 6 feet, their sympathy disappeared.
Yet when he placed a large board between them to block any
passage of air, the sympathy persisted. So his �rst guess was
wrong; the clocks were not communicating through the air after
all.

He then suspected that the clocks might be interacting through
tiny vibrations of their common support. To investigate this
possibility, he tried hanging each clock from a separate plank,
with both planks lying on top of two rickety chairs positioned
back to back. Again the clocks sympathized. Their pendulums
swung apart and together, apart and together, like a pair of hands
clapping. When one clock sounded tick, the other sounded tock.
Then he disrupted their sympathy to see what would happen. The
result must have spooked him—the chairs began to shake. In
sympathy they had been motionless, but now they were
trembling, clattering on the �oor. They continued to shake for
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another half hour until the sympathy restored itself, at which
point the chairs fell silent.

Huygens had his answer. Even though each clock was housed
in a heavy box weighted with 80 or 90 pounds of lead, the
swinging of its pendulum imparted a slight movement to the box,
which jiggled the planks, which jiggled the chairs. But when the
clocks were in sympathy—when their pendulums swung precisely
opposite to each other—the equal and opposite forces they
exerted on the planks canceled each other out, which allowed the
chairs to keep still. Conversely, when he disrupted the sympathy,
the opposing forces no longer balanced at all times. A portion of
them added up and dragged the planks back and forth from side
to side, shaking the chairs. As Huygens put it, “Once the
consonance is achieved the chairs will not move any more, only
preventing the clocks from leaving [the state of sympathy], since
as soon as they try to do that, the small movement of the chairs
restores them to the previous position.” In modern terms,
Huygens had just invented the concept of stabilization by
negative feedback.

The Royal Society was disappointed by this explanation, not
because they thought it was wrong, but because they feared it
was right. The minutes of the meeting of March 8, 1665, record
that “occasion was taken here by some of the members to doubt
the exactness of the motion of these watches at sea, since so slight
and almost insensible motion was able to cause an alteration in
their going.” In other words, Huygens’s own reasoning suggested
that his pendulum clocks were exquisitely sensitive—and
therefore too sensitive to solve the longitude problem.

The sympathy of clocks, which seemed so miraculous just a few
weeks earlier, now struck Huygens as a nuisance. He never
explored it again, nor did he ever manage to solve the longitude
problem. Its solution had to wait another hundred years. In the
mid-1700s, John Harrison, an Englishman with no formal
education, developed a series of maritime clocks made of various
metal parts that resisted rust and ingeniously compensated for
one another’s expansion and contraction at di�erent
temperatures. His fourth chronometer, the masterpiece he called
the H-4, contained jeweled parts made of diamond and ruby,
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which enabled it to run almost friction-free. It weighed only three
pounds, with a diameter of �ve inches—no larger than a big
pocket watch. When tested at sea in the 1760s, it tracked
longitude to an accuracy of 10 miles, su�cient to win the British
Parliament’s prize of 20,000 pounds, equivalent to a few million
dollars today.

Ironically, as the longitude problem recedes into history, the
sympathy of clocks grows more central to science with each
passing year. As great a genius as Huygens was (“Summus
Hugenius,” Newton called him), even he could not grasp the full
signi�cance of what the universe had disclosed that day in his
room. But with more than 300 years of hindsight, we can see it.
Huygens had discovered one of the most pervasive drives in all of
nature. Huygens had discovered inanimate sync.

We take it for granted that we can sing and dance together,
march in step, clap in unison. Sync is second nature to us. But
because it comes so easily, we have poor insight about what it
actually demands. It seems to involve at least a low level of
intelligence, the ability to time our behavior and anticipate that
of others. Which is why the reports of concerted �ashing among
thousands of �re�ies aroused such skepticism for so many years,
and why we are impressed by the chorusing of crickets or the
seductive tactics of male �ddler crabs, who court a female by
waving their gargantuan claws at her in unison.

Still, these feats of living sync can always be chalked up to the
marvels of evolution, the magic of millions of years of natural
selection. And it’s in that light that we can see most clearly what
was shocking about Huygens’s serendipitous discovery.

His pendulum clocks were not alive.
Mindless, lifeless things can sync spontaneously.
The sympathy of clocks taught us that the capacity for sync

does not depend on intelligence, or life, or natural selection. It
springs from the deepest source of all: the laws of mathematics
and physics.

That insight has led to a great �ourishing of sync in
technology. For example, without sync, we wouldn’t have laser
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eye surgery, or CD players, or supermarket checkout scanners, or
any of the other everyday wonders where lasers are used. The
intense, coherent, needle-thin beam of a laser is a result of
trillions of atoms emitting light waves in sync. The atoms
themselves are no di�erent from those in an ordinary lightbulb—
the trick is in the way they cooperate. Instead of cacophonous
light of di�erent colors and phases, laser light is one color and
one phase, like a chorus singing the same note. It can be made
very intense (though it doesn’t have to be); it travels in a narrow
beam; and it can be focused on a tiny spot. In contrast, ordinary
light can be made intense only at the cost of a prohibitive amount
of energy; it spreads out and weakens rapidly as it travels; and it
is di�cult to focus. All these advantages of laser light allow it to
be controlled and manipulated easily. Surgical lasers, for
example, produce a point of concentrated energy that’s smaller
than any scalpel and can therefore reach diseased tissues that
would otherwise be inaccessible. Furthermore, there’s much less
bleeding with laser surgery, because clotting occurs instantly; the
laser cauterizes the incision as it cuts.

For years after the invention of the laser, no one knew what to
do with it. Some teasingly described it as a solution looking for a
problem. And yet this child of basic research, born of pure
curiosity about light waves in sync, has become one of the most
versatile devices of our time, with applications that no one could
have foreseen. At a party celebrating its fortieth birthday, Arthur
Schawlow, cowinner of the 1981 Nobel Prize in Physics (in part,
for developing the laser along with Charles Townes) recalled:

We thought it might have some communications and scienti�c uses, but
we had no application in mind. If we had, it might have hampered us and
not worked out as well…. It’s nice that there are medical uses. Some of
you have probably heard me say before that although there is a lot of talk
in the newspapers about death rays, there still aren’t any real death rays as
far as I know. But one of the �rst applications of lasers was for surgery of
the retina in the eye to prevent blindness from retinal detachment. Neither
Charlie nor I had ever heard of surgery for detached retinas to try to
prevent blindness, and if we had, we probably wouldn’t have been fooling
around with stimulated emission from atoms.
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That phrase—“stimulated emission from atoms”—is the secret of
how a laser works. But I’m a little embarrassed to admit, I’ve had
lasers explained to me about ten times, and the explanation never
seems to stick. All the talk of excited atoms and population
inversions goes in one ear, lingers for a few seconds of hazy
understanding, and then seeps out. I keep hoping to �nd a simple
analogy that will make sense to me, something I could picture
and remember more easily, and now I think I’ve �nally come up
with one—but it’s pretty crazy. If you already understand lasers,
or if you don’t really care about how they work, feel free to skip
to the next section.

Imagine you wake up one morning and �nd yourself on an
alien planet, entirely deserted except for a watermelon with a
step stool beside it. Naturally you wonder what the stool is for, so
you take a guess and place the watermelon on top of it. The
melon becomes strangely agitated, �dgeting on its perch. Almost
immediately it rolls o� and crashes to the ground. At the same
instant, it spits out a seed like a bullet, �ying o� in a random
direction.

What I’ve described so far is an analogy for the way that
ordinary light is produced. Say you turn on your toaster and the
coil glows bright red. What’s going on here is that electricity is
�owing through the coil and heating it up. The heat raises the
atoms in the coil to a higher energy level, which is what lifting
the watermelon onto the stool is supposed to represent. After a
very short time, each hot atom spontaneously falls back to its
lowest energy level—its “ground state”—and gives up its excess
energy by emitting a photon (a particle of light) in a process
called spontaneous emission; this is like the �dgety watermelon
rolling o� the stool and shooting out a seed. So a hot coil glows
red because its excited atoms are spontaneously emitting a lot of
red photons.

As you continue to explore the planet of the watermelons, you
soon come to the edge of a vast �eld, with millions of
watermelons lying on the ground, each with its own stool next to
it. This raises an intriguing new possibility. What would happen,
you wonder, if a seed-bullet happened to strike another
watermelon? To start the action, you lift one melon onto its stool.
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It soon falls o� and �res a seed in a random direction, and by
good luck, its �ight path carries it smack into another melon
lying on the ground. As soon as the target melon absorbs the
impact, it jumps up onto its own stool, where it too starts to
quiver, and before long, it drops down and �res a seed of its own,
again in some random direction. It’s an amazing spectacle, one
seed triggering another, melons jumping up onto stools and then
falling back down. By lifting the initial watermelon, you have
inadvertently created a chain reaction, although of a very feeble,
nonexplosive sort: Its size stays �xed at just one seed in the air at
all times. Actually, if a seed ever fails to hit a watermelon and
�ies out of the �eld, the process stops altogether.

This cascade process is interesting, but it’s not the analog of a
laser. It doesn’t amplify light; it never increases the number of
photons in the air. The missing piece has to do with the only
aspect of watermelon physics we haven’t considered yet: What
happens if a seed hits a watermelon while it’s tottering on its
stool, instead of one lying calmly on the ground? To �nd out, you
lift many watermelons onto their stools at the same time, running
quickly from melon to melon before any of them has a chance to
roll o�. Then you stand back and watch. Eventually a melon
drops down spontaneously and �res a seed, scoring a direct hit on
another melon wobbling on its stool. (The odds of this are good,
because you’ve lifted so many melons onto their stools ahead of
time.) What happens next is astonishing. Instead of being
absorbed, the incoming seed passes straight through the melon
without changing its �ight path; what’s even weirder, it is now
accompanied by another seed exactly like itself, moving in
tandem with it. In e�ect, the incoming seed has been cloned.
Before, there was one seed �ying in that direction; now, there are
two.

This is the key process behind a laser. It’s called stimulated
emission, and you can see that it o�ers a way to increase the
number of photons �ying along a certain line. Every time a
photon hits an excited atom, it duplicates itself, amplifying the
amount of light traveling in that direction, which is precisely
what the acronym laser stands for: Light Ampli�cation by
Stimulated Emission of Radiation. The emission is said to be
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stimulated (as opposed to spontaneous) because the incoming
photon provoked the excited atom into spitting out the new
photon.

What matters most, however, is that the emitted photon is
indistinguishable from the one that spawned it. If you think of
these photons not as particles but as tiny waves of light, they’d be
perfectly synchronized. All their peaks and valleys would be
aligned, meaning that they’re carrying light of the same color, in
the same direction and with the same phase.

There’s no commonsense way to understand how stimulated
emission could be possible, or why the new photon should be a
carbon copy of the old one. The phenomenon is a consequence of
the odd logic of quantum mechanics, the physics of the atomic
and subatomic world, where our intuition from everyday life
breaks down. Einstein discovered the theoretical necessity of
stimulated emission in 1917, but it took another 43 years before
anyone �gured out how to use it to create the �rst working laser.

Actually, stimulated emission is not enough; lasers rely
crucially on two other ingredients. First, we have to �nd a way to
keep most of the watermelons on their stools for most of the time,
since they are the only targets that can give rise to stimulated
emission. Watermelons on the ground are useless. And that means
we have to invest a lot of energy, since the watermelons drop
back to the ground every time a stimulated emission occurs. The
process of continually lifting them back up is known as
“pumping” the laser to create a “population inversion.”
Depending on what type of laser you’re using, you excite the
atoms simultaneously by heating them, or blasting them with a
�ash lamp, or sending electrical discharges through them. That
injection of energy inverts the population, in the sense that it
hoists a large fraction of the atoms up to a higher energy level
than their preferred spot in the ground state.

The second thing that’s needed is a way to intensify the light,
and to create a narrow beam moving in a single direction. Both
are achieved by placing the atoms in an echo chamber for light,
or what a physicist would call a resonant cavity. An organ pipe is
a resonant cavity for sound. So is the body of a guitar; it ampli�es
the faint vibrations of a plucked string into the full sound of the
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instrument. A laser’s cavity does the same thing, except with
waves of light. Take a long, thin glass tube and �ll it with a gas of
the right kinds of atoms or molecules, or take a solid rod of ruby;
there are many ways to make a laser. Then put mirrors at both
ends. Flip the switch to begin pumping the laser (lift those
watermelons). Spontaneous emission starts the chain reaction.
Remember, those �rst photons are ejected in random directions.
Then, when they trigger the subsequent process of stimulated
emission, those initial photons clone themselves, but since they
are still moving in whatever random directions they started with,
many of them bang into the walls of the tube and get absorbed;
they do not contribute to the laser light. In other words, all those
directions have now been neatly �ltered out. Only the photons
bouncing back and forth between the mirrors survive. And not
only do they survive; they proliferate. With every rebound
through the tube, they give birth to more and more perfect copies
of themselves, reinforcing their light and creating a magni�cent
beam of perfectly synchronized photons. To let some of that light
out, one of the mirrors is designed to be slightly less than 100
percent re�ective. The tiny fraction of synchronized light that
escapes is what we see as a laser beam.

The central mystery here—why the newly created photons are
always in sync with the ones that made them—will come up
again in the next chapter, when we take a deeper look at
synchrony in the quantum realm.

Another kind of synchrony lies at the heart of the American
power grid, the electrical behemoth that supplies alternating
current to the outlets in your home and o�ce. Thousands of
generators in power plants all across the country are linked
together to make two gigantic, synchronous machines, the
regional power grids that serve all the states east or west of the
Rocky Mountains. (Texas, being Texas, has its own.) Each grid
functions like a single enormous generator, with all its component
generators rotating in unison.

I’d heard of the power grid for years without ever really
considering what it meant. And maybe, like me, you have never
given much thought to where your electricity comes from, or if
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you have, you supposed it was generated nearby at the local
power plant, and that the same was true for everyone else. The
truth, however, is that during a heat wave in the Midwest, an air
conditioner in Wisconsin might actually be running on power
generated a moment earlier at a plant in South Carolina. Without
sync, that seamless transfer of power wouldn’t be possible.

In outline, the system works like this. Each power plant
harnesses some form of natural energy to drive a turbine that
spins a generator that produces electricity. For example, the plant
might burn coal, oil, or natural gas, or use nuclear energy, to
create enough heat to boil water into steam, and then use the
steam to rotate the turbine. Or it might use the energy of �owing
water (like at Niagara Falls) to turn a hydroelectric waterwheel.
Once the electricity has been generated, it is transformed to the
much higher voltages (up to 765 thousand volts) used to send it
on the nationwide transmission grid. This allows plants to ship
electricity cross-country to compensate for shortages elsewhere or
to exploit price di�erentials. At the end of the line, the electricity
is stepped back down to the 120-volt power we use in our homes
and o�ces.

The origins of the grid can be traced back to 1882, with the
opening of Thomas Edison’s Pearl Street Station in Manhattan,
which served electrical power to 59 customers. The new
technology was an instant sensation, and by the late 1880s,
several other cities were electri�ed. Edison’s young company,
General Electric, provided the kind of electricity known as direct
current (the familiar kind that a battery supplies), in which
current �ows steadily from high voltage to low voltage,
analogous to water �owing downhill.

The trouble with direct current, unfortunately, was that it
couldn’t be transmitted more than a few city blocks. On longer
journeys, too much of the power was lost to heat, the inevitable
consequence of the resistance in the wires. The only remedy was
to transmit electricity at very high voltage and very low current
(because the wasted energy grows in proportion to the square of
the current, so it’s best to keep the current as low as possible).
But that was not an option because Edison’s customers needed
low voltage, not high, to run their little lamps and primitive
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gadgets. What was desperately needed was a device called a DC
transformer, something that could convert direct current from
high voltage to low voltage. No one at the time, not even Edison,
could �gure out how to make one.

Meanwhile, in the 1890s, the Westinghouse Company was
experimenting with a new kind of electricity called alternating
current, pioneered by Nikola Tesla, in which the current
alternately reversed its �ow direction in sync with the rotation of
the spinning generator that produced it. After acrimonious
debates about the merits of the two approaches, alternating
current won out because it was much easier to transform from
high voltage to low voltage and back again. Also, the generators
were inherently simpler, because rotating magnets automatically
create alternating current, whereas an extra step is needed to
change it to direct current.

The main question about alternating current was what
frequency to use. In other words, how many times per second
should the current swing back and forth? In 1900, when the
decision was up for grabs, many of the local electric utilities
operated independently and tried di�erent choices. Some stuck
stubbornly to direct current, while others produced alternating
current at 25, 50, 60, 125, or 133 cycles per second. For instance,
the power plants at Niagara Falls and other hydroelectric stations
favored 25 cycles per second, because the turbines in the
generators could be designed to run more e�ciently at those
speeds. That frequency had a curious drawback, not on
engineering grounds, but on psychological ones: It caused
incandescent bulbs to �icker at a rate that most people found
noticeable and disturbing. (Today, the standard frequency for
alternating current in North America is 60 cycles per second,
while 50 cycles per second is common throughout the rest of the
world.)

Gradually, as the demand for electrical power grew, the local
utilities expanded and encroached on one another’s territory. It
was around this time that the interconnected power grid was
born. Consolidation o�ered several advantages. A networked
system was more reliable, because one plant could pick up the
slack if another had an equipment failure or a shortfall of
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generation capacity. There was also an economic bene�t: Utilities
in di�erent regions could buy and sell one another’s power,
exploiting disparities in the cost of service. Sometimes it was
cheaper to buy power o� the grid than to generate it yourself.

A technical di�culty with interconnecting was that all the
generators had to be synchronized to spin at exactly the same
rate, even though they might be separated by hundreds of miles.
Synchrony was crucial. Without it, power would slosh back and
forth through the grid, causing tremendous current surges in the
transmission lines. In the worst case, a generator might draw so
much power that it could explode or be severely damaged.
(Today, special protective equipment disconnects any generator
that falls out of step.) Part of the solution came from the laws of
physics. Electrical engineers found that generators connected in
parallel had inherent tendencies to synchronize their rates of
rotation. In other words, a parallel grid tends to be self-
synchronizing: a beautiful instance of spontaneous sync, in the
spirit of Huygens’s sympathy of clocks.

The e�ect is easiest to understand for the case of two
generators connected in parallel. If they ever happen to rotate at
di�erent speeds, the slower generator automatically draws power
from the faster one, so the slower one speeds up and the faster
one slows down, which corrects the discrepancy. In more physical
terms, any disturbance that causes one generator to pull away
from the other is opposed by corrective electrical currents that
immediately begin circulating, which set up torques that cause
the speeds of the generators to become more nearly equal. Thus
the pair of generators tends to synchronize spontaneously.

The downside of interconnectivity is that failures can
propagate. These domino e�ects can be complex, unpredictable,
and dramatic. During rush hour on the night of November 9,
1965, the high-voltage power lines from Niagara Falls to New
York City were running at maximum capacity when a torrent of
electrical energy went on a rampage. Shortly before 5:15 P.M., a
protective device malfunctioned and choked o� 300,000
kilowatts that were supposed to be headed for New York City and
instantly forked them elsewhere on the grid, triggering a chain
reaction in which one circuit breaker tripped after another,
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splitting the entire Northeast power system into disconnected
electrical islands. Toronto went black at 5:15, Rochester at 5:18,
Boston at 5:21. Ultimately 30 million people in New Hampshire,
Vermont, Massachusetts, Connecticut, Rhode Island, New York,
metropolitan New York City, and parts of Pennsylvania lost their
power, some for up to 13 hours.

It’s understandable that cascading failures like this should
happen occasionally. The power grid is an enormously complex
dynamical system. Its job is formidable: to provide electricity on
demand, instantaneously, and at the correct voltage levels and
frequencies. Unlike other products, electricity can’t be stored. It
has to be produced on the spot; power generation is the original
“just in time” industry. Complicating the task immensely is that
the demands on the system depend on uncontrollable factors, like
heat waves or quirks of human psychology. When the verdict in
the O.J. Simpson trial was read, the entire power grid sped up
from a sudden drop in consumption, presumably because millions
of people turned o� their television sets simultaneously as soon as
they heard the verdict. Now, with the deregulation of the power
industry, and the potentially destabilizing impact of free-market
economics on the functioning of the grid, engineers and scientists
will face even greater challenges in ensuring that the largest
machine ever built continues to function as reliably as it has for
decades.

In other technological settings, sync is used to keep things
organized. Precise agreement on the time of day at two or more
remote locations is crucial for electronic bank transfers, for
synchronizing television feeds, and for transmitting everything
from E-mail to the songs on the radio. (When you tune in to a
radio station, you have to set the dial to the right frequency,
which enables your radio to sync with the broadcast. Without
that, you wouldn’t be able to home in on the radio wave carrying
the music, and you wouldn’t hear anything but static.) The same
principle is used in cell phones and satellite communications, and
all other forms of wireless communications.

All the electrical components on a computer chip are clocked to
operate in sync. A microelectronic crystal beats billions of times
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each second, switching the digital circuitry on and o� in concert,
which helps the millions of circuits on the chip communicate
with one another e�ciently. This centralized design, with all
components slaved to a tyrannical master clock, has some notable
disadvantages: 15 percent of the circuitry is wasted on
distributing the clock signal, and the clock itself consumes 20
percent of the power. But engineers still favor this design because
of its conceptual simplicity, and because the alternative—a
democracy of many local clocks, as in �re�y swarms and
circadian pacemaker cells—is still not well enough understood to
be easily imitated in practice.

The most high-tech applications of sync are direct descendants
of Huygens’s pendulum clocks and the longitude problem. Today
the world’s best timekeepers are devices known as atomic clocks.
Like all earlier clocks, they rely on counting the oscillations of a
periodic event. But instead of the rising of the sun, or the
dripping of a faucet, or the back and forth swings of a pendulum,
atomic clocks count the transitions of a cesium atom as it �its
back and forth between two of its energy levels. The universal
time standard, the NIST-F1 maintained by the National Institute
of Standards and Technology in Boulder, Colorado, is a cesium
superclock that errs by less than a second in 20 million years. A
new optical clock is under development that will be a thousand
times better still. It wouldn’t have lost a second since the universe
began.

The obsession with keeping accurate time is more than a sign
of scientists’ fastidiousness. Just as accurate clocks were the key
to solving the longitude problem, atomic clocks have made it
possible to pinpoint a location anywhere on Earth to within a few
meters. The technology is known as the global positioning system
(GPS). Developed by the American military to allow ballistic
missiles to be launched more accurately from submarines, the
global positioning system �rst came to the public’s attention in
1991, when it guided cruise missiles through windows in
Baghdad, and enabled coalition troops to �nd their way in the
Iraqi desert at night. Peacetime applications range from helping
lost drivers in rental cars, to precision farming and enhanced 911
systems that automatically calculate the fastest routes for
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ambulances and �re trucks. Re�ned versions of GPS are being
tested for blind landing of airplanes in heavy fog, where the
aircraft will need to be positioned to within 10 centimeters both
horizontally and vertically. But GPS is more than a navigation
system: It allows time synchronization to better than a millionth
of a second, which is useful for coordinating bank transfers and
other �nancial transactions.

The global positioning system consists of 24 satellites orbiting
about 11,000 miles above the Earth, arrayed so that any spot on
the planet is visible to at least six of the satellites at any time.
Each satellite carries four atomic clocks on board, synchronized
within a billionth of a second of one another by the master
superclock in Boulder. Any GPS receiver, like those found in
expensive cars or on handheld devices, receives signals from four
of these satellites (at least), and uses those four numbers to
calculate its three-dimensional location and the current time. The
calculation works on a form of triangulation: The satellites emit
radio signals continuously, each timestamped to the nanosecond
(that’s where the onboard atomic clocks come in); the receiver
then compares the time of reception to the time of transmission,
and multiplies the di�erence by the speed of light to calculate the
distance to the satellite. By doing the same calculation
simultaneously with at least four satellites (all of whose positions
are known very accurately), the receiver can pinpoint its location
to a few meters in less than a tenth of a second.

The power of inanimate sync reaches out into the vastness of
space, far beyond the man-made satellites of the global
positioning system. We tend to be unaware of sync at a cosmic
scale because of the unfathomable distances and times involved.
But when astronomers recently discovered two little planets
orbiting the star Gliese 876, about 15 light-years away from
Earth, one of the �rst things they noticed was that the planets are
locked in orbital resonance, a graceful dance in which one planet
goes around its star twice in the same time that the other goes
around once. Something even more remarkable happens with our
own moon: It turns on its axis at precisely the same rate as it
orbits the Earth, which is why we always see the same side of the
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moon—the one with the man’s face on it, not the dark side on the
back of his head.

The synchronization between the moon’s orbit and its spin can
be explained intuitively. To keep things simple, suppose that the
moon follows a circular orbit around the Earth. The size of the
circle is determined by a balance of two forces: the force of
gravity from the Earth pulling on the moon, and the centrifugal
force from the moon’s motion, which tends to make it �y away
from the Earth. (Centrifugal force is the force that pushes you
against the door in your car when you race around a tight turn.)
The two forces, gravitational and centrifugal, balance each other
perfectly at the center of the moon. But keep in mind that the
moon is a huge ball, not a point. At points other than the center,
the forces are not quite in balance. On the near side of the moon,
gravity is stronger; on the far side, centrifugal is stronger. This
imbalance creates two small bulges in the moon, one on the near
side and one on the far side. The same thing happens on Earth,
due to the moon’s gravity: This is what causes the tides in the
ocean. On the moon, where there is no water, the “tidal e�ect” is
less visible, but important nonetheless, because it deforms the
moon from spherical to slightly cigar-shaped. Because of the
gravitational pull of the Earth, the cigar always wants to point
directly toward the center of the Earth. For that alignment to
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persist even as the moon orbits the Earth, the moon has to spin at
the same time, and in a very precise way—it needs to turn on its
axis exactly once for each revolution it makes about the Earth.
And that is the condition the moon �nds itself in today: a
condition known as 1:1 spin-orbit resonance, or tidal locking.

If the moon were ever to depart from this resonant condition,
the tidal force would twist it back into alignment. To see why,
suppose the cigar were not pointing toward the center of the
Earth.

The situation would then be somewhat like a compass needle
that’s not pointing north—the force �eld (magnetic for the
compass needle, gravitational for the moon) exerts a corrective
torque that tends to restore the cigar to its equilibrium position.
Speci�cally, the Earth’s gravity twists the near bulge of the moon
in one direction, and the far bulge in the opposite direction, but
the near bulge is twisted more strongly because it’s closer. The
e�ect is to realign the cigar, thus enforcing the 1:1 spin-orbit
resonance.

Instead of a compass needle, an even closer analogy would be
to a popular toy from my childhood, a bottom-heavy dummy with
a rounded base; if you try to tip “Joe Palooka” over, he rights
himself automatically. The moon is bottom heavy in the same
way, in the sense that its near bulge is weighted more strongly by
the Earth’s gravity, thus providing the corrective torque necessary
to pull the moon back into synchrony.

Another form of astronomical sync may have been involved in
the extinction of the dinosaurs, an event that changed the course
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of life on Earth forever, allowing small mammals to prosper and
evolve into us. According to the reigning theory proposed by the
father-son team of Luis and Walter Alvarez and their colleagues,
the dinosaurs and many other forms of life were suddenly
annihilated when a giant object of some sort—perhaps an
asteroid, perhaps a comet—smashed into the Earth about 65
million years ago. With the destructive power of 100 million
hydrogen bombs, it created worldwide devastation in the form of
wild�res, sweltering temperatures, poisonous acid rain, and
impenetrable clouds of dust and smoke that blocked all sunlight
for months.

To see how such a cataclysm could possibly be connected to
sync, we �rst need to understand why rocks occasionally fall from
the sky and strike our planet. These meteors are thought to be the
leftovers of an aborted attempt to form a planet in the early days
of our solar system. Back then, particles of dust swirled around
the infant sun and gradually coalesced into boulders, which in
turn agglomerated into larger and larger pieces, eventually
forming the planets we see today.

One of the most striking features of the resulting solar system is
the void that separates the inner planets (Mercury, Venus, Earth,
and Mars) from the next one farther out, the giant planet Jupiter.
Most of us have no sense of how far apart the various planets are.
The distances seem incomprehensible. But we’re starting to get a
feel for them here in Ithaca, thanks to a scale model of the solar
system called the Sagan Walk, erected in honor of the late Carl
Sagan, who spent much of his career at Cornell. Walking around
our town commons, starting at the sun in the middle of the plaza,
you immediately encounter the four inner planets, each about the
size of a small pea, mounted inside their own Plexiglas displays.
It takes just a few steps to walk from one to the next, and you
start to realize that it’s only a short stroll from Mercury to Mars:
All the inner planets are right there on the same plaza. But to
reach the next one, you have to leave the commons and walk
down the street for a few minutes over to Moosewood Restaurant,
where Jupiter awaits. Why the big void between the inner planets
and Jupiter?
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Actually, it’s not a void. Between Mars and Jupiter lies a belt of
millions of rocks orbiting the sun, collectively known as the
asteroid belt. Some of the rocks are solid, while others are
thought to be �oating piles of loose rubble, made of pieces
ranging in size from grains of sand to mile-wide boulders. The
rubble piles have an odd sort of integrity; they are held together
by their mutual gravity, unlike the solid rocks we’re used to,
which are held together by chemical bonds.

The asteroid belt is an enigma in several other ways. For one
thing, it seems much sparser than it should be. All the material in
the belt today amounts to only about one-twentieth of our moon’s
mass, although at one time, it should have contained enough
mass to form several planets as large as the Earth. Yet there’s no
hint of that mass today. Where did it all go?

And here’s a related puzzle. For over a century, astronomers
have been aware of mysterious gaps in the belt, circular gouges
where no asteroids are found, like the gaps between songs on an
old vinyl record. They were discovered in 1857 by Daniel
Kirkwood, a former schoolteacher who learned algebra by
studying a textbook with one of his pupils, and who later went on
to become a math professor at Indiana University. By poring over
data that astronomers had compiled, he noticed that the gaps
weren’t equally spaced, nor did their locations follow any obvious
rules.

An important clue came in 1866 when Kirkwood rephrased the
puzzle as a question about times, not distances. How long would
it take, he wondered, for a hypothetical asteroid in one of the
gaps to orbit the sun? By invoking Kepler’s third law (a
mathematical relationship between a celestial body’s distance
from the sun and the time required for its orbit), he was able to
calculate the orbital periods associated with each gap. For
example, an asteroid in the biggest gap would take about 4 years
to orbit the sun: an interesting number, because it was exactly
one-third as long as Jupiter’s orbital period of about 12 years.
Likewise, an asteroid in another of the gaps would go around the
sun 5 times in the same time that Jupiter makes 2 orbits. In fact,
all the gaps obeyed the same beautiful rule: Their orbital periods
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were always related to Jupiter’s by a ratio of small whole
numbers, such as 3:1, 5:2, 7:3, or 2:1.

This numerology was not coincidental. These gaps, now known
as Kirkwood gaps, are the telltale sign of astronomical sync. They
suggest that Jupiter’s gravity is the culprit: It “resonates” with
any asteroid that happens to blunder into the gaps, systematically
perturbing it and eventually hurling it out of the belt.

Here’s how the resonance mechanism works. Consider an
asteroid with a period of about 4 years, orbiting the sun 3 times
faster than Jupiter, corresponding to the 3:1 Kirkwood gap. As
Jupiter makes its stately journey about the sun, following an
almost circular orbit, the asteroid starts on Jupiter’s shoulder and
then dives toward the sun on an elongated, elliptical orbit. The
sun’s intense gravity whips the asteroid around like a bolo, and
sends it screaming back toward Jupiter so fast that it ends up
making 3 revolutions around the sun in the same time that
Jupiter goes around once. At the end of its third lap, the asteroid
�nds itself right back where it started, hugging Jupiter’s shoulder.
In other words, this point of closest approach always occurs at the
same place in both of their orbits.

These close encounters have a profoundly disturbing e�ect on
the asteroid, because Jupiter is enormous, and its gravitational
pull on the asteroid is most pronounced when they are closest
together. Furthermore, the same disturbing e�ects add up
relentlessly because the interaction always occurs at the same
point in the orbit. Over hundreds of cycles, the periodic tugs
accumulate so much that they distort the asteroid’s path and
cause it to become chaotic, which greatly increases its odds of
leaving the belt. (By contrast, if the asteroid were not in 3:1
resonance, it would come closest to Jupiter at randomly scattered
points in their orbits, so the overall e�ects would average out in
the long run.)

Computer simulations show that asteroids �ung from the belt
tend to crash into the sun or �y out of the solar system.
Occasionally, however, they collide with one of the inner planets.
If that inner planet happens to be Earth, and if the asteroid is
bigger than Mount Everest (as the dinosaur killer apparently was,
based on the size of its impact crater buried beneath the Yucatán
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peninsula), then one can begin to see how astronomical sync
could be important to us.

This argument doesn’t quite answer the �rst riddle, however.
The Kirkwood gaps are too narrow to account for all the mass
that seems to be missing from the belt, making it extremely
unlikely that Jupiter alone could have ejected it all. The
astronomers John Chambers and George Wetherill have recently
suggested an alternative solution. They propose that in the
infancy of the solar system, several planetary embryos—some as
large as Mars—coalesced out of the rocks in the asteroid belt (just
as they did elsewhere to form the planets we see today). These
proto-planets would have agitated the other rocks in the belt,
nudging them into the resonant escape hatches, thereby thinning
the belt more rapidly than Jupiter would have alone. Over time,
some or all of these embryonic planets would themselves have set
foot in the gaps, only to be ejected from the belt and never seen
again.

Taking this speculation a bit further, the astronomers
Alessandro Morbidelli and Jonathan Lunine suggest that one of
these wayward planetary embryos may have crashed into the
young Earth, �ooding it with enough water to account for the
oceans. It has always been a mystery to explain where Earth’s
water came from. The other inner planets have none, or very
little. Given our position in the solar system, we seem to have
much more water than we should have.

The traditional explanation is that comets, which contain a
greater proportion of water than all other known celestial objects,
bombarded Earth late in its formation and deposited the water we
see today in the oceans, lakes, and rivers. But astronomers have
begun to question that view, because the chemical composition of
the water in comets is usually quite di�erent from that seen on
Earth. (Comets contain a higher percentage of heavy water, an
extremely rare variant in which hydrogen, with a sole proton in
its nucleus, is replaced by deuterium, with one proton and one
neutron.) On the other hand, the water found in carbon-rich
meteorites, believed to be fragments of asteroids, is a much closer
match to that in the oceans.
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The new hypothesis, then, is that our inordinate amount of
water may have been the luck of the draw, the happy result of a
chance collision with an icy impactor launched from the asteroid
belt. If this idea turns out to be right, we have to thank
astronomical synchrony not only for killing the dinosaurs and
making room for our ancestors, but also for providing the water
that made life on Earth possible.

As grand as sync may be at the largest scales of the cosmos, it
is perhaps even more stunning at the smallest ones. Here, deep in
the heart of matter, the oscillators are now electrons, the �re�ies
of the microworld. But unlike �re�ies, which we pretended were
identical for mathematical convenience, these quantum particles
are thought to be truly identical. Every electron in the universe is
indistinguishable from every other. They never age. They never
break or chip. And their perfection makes them capable of group
behavior beyond anything we’ve ever experienced.

In our daily lives, we are accustomed to electricity only in its
chaotic form, a panic of independent particles that don’t
cooperate. The electrical current that powers a toaster is a mad
rush of electrons, scrambling through the �lament and heating it
with their fury. But take the same electrons and coordinate them,
and you have one of the most remarkable phenomena known to
science, trillions of electrons marching in lockstep, encountering
no electrical resistance, gliding through a metal without wasting
any energy in the form of friction or heat. This unimaginably
slippery form of electrical conduction is known today as
superconductivity. Like the sympathy of clocks, it was discovered
serendipitously: in this case, by asking what happens to electricity
at temperatures close to absolute zero.
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QUANTUM CHORUSES

WHEN I WAS SIX YEARS OLD, MY parents gave me a big battery to
play with, the kind used in powerful camping �ashlights. For
some reason I had the idea to wire the two terminals together. As
I walked over to my friend Casey’s house to show him my new
toy, I could feel the wire (and the battery) getting hotter and
hotter in my hands. Electricity was circulating endlessly through
the unintentional circuit I had made, and a lot of heat was being
generated by the circuit’s resistance to that �ow of current.

At a microscopic level, trillions of electrons were banging
around inside the wire, bouncing o� its lattice of copper atoms in
random directions, somewhat like pinballs bouncing o� the
bumpers in a pinball machine. In fact, the commotion is even
greater than this analogy would suggest. The copper atoms are
not stationary like bumpers. They’re always jiggling. The higher
the ambient temperature, the more violent their agitation. So a
better picture would be a mob of pinballs jostling their way
through an obstacle course of vibrating bumpers. Every collision
with the vibrating atomic lattice impedes the �ow of electrons
and causes resistance.

This model of electrical conduction was familiar to all
physicists by the early 1900s. It predicts that the resistance of a
metal should decrease steadily as its temperature is lowered
(because less shaking of the lattice means fewer and milder
collisions). When experiments con�rmed that prediction, some
physicists began to wonder what would happen if the
temperature could be reduced all the way down to absolute zero:
the lowest possible temperature, where all atomic motion ceases.
One camp felt that the resistance would continue to drop in
tandem with temperature and then vanish at absolute zero.
Another argued that the resistance would decrease to some lower
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limit but never disappear completely, because of the inevitable
impurities and defects in any real lattice. Those imperfections
would always cause some resistance, even at absolute zero.

The issue remained moot for years because no one knew how
to make anything so cold. The breakthrough came when the
Dutch physicist Heike Kamerlingh-Onnes devised a way to liquefy
helium, allowing him to cool objects down to –269 degrees
Celsius, equivalent to 4 degrees above absolute zero. He was now
in a unique position to settle the question. In 1911 he found that
the expectations of both camps were wrong. When he immersed a
thin tube of mercury in liquid helium and lowered the
temperature, the resistance of the sample decreased gradually at
�rst, as everyone expected. But then, at a temperature of about
4.2 degrees above absolute zero, the resistance of the mercury
abruptly disappeared. It didn’t ramp down to zero. It plummeted.
At one temperature the mercury showed a measurable resistance;
drop it a tiny fraction of a degree colder, and the resistance was
gone.

Kamerlingh-Onnes had just discovered superconductivity.
From the perspective of classical physics, superconductivity

seems impossible. A material that conducts electricity without
resistance sounds a lot like the crackpot concept of a perpetual
motion machine, a machine that runs forever without su�ering
any friction or requiring any energy. But Kamerlingh-Onnes’s
observations did not violate the laws of thermodynamics; the
catch is that his system was not actually functioning as a
machine, in the sense that it was not performing any work on its
surroundings. Still, except for that crucial caveat,
superconductors do seem to be capable of a kind of perpetual
motion. Later experiments have demonstrated that a pulse of
electrical current can circulate around a loop of superconducting
wire for years without losing any energy. As far as we know, and
implausible as it sounds, the resistance in the superconducting
state is not merely close to zero; it is exactly zero. There’s no way
to prove that experimentally—it would require letting the pulse
swirl forever—but such experiments do place a �rm upper bound
on the resistance: It’s at least a billion billion times smaller than
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the resistance of copper at room temperature. That’s a factor less
than 0.000000000000000001.

For decades after Kamerlingh-Onnes’s discovery, physicists
were mysti�ed by superconductivity. Why did the resistance drop
so abruptly? And how could it disappear at a temperature above
absolute zero, when the atomic lattice would still be vibrating? It
seemed absurd to picture trillions of pinballs rushing past the
quivering bumpers without even glancing them. Something
seemed to be terribly wrong with the traditional model.

In the early 1900s, similar breakdowns were occurring
throughout physics, whenever scientists probed deep inside the
heart of matter, in the microscopic realm of atoms and electrons.
For example, classical physics could make no sense of the
stability of electrons orbiting around the nuclei of atoms. The
prevailing theories said that electrons should continually radiate
some of their energy away as they orbited, which would cause
them to nose-dive into the nucleus. A bad thing—and fortunately
not observed.

Over the next few decades, the paradoxes were resolved, one
after another, by the creators of quantum mechanics, the
revolutionary branch of physics that proposed that matter and
energy are fundamentally discrete. Max Planck assumed that
energy was packaged in tiny lumps, and found that he could then
explain the characteristic patterns of radiation emitted by
materials heated to red-hot temperatures. Albert Einstein
postulated quanta of light—particles now called photons—to
explain a ba�ing phenomenon called the photoelectric e�ect, in
which light falling upon certain metals was found to stimulate the
emission of electrons. Until Einstein’s work (which later won him
a Nobel Prize), no one could understand why some colors of light
ejected electrons at high speeds, while others were completely
ine�ectual. Niels Bohr solved the puzzle of nose-diving electrons
by sheer �at. He declared that electrons were con�ned to a
discrete set of circular orbits whose angular momentum was
quantized in units of a smallest denomination, a penny of angular
momentum called Planck’s constant. From that he was able to
calculate the spectral lines—the bar code of colored light waves—
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that hydrogen atoms emit when excited, in convincing agreement
with measurements that had gone unexplained for decades.

Later concepts in quantum theory seemed even more
counterintuitive. Light was sometimes a particle, sometimes a
wave. The same was true of electrons, and atoms, and all
quantum objects. Even the emptiness of empty space was no
longer what it seemed. In quantum �eld theory the vacuum
became a roiling frenzy of particles and antiparticles, suddenly
being born out of nothingness and then disappearing just as fast.

If one had to sum up the quintessence of quantum weirdness in
a single statement, however, that statement would have to be
Werner Heisenberg’s famous uncertainty principle, a re�ned
version of the adage that you can’t have it both ways. The
uncertainty principle expresses a seesaw relationship between the
�uctuations of certain pairs of variables, such as an electron’s
position and its speed. Anything that lowers the uncertainty of
one must necessarily raise the uncertainty of the other; you can’t
push both down at the same time. For example, the more tightly
you con�ne an electron, the more wildly it thrashes. By lowering
the position end of the seesaw, you force the velocity end to lift
up. On the other hand, if you try to constrain the electron’s
velocity instead, its position becomes fuzzier and fuzzier; the
electron can turn up almost anywhere.

For many years, scientists comforted themselves with the belief
that these outlandish e�ects were limited to the subatomic
domain. Today we know better. Today we understand
superconductivity to be an intrusion of quantum mechanics into
our everyday, macroscopic world. It gives a hint of the
strangeness locked in the cellar, creeping up the stairs.

The key to the puzzle of superconductivity turned out to be the
remarkable ability of electrons to pair up and move in sync. To
understand how such electronic cooperation could be possible,
we �rst need to know a little more about the rules of quantum
group behavior.

All quantum particles can be classi�ed as either “fermions” or
“bosons.” Fermions are territorial hermits: No two can ever
occupy the same quantum state simultaneously. This rule, known
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as the Pauli exclusion principle, accounts for the orderly way that
electrons �ll the orbital shells around atoms, waiting their turn,
one at a time, like polite people taking their seats in the same row
of a theater. Fermions’ tendency to avoid one another ultimately
yields the basic laws of chemistry, most notably the structure of
the periodic table, the rules for chemical bonding between atoms,
and the behavior of magnets.

Bosons have the opposite kind of personality. They’re
gregarious. There’s no limit to how many can occupy the same
quantum state simultaneously. In fact, they prefer crowds: The
more populated a state is, the more attractive it becomes to
others. Speci�cally, the probability of a boson adopting a
particular state is proportional to the number already in it, plus
one. This means, for example, that a quantum state containing 99
bosons is 100 times more appealing than an empty one. In that
sense, bosons are inveterate joiners, conformists. They love to
sing along.

The �rst person to conceive of such a quantum chorus was
Albert Einstein. The year was 1924. He had recently received a
letter from a young, unknown Indian physicist named
Satyendranath Bose, who had an iconoclastic idea he wanted to
publish; unfortunately, his paper had already been rejected by
one scholarly journal, and now he hoped to win Einstein’s
endorsement before trying again. Unlike the crank mail he so
often received, this letter intrigued Einstein. Bose had found an
ingenious way to rederive the law of radiation that Max Planck
had originally worked out in 1900, the theoretical breakthrough
that had started the quantum revolution. Planck’s old argument
had an ad hoc character—even Planck himself was not satis�ed
by it—but now Bose had seemingly managed to reformulate it
more gracefully. Upon closer scrutiny, however, Einstein noticed
the peculiar logic implicit in Bose’s calculation: In the course of
enumerating all the di�erent ways that indistinguishable
quantum particles could occupy energy levels, Bose had assumed
new rules for counting.

The issue was somewhat like asking, How many di�erent ways
are there for two identical twins, Peter and Paul, to sit in two
chairs? With normal counting, we’d say there are two ways: Paul
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could sit on the left and Peter on the right, or vice versa. But
suppose Peter and Paul are truly identical, so that if you turned
your back for a moment, you’d never know if they’d switched
chairs. Then, since there’s no way to tell them apart, there’s
essentially only one con�guration: a twin in each chair. When
objects are indistinguishable, said Bose, we need to count
di�erently. Actually, Bose confessed years later that he was
unaware of the novelty in his approach. His intuitive shot in the
dark seemed natural to him.

Einstein extended Bose’s work by considering the group
behavior of any collection of quantum particles that obeyed these
peculiar statistics. Whereas Bose had restricted his attention to
pure radiation (which, like all forms of light, is made of photons
that behave as if they had no mass), Einstein generalized the
theory to matter (composed of particles with mass, like atoms).
His mathematics predicted something astounding: When chilled
to su�ciently low temperatures, such bosons (as they are now
called) could display a kind of quantum sympathy. They would
all act as one. Literally. The particles would lose their identities
and fuse into something indescribable. Not a solid or a liquid—a
new kind of matter.

Einstein’s reasoning is too technical to describe here, even in
metaphorical terms. But we can reach his conclusion more easily
by applying the uncertainty principle that Heisenberg discovered
three years later, in 1927. Although anachronistic, the following
simpli�ed argument is how most physicists today understand the
phenomenon that Einstein predicted.

Remember, we’re trying to show that an enormous number of
bosons can fuse into a single entity at low enough temperatures.
When you think of a boson, don’t think of a point; instead, you
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should picture a blur, a smeared-out cloud of probability that tells
you where the boson is likeliest to be found.

It might help to remember the character named Pigpen in the
old Peanuts comic strip. You rarely saw Pigpen; all you saw was
the cloud of dust surrounding him, and you knew he was
somewhere inside. Likewise, a boson is enshrouded by a spherical
haze, a series of concentric shells of probability, the dark center
of which is the likeliest place to �nd the particle itself. This
center is the region of highest probability—the place where the
boson “is,” in our usual, pre-quantum way of thinking—although
there’s always a chance of �nding it far out on the edge of the
cloud as well.

Now imagine a �ock of these clouds, all darting about at
random in three-dimensional space. This �ock represents a gas of
bosons. The question is, What happens to this gas as we cool it
down to temperatures close to absolute zero? According to
Heisenberg’s uncertainty principle, something very strange is
bound to happen: The blurs will become even blurrier. The
probability clouds will expand and thin out, meaning that the
bosons can wander more widely. To see why, remember the
seesaw. Chilling the bosons slows them down until they’re hardly
moving, which has the e�ect of squeezing their velocities toward
a de�nite value (they can’t go any slower than zero). Now since
the velocity end of the seesaw is being pushed down, the position
end must rise up; as the bosons’ velocities become more de�nite,
their positions must become less de�nite. In other words, they
become even blurrier. Their probability clouds stretch out.
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At a critical temperature, the clouds broaden so much that they
start to overlap, and the bosons start to mingle. As soon as that
happens, said Einstein, a large proportion of them should
spontaneously collapse into the same quantum state, the state of
lowest possible energy. Even Einstein himself was not sure what
to make of this prediction. “The theory is pretty,” he wrote to his
friend Paul Ehrenfest in December 1924, “but is there also some
truth to it?”

Seventy-one years after its mathematical conception, Einstein’s
brainchild was born in a laboratory in Boulder, Colorado, in
1995. Using magnetic �elds, evaporative cooling, and lasers like
those in compact disc players, Eric Cornell and Carl Wieman
chilled a dilute gas of rubidium atoms to less than a millionth of a
degree above absolute zero, a temperature that brings gasps from
even professional low-temperature physicists. Under these
extreme conditions—quite possibly achieved nowhere else in the
history of the universe—they observed thousands of atoms
behaving as one. In 2001, Cornell, Wieman, and Wolfgang
Ketterle of MIT shared the Nobel Prize in Physics for their
creation of this exotic state of matter, now known as a Bose-
Einstein condensate. As the Royal Swedish Academy of Sciences
wrote in a press release, they had succeeded in making atoms
“sing in unison.”

The phenomenon of Bose-Einstein condensation is almost
unimaginably alien. No one quite knows how to describe what it
means. It’s often said that the individual atoms coalesce into a
single, giant “superatom.” Others have characterized the new
state as a “smeared-out, overlapping stew.” My own preference is
for the language used by the Royal Swedish Academy. The
analogy to singing in unison is in the right spirit. Like a sine wave
or any other wave, the quantum wave associated with a boson (or
what we’ve been calling its probability cloud) has both an
amplitude and a phase. In a Bose-Einstein condensate, all these
waves are locked in step. Their troughs and crests line up;
physicists say they are “phase coherent.” Similarly, when a
system of coupled oscillators is in sync, all of them have the same
phase as well. The di�erence is that the oscillators don’t literally
merge into one.
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Quantum phase coherence is more than an esoteric curiosity. It
has given us the laser, one of the most important inventions of
the twentieth century. Precisely because photons are
indistinguishable particles governed by Bose-Einstein statistics,
it’s possible to put colossal numbers of them in the same quantum
state, so that they act like a single, gigantic wave of light. The
laser action is initiated when a source of energy, such as an
electric current or a �ash lamp, excites atoms out of their lowest
energy state and pumps some of their electrons up to high energy
levels (remember the watermelons being lifted onto their stools).
When those atoms relax, they shed their excess energy as
photons, which �y o� in random directions inside the laser’s
cavity. Most of the photons are absorbed by the walls, but the
ones that move along the line between the two mirrors at either
end will continue to ricochet back and forth, reinforcing one
another and inviting other photons to join their quantum state.
With typical bosonic friendliness, each rebounding photon
recruits new ones into the wave, through the chain reaction
process known as stimulated emission: They provoke the release
of other photons in sync with themselves, which ampli�es the
wave further, which stimulates further emission, and so on. When
the wave becomes strong enough, some of it punches through the
mirror at the front end (which is only partially re�ective) and
streaks out as an intense, narrow beam of synchronized light—a
laser beam.

Quantum sync also explains how superconductivity works. The
argument is tricky, because the herd behavior that we’ve been
discussing doesn’t come easily to electrons. Being fermions, they
are not naturally sociable. Instead, superconductivity relies on a
subtle mechanism that prods the electrons to join in pairs, at
which point they become bosons and lose all inhibition. These
paired electrons spontaneously form a Bose-Einstein condensate,
a synchronized ensemble that encounters no resistance as it
carries electrical current through a metal.

This explanation was long in coming. It required more than
�fty years of insights into quantum theory, and was proposed in
1957 by the physicists John Bardeen, Leon Cooper, and Robert
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Schrie�er. Its most surprising innovation is the idea that electrons
can form pairs. Normally we would expect electrons to repel each
other, since they are all negatively charged.

The pairing mechanism is indirect. The interaction between the
electrons is mediated by the lattice of positively charged ions.
(Earlier, we referred to these ions as atoms. But since they are
freely sharing some of their conduction electrons, they are
positively charged and so should be called ions. Their positive
charge is the key to the pairing mechanism.) When an electron
moves through the lattice, it pulls the lattice toward it slightly,
because of its opposite charge. That deformation creates a region
of space with a tiny excess of positive charge, which tends to
attract a second electron toward it. In that indirect sense, the two
electrons are linked.

There are several ways to visualize this mechanism, none quite
right, but all illuminating nonetheless. Imagine a bowling ball
rolling on a waterbed. It creates a depression that tends to attract
another bowling ball to follow in its tracks. Here the bowling
balls are like the electrons, and the deformable waterbed is like
the lattice. Or think about the drafting e�ect used by bicyclists in
a race. The lead cyclist cuts the air, and the lowered pressure
behind him pulls a second rider along in his wake. The problem
with this image is that the paired electrons in a superconductor
are actually quite far apart; the second one does not trail right
behind the �rst. In that respect the paired electrons are more like
a teenage couple dancing with each other at long distance,
moving in step while staying at opposite ends of the �oor.
Although there may be many other teenagers dancing between
them, there’s no doubt about their being paired. After all, they’re
dancing together; as a physicist would say about paired electrons,
their motions are “strongly correlated.”

The importance of pairing is that it alters the electrons’
willingness to fraternize. A single electron is a fermion, a
stubborn recluse. But two electrons, once successfully paired,
become e�ectively bosonic. (This follows from quantum theory,
which shows that the distinction between fermions and bosons is
akin to that between odd and even numbers; pairing two
fermions makes a boson, in the same way that adding two odd
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numbers makes an even one.) Once the electrons have coupled up
in these so-called Cooper pairs, they become desperate to
socialize with other bosons, so much so that they all pile into the
same quantum state, the state of lowest energy. Then they all lose
their identities and coalesce into a Bose-Einstein condensate; in
the metaphor of the teenage dance party, the whole crowd is now
synchronized in a collective line dance.

The Bardeen-Cooper-Schrie�er theory neatly solved a number
of puzzles about superconductivity. Most important, it explained
why the electrical resistance drops to zero below a critical
temperature. The explanation has to do with the communal
behavior of the Cooper pairs. In response to an electric �eld, the
paired electrons march through the superconductor in rigid
lockstep. Any collision with an impurity or a vibrating ion—any
event that could possibly cause resistance—would have to knock
a pair out of the herd and into another quantum state. But
remember that the probability of joining a particular state is
proportional to n + 1, where n is the number of bosons already
in that state. The herd is billions of times more attractive than
any alternative, so no pair is likely to break ranks on its own. The
only way to create resistance would be to scatter billions of pairs
simultaneously, an event so exceedingly unlikely as to be
virtually impossible. Consequently, the resistance of a
superconductor is zero, or at least smaller than anything scientists
can measure.

The theory also showed that superconductivity is not a mere
extension of ordinary conductivity. Previously it had always
seemed paradoxical that the best normal conductors, copper and
silver, are feeble superconductors; they do not superconduct even
when the temperature is a thousandth of a degree above absolute
zero. Seen in the light of the new theory, however, that �nding
began to make sense. Good conductors are good precisely because
their conduction electrons ignore the lattice. But by encouraging
the electrons and the lattice to go their separate ways, these
materials never give Cooper pairs a chance to form. Remember,
the pairing mechanism relies crucially on an electron’s ability to
deform the lattice (like the bowling ball rolling on the waterbed)
so that a second one can follow in its tracks. If the waterbed is so
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sti� that the �rst bowling ball can’t make a groove in it, there’s
no chance that a second one will follow. So good conductors are
lousy superconductors, because they can’t form the necessary
Cooper pairs.

Finally, the theory explained why the resistance drops so
abruptly at a certain temperature. It’s much the same reason that
water freezes suddenly at 0 degrees Celsius. Both processes are
phase transitions, victories of self-organization over random
jittering. At the freezing point, water molecules calm down just
enough to allow their attractive forces to bond them into a
crystal. Similarly, at the superconducting transition temperature,
the atomic lattice calms down just enough to allow electrons to
form Cooper pairs and coalesce into a Bose-Einstein condensate.
In both cases, a fraction of a degree drop in temperature makes
all the di�erence.

A qualitative implication of this theory was that no material
should be able to superconduct at too high a temperature—
perhaps 20 to 50 degrees above absolute zero—because the
lattice vibrations would be too violent. And for many years that
appeared to be yet another successful prediction. By trying out
various combinations of metals, experimenters gradually nudged
the world record up a few tenths of a degree at a time, �nally
grinding to a halt at 23 degrees. The insurmountable ceiling was
right where it was supposed to be—at least until the mid-1980s.

It came as a shock when high-temperature superconductivity
was discovered in 1986. First came the announcement of a
ceramic material that turned into a superconductor at a new
record temperature of 30 degrees above absolute zero. Just two
years later the world record stood at an incredible 125 degrees.
As of this writing, the physical basis for high-temperature
superconductivity remains an enigma. It’s generally believed that
Cooper pairs are still involved, perhaps mediated by magnetic
interactions instead of lattice vibrations. In any case, although the
Bardeen-Cooper-Schrie�er theory works beautifully at low
temperatures, it cannot be the whole story.

These advances rekindled interest in the possible practical
applications of superconductivity. Even in its original low-
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temperature form, superconductivity always o�ered great
economic and energy-saving promise. Because wires made of
superconducting material have no resistance and therefore
generate no heat, they can carry extremely high currents that
would cause ordinary wires to burst into �ame. For the same
reason, they also waste much less energy. (The Department of
Energy estimates that more than 7 percent of all power generated
in the United States is squandered by electrical resistance and
other losses in transmission; converting the power grid to
superconducting technology would cut that number in half.)
Aside from the bene�ts in e�ciency, the enormous currents can
be used to drive powerful electromagnets, strong enough to lift a
train o� its tracks, eliminating the friction between the wheels
and the rails. This is the basis for the maglev (magnetically
levitated) trains now being tested in Japan. In 1997, the Japanese
Minister of Transport authorized construction of the Yamanashi
Maglev Test Line; two years later, the MLX01 test vehicle attained
a blistering speed of 343 miles per hour. Superconducting
magnets are also of interest for military applications, including
propulsion systems for ships, ultrasensitive detectors of
submarines and underwater mines, and electromagnetic pulse-
generators for frying an enemy’s power grid and electronic
infrastructure.

Despite its technological potential, superconducting technology
has been slow to materialize in the marketplace. One obstacle has
always been the frigid temperatures needed to reach the
superconducting state, requiring the use of elaborate refrigeration
systems available only in research laboratories. That was one
reason why the discovery of high-temperature superconductivity
caused such a stir: The critical temperatures could now be
reached by cooling with liquid nitrogen, which is both cheap and
abundant. The more serious obstacle has become the di�culty of
manufacturing strong, �exible wires out of the new materials; like
other ceramics, they are brittle and tend to crack easily. It’s also
hard to fabricate the wires in practical lengths; they tend to lose
their superconductivity because of material defects when they get
too long. Moreover, the most promising form of superconducting
wire is encased in silver, which makes it 20 times more costly
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than copper wire, although the cost will decrease as demand
rises. And �nally, although the technology of maglev trains has
been proven, their widespread use in Europe and the United
States has been blocked by political and environmental concerns.

Back in the early 1960s, nobody dreamed of such things. The
rami�cations of the new Bardeen-Cooper-Schrie�er theory were
just being worked out in labs and universities around the world.
One person looking into them was a young graduate student at
Cambridge University. A small, soft-spoken Welshman with black-
rimmed glasses, he was about to discover some astonishing
implications of quantum sync that would ultimately make
superconductivity useful in unexpected settings: from medical
imaging to the promise of the world’s fastest supercomputers.
And the path of his own career would take some of the most
unexpected turns of all.

In 1962, Brian Josephson was a 22-year-old research student at
Cambridge University. His subject was experimental physics, but
lately he was �nding himself fascinated by theoretical ideas,
especially those he was learning about in Phil Anderson’s lecture
course. Anderson, an expert in superconductivity and solid-state
physics, was visiting Cambridge for the year while on sabbatical
from his position at Bell Laboratories. It didn’t take him long to
notice Josephson. Having him in the course “was a disconcerting
experience for a lecturer, I can assure you,” said Anderson,
“because everything had to be right or he would come up and
explain it to me after class.”

One day, Josephson showed his teacher some calculations he
had made on his own. He had asked himself what would happen
if he connected two superconductors with a very thin layer of
oxide, just one- or two-billionths of a meter thick. The picture he
had in mind looked like a sandwich: The slices of bread were the
superconductors, and the meat (sliced extremely thin) was the
oxide layer.

Josephson could not quite believe what his equations were
telling him. They said that electrical current could �ow through
the oxide layer without resistance. According to classical physics,
that was nonsense. Oxide is an insulator. It completely blocks the
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�ow of electrons: It’s like asking them to run through a brick
wall. Yet Josephson’s calculations were saying that he could turn
an insulator into a superconductor, converting it from one
extreme to another. Instead of a brick wall, the electrons would
feel like they were running through nothing at all. Instead of
in�nite resistance, there would be no resistance.

Josephson’s prediction was based on a quantum e�ect known
as tunneling. A quantum particle trapped deep in a well doesn’t
have to climb out to escape. As if by magic, it can tunnel through
the walls. It doesn’t even leave a hole.

Like so much in quantum theory, tunneling contradicts our
common sense about how the world works. But it becomes a bit
less paradoxical when we remember that quantum particles can
also act like waves. Just as the sound waves from a raucous party
can leak through the walls into a neighboring apartment, a
quantum wave can seep through a seemingly impenetrable
barrier. The odds are small, but not zero. And if the wall is paper
thin, like Josephson’s oxide layer, tunneling is not just a
hypothetical possibility. It really does occur. Experiments have
proven it. In fact, just two years earlier, Ivar Giaever, then a
graduate student at Rensselaer Polytechnic Institute in Troy, New
York, had demonstrated that single electrons could tunnel from
one superconductor to another through an insulating barrier,
though they required the helpful push of a voltage behind them.
Now Josephson’s calculations were saying something even
stranger: Tunneling could occur without any voltage push at all.

To get a gut feeling for how paradoxical this would be, think of
the �ow of electricity as being analogous to the �ow of water.
Just as water �ows downhill, electric current �ows from higher
voltage to lower. Now imagine two buckets, each with a small
hole in its bottom, connected by a thin hose that allows water to
�ow between them (analogous to two superconductors connected
by a thin oxide layer). If you �ll each bucket with equal amounts
of water, and hang one from a hook at the top of a staircase and
the other at the bottom, water will drain down from the upper
bucket to the lower one. But if both buckets are hung at the same
level and allowed to remain there peacefully, you would never
expect to see water �owing spontaneously from one to the other.
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Water does not �ow sideways. Yet this is exactly what
Josephson’s equations were predicting: a �ow of electricity
between two superconductors at the same voltage.

What made the sideways �ow possible was that he was
considering a substance completely foreign to us, a substance
nothing like water—a quantum �uid, a perfectly synchronized
ensemble of Cooper pairs. The liquids we’re used to are chaotic
jumbles, made of molecules that don’t cooperate. Even the
smooth water in a gentle brook is, at a microscopic level, a rabble
of molecules crashing into one another, sliding past one another,
tumbling, bumping, and jiggling furiously. But the �uid of Cooper
pairs in a superconductor is disciplined in a way we can scarcely
imagine. All the paired electrons are coherent in phase; the crests
and troughs of their quantum waves superimpose perfectly. If, as
Josephson assumed, the oxide layer is su�ciently thin, these
waves can leak through the barrier and infect the superconductor
on the other side. This coupling enables Cooper pairs to tunnel
through the insulator. In other words, the equations were
predicting the existence of a “tunneling supercurrent.”

Because this conclusion seemed so peculiar—even for quantum
theory—Josephson asked his professor to take a look at his work.
Anderson was happy to oblige. “By this time I knew Josephson
well enough that I would have accepted anything else he said on
faith. However, he himself seemed dubious, so I spent an evening
checking one of the terms that make up the current.” The term in
question was the tunneling supercurrent. Was it really possible
that the Cooper pairs could remain intact while plowing through
the insulator? It seemed much more plausible that they’d split
apart into single electrons and give rise to a normal current, like
what Giaever had seen in his earlier experiments, a current that
met with resistance as it �owed.

Casting further doubt on the issue, Josephson’s thesis adviser,
Brian Pippard, had previously argued that the tunneling of
Cooper pairs was so improbable as to be undetectable. Roughly
speaking, it was like lightning striking twice in the same spot.
The probability of a single electron tunneling through an
insulator was known to be tiny, so the chance of two electrons
tunneling simultaneously should equal that tiny probability
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squared—an almost in�nitesimally small number. Yet Josephson’s
math showed that the odds were about the same for two electrons
as for one. “It was some days before I was able to convince myself
that I had not made an error in the calculation,” he wrote years
later. Further reassurance came from Pippard and Anderson, who
checked his work and agreed with him. The math was right. Still,
all three of them felt uneasy.

Other implications of Josephson’s theory were equally
unnerving. His equations predicted that the strength of the
supercurrent should depend on the relative phases of the
quantum waves on either side of the barrier. If the phases could
somehow be driven slightly out of step in the two
superconductors, the supercurrent would turn on. The larger the
phase di�erence, the larger the supercurrent, but only up to a
point. Once the waves were a quarter cycle out of step, 90
degrees apart, the supercurrent would reach its maximum size.
(In general, the equations predicted that the supercurrent would
be proportional to the sine function of the phase di�erence.) To
drive the waves out of step, Joseph-son imagined feeding
electrons into the system by connecting an external source of
current to the sandwich structure. As long as this imposed current
wasn’t too large, the equations dictated it would be carried in the
form of the hypothetical supercurrent. But apparently only a
limited amount of supercurrent could be conducted in this way.
Try to pass more and the additional electrons would not pair.
They’d break apart spontaneously, generating resistance and
creating a voltage di�erence between the two superconductors.
Then the quantum waves on either side of the barrier would
unlock from each other, with their phases drifting apart at a rate
proportional to the newly developed voltage. Since the
supercurrent depends on the sine of the phase di�erence, and the
phase di�erence is now increasing in time, the theory was saying
that a constant voltage across the sandwich would produce a
nonconstant, alternating current.

That prediction also violated common sense. In an ordinary
resistor, a �xed voltage would produce a steady �ow of current
(just as water should drain steadily from the upper bucket on the
staircase down to the lower one). Yet according to Josephson’s
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equations, the tunneling supercurrent goes nowhere; it oscillates
in place at a frequency proportional to the voltage. To appreciate
how outlandish this is, think what it would mean for the
connected buckets. If water were replaced by Josephson’s
quantum �uid, it would eerily slosh back and forth through the
hose between the two pails. No net �ow would occur. Suppose we
raise the upper bucket even higher on the stairs, to increase the
pressure. There would still be no net downward �ow; the �uid
would merely slosh faster. This e�ect is now called the
alternating-current Josephson e�ect.

Another striking thing about this e�ect was that the ratio of
voltage to oscillation frequency was predicted to be a universal
constant of nature. It would always come out the same, no matter
how much current was oscillating or what type of metal was used
in the superconductors. The ratio is given by Planck’s constant
(which measures the intensity of all quantum phenomena)
divided by twice the charge on the electron (the fundamental unit
of electrical charge). These numbers implied that the
supercurrent should tunnel back and forth extremely rapidly: A
mere thousandth of a volt across the sandwich would produce an
alternating current that reverses itself 100 billion times a second.
For comparison, today’s fastest home computers still run about 50
times slower than that.

Josephson’s predictions seemed to be verging on the absurd.
Were they right? The leading solid-state theorist of the day would
have none of it.

John Bardeen had already won the �rst of his two Nobel Prizes.
In 1956, he had shared the physics prize with William Shockley
and Walter Brattain for their invention of the transistor. Sixteen
years later, in 1972, he would receive another Nobel, this time
for his solution of the long-standing riddle of superconductivity
(with Leon Cooper and Robert Schrie�er) discussed earlier.

Bardeen had read young Josephson’s paper. He was sure the
arguments in it were spurious. In a “Note added in proof” to an
article in 1962, Bardeen dismissed Josephson’s purported
supercurrent, asserting that “pairing does not extend into the
barrier, so that there can be no such [supercurrent].”
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A face-to-face showdown between the Nobel laureate and the
graduate student took place in September 1962, at a low-
temperature physics conference at Queen Mary College, London.
Before the lectures got started, Giaever introduced the
antagonists. As he later recalled,

I introduced Josephson to Bardeen in London, when people were milling
around in a big hall. Josephson tried to explain his theory to Bardeen. But
Bardeen shook his head slightly and said “I don’t think so,” because he had
carefully thought about the problem. I stood there during the short
conversation. Then Bardeen left, and Josephson was quite upset. He could
not understand that Bardeen was supposed to be a famous scientist.

The chairman of the session on tunneling felt it would be good to
hear from both combatants. The conference room was packed in
anticipation. Bardeen sat near the back of the room. Josephson
went �rst. He gave his prepared lecture, explaining why he
thought that the tunneling of Cooper pairs would be a signi�cant
e�ect. Then Bardeen took the podium. When he argued that
pairing could not extend into the barrier, Josephson interrupted
him. The exchanges went back and forth, with Josephson
answering every objection to his new ideas. The mood was civil
throughout, both men being calm and rational by nature. Yet
Josephson seemed to be suggesting he understood the theory of
superconductivity better than its creator did.

Afterward, there was hardly any discussion with the audience.
Few felt con�dent enough to take sides. Though one person in the
room, a prominent physicist from Stanford, did come to a clear
conclusion about something else: He left the hall thinking his
university should hire Josephson.

Meanwhile, Anderson’s sabbatical had ended, and he had gone
back to Bell Labs, feeling that he had become Josephson’s “most
enthusiastic evangelist.” He and his colleague John Rowell, a
skilled experimentalist, set out to look for the tunneling
supercurrent. Within a few months they found it. Their
measurements displayed the telltale signature of the direct-
current Josephson e�ect—the sine wave dependence of the
supercurrent on the phase—as well as the distinctive behavior
expected of the supercurrent in a magnetic �eld. A few months
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later, other scientists con�rmed the alternating-current Josephson
e�ect. After those decisive tests, Bardeen graciously conceded
that Josephson was right.

Within the next year, it also became clear that these
phenomena were not limited to superconductivity. Richard
Feynman, with his knack for getting to the bottom of things,
found an elementary argument that showed how general the
Josephson e�ects really are. He presented it to his sophomores at
Caltech in 1962–63, at the end of a course later immortalized in
the book The Feynman Lectures on Physics.

Feynman’s argument shows that the Josephson e�ects will
occur for any pair of phase-coherent systems coupled by any sort
of weak link. Coherent means that each system is characterized
by a single quantum wave. Weak means that the waves overlap
slightly, but don’t otherwise disturb each other. The overlap
region spans the weak link and allows tunneling of particles
across it, thus coupling the two systems. With those assumptions
alone, Feynman re-derived everything that Josephson had found.
If the particles on the two sides of the link di�er in their average
energy, he predicted that they would oscillate back and forth at a
frequency given by the energy di�erence divided by Planck’s
constant. This prediction was untested for years (except in
superconductors) because of technical di�culties in performing
the measurements. In 1997, after three decades of e�ort, the
Josephson e�ect was �nally seen in another phase-coherent
system: super�uid helium.

Super�uid helium is a realization of the hypothetical quantum
liquid that we imagined when performing the thought experiment
with the buckets on the staircase. Its behavior is almost surreal. It
creeps out of its containers and can �ow through in�nitesimal
pores. It has no viscosity, so it’s incredibly slippery. For example,
suppose you slowly spin a bowl full of it. The container rotates
but the helium doesn’t. Now scoop out a cupful of the super�uid
and hold it upright, an inch over the bowl. Defying gravity, a
solitary drop of �uid climbs up the inside wall of the cup, runs
over the lip, and rains back down into the bowl. As soon as it
falls, another drop starts climbing. Like something out of science
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�ction, the super�uid pours itself back into the bowl, one drop at
a time, until the cup is empty.

This weird behavior is a manifestation of quantum sync. All
liquids become highly ordered when cooled to very low
temperatures. Normally they freeze into a crystal. But the two
isotopes of helium, helium-3 and helium-4, never solidify, at least
not at ordinary pressures. They remain liquids all the way down
to absolute zero. The liquid resolves the paradox by ordering
itself in a di�erent sense: It undergoes Bose-Einstein condensation
and becomes a quantum chorus. Here, the bosons are the helium-
4 atoms (or pairs of helium-3 atoms, analogous to Cooper pairs).
At extremely low temperatures all the atoms slow down, which
causes their quantum waves to stretch out, by the Heisenberg
argument mentioned earlier. At a critical temperature the waves
overlap and spontaneously fall into the same quantum state,
synchronizing trillions of atoms into a phase-coherent super�uid.

In 1997 a team of physicists at the University of California at
Berkeley, led by Seamus Davis and Richard Packard, turned the
thought experiment with the buckets into reality. They took two
tiny pools of super�uid at di�erent pressures and coupled them
by a weak link: an ultrathin, �exible membrane perforated by
thousands of narrow pores. According to Feynman’s analysis, the
super�uid should oscillate back and forth through the pores at a
frequency proportional to the pressure di�erence (whereas a
normal �uid would simply �ow from the high pressure side to the
low pressure side). The experiments are extremely di�cult, partly
because helium is not charged, which means its �ow cannot be
detected as an electrical current, and partly because the pores
must be made extraordinarily small, about a hundred times
smaller than a bacterium.

Davis and Packard had already spent a decade searching in
vain for the predicted oscillations. Now they had a new strategy,
and a new team of graduate students ready to try it. Their plan
was to de�ect the membrane momentarily, squeezing the �uid on
one side and creating a transient di�erence in pressure. Then, as
the membrane relaxed to equilibrium, they would monitor the
vibrations induced in it by the oscillating super�uid. The
signature of the alternating-current Josephson e�ect would be an
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oscillation of decreasing frequency, a whistle that dropped in
pitch as the pressure di�erence returned to zero. But even with
the �nest oscilloscopes, the graduate students hadn’t managed to
�nd anything remotely like that. They blamed it on too much
noise in the system. After months of trying, they were dejected
and ready to give up.

Their adviser Packard told them to turn o� the oscilloscope, get
some headphones, and listen for the vibrations. The students said
no, it won’t work, there’s nothing there. “They really didn’t want
to do it—in the end they simply argued that they couldn’t do it
because they didn’t have any headphones in the lab,” Packard
recalled. So he went to a nearby electronics shop and bought the
headphones for $1.50. The students said the connector was
wrong. Packard went back and bought an adapter.

Reluctantly, grad student Sergey Pereverzev plugged in the
headphones and �ipped a switch to start the experiment. He
almost fell o� his chair. His ear immediately detected what the
oscilloscope had missed: a high-pitched whistle that gradually
dropped in tone, like the sound of a falling bomb. Exactly what
the theory predicted.

Over the past 40 years, a number of practical applications have
been found for these remarkable manifestations of quantum sync.
Josephson’s superconducting sandwiches, now known universally
as “Josephson junctions,” have spawned the most sensitive
detectors known to science. For instance, a device called a SQUID
(for superconducting quantum interference device) takes
advantage of the extreme sensitivity of a supercurrent to a
magnetic �eld. A SQUID can measure a displacement a thousand
times smaller than an atomic nucleus, or a magnetic �eld 100
billion times weaker than Earth’s. SQUIDs are used in astronomy,
to detect faint radiation from distant galaxies; in nondestructive
testing, to spot hidden corrosion beneath the aluminum skin of
airplanes; and in geophysics, to help locate sources of oil deep
underground.

A SQUID consists of two Josephson junctions connected in
parallel by a loop of superconducting material. (To picture this,
hold your arms above your head and clasp your hands together.
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Your two elbows are the two Josephson junctions, and the circle
formed by your arms and shoulders is the superconducting loop.)
The principle underlying a SQUID is that variations in a magnetic
�eld alter the phase di�erence between the quantum waves on
either side of its two junctions, and therefore change the
supercurrents tunneling through them. Just as ripples on a pond
can either add up when they collide (if a crest meets a crest) or
cancel each other out (if a crest meets a trough), the quantum
waves in the two arms of a SQUID interfere in a way that depends
sensitively on their phases, and hence on the amount of magnetic
�ux passing through the loop. In this way, a SQUID transforms
tiny variations in magnetic �ux into measurable changes in
current and voltage across the device, allowing ultrafaint
electromagnetic signals to be detected and quanti�ed.

Some of the most dramatic applications are in medical imaging.
With an array of hundreds of SQUID sensors, doctors can pinpoint
the sites of brain tumors and the anomalous electrical pathways
associated with cardiac arrhythmias and epileptic foci (the
localized sources of some types of seizures). The SQUID array
maps the subtle spatial variations in the magnetic �eld produced
by the body. The resulting contour map enables computers to
reconstruct the region inside the tissue that produced the signals.
These procedures are entirely noninvasive, unlike conventional
exploratory surgery. Although the high price of the multichannel
imaging machines has kept them from gaining widespread
acceptance, in the long run they have the potential to reduce
health-care costs substantially. For example, localizing an
epileptic focus with SQUIDs takes about three hours, whereas the
alternative method of implanting electrodes on the patient’s brain
may last as long as a week and cost $50,000 more.

Josephson junctions have also been considered as possible
components for a new generation of supercomputers. One
attractive feature is their raw speed: They can be switched on and
o� at frequencies of several hundred billion cycles per second.
But perhaps even more important, Josephson transistors produce
a thousand times less heat than conventional semiconductors,
which means they can be packed tighter on a chip without
burning themselves up. Dense packing is always desirable
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because smaller computers are faster. By using less wire, they are
less burdened by the speed of light, which ultimately determines
the time it takes for signals to travel from one part of the circuitry
to another.

Seduced by these appealing qualities, IBM famously invested 15
years and $300 million in a high-pro�le project to build a
superconducting computer, an ultrafast, general-purpose machine
whose logic and memory chips would be made out of Josephson
junction switches. It was a natural idea, since some types of
junctions have two stable states—one at zero voltage, another
with a positive voltage. Any two-state device is a candidate for a
switch, corresponding to the on-o�, 0–1 binary logic that
computers employ. Similarly, the absence or presence of a
particular bit of memory would be encoded as the absence or
presence of a voltage in the corresponding Josephson memory
element.

When IBM abandoned the project in 1983, the reason cited was
the di�culty in developing a high-speed memory chip.
Management judged that by the time its new computer could be
built, its performance would not be far enough ahead of the
semiconductor competition to warrant the revolutionary change
in approach. Since then, Hitachi, NEC, Fujitsu, and other
Japanese companies have continued to chase the dream of a
Josephson computer.

Ironically, Josephson himself played almost no part in the
developments that stemmed from his work. After he received the
Nobel Prize in 1973, at age 33, he quit doing mainstream physics
and became preoccupied with paranormal phenomena:
homeopathy, ESP, remote viewing, even psychic spoon bending.
He continues to work on these questions today. His attitude is
that they deserve more attention from science and should not be
“blacklisted,” as he feels they currently are.

My students laugh when I tell them what became of Josephson.
Among my colleagues, the reaction is similar; they typically shake
their heads and mutter about how he’s gone o� the deep end,
while a few become downright angry, furious that he would lend
his stature to a �eld populated mainly by charlatans and their



152

gullible supporters. That hostility was on full public display
recently, thanks to a �ap that Josephson deliberately provoked.

On October 2, 2001, Britain’s Royal Mail service issued a
special set of stamps to commemorate the one-hundredth
anniversary of the Nobel Prize. The stamps were accompanied by
a booklet in which a British winner in each of the six prize
categories—physics, chemistry, medicine, peace, literature, and
economics—was invited to write a small article about his award.
The physicist they happened to select was Josephson. Here’s what
he wrote:

PHYSICS AND THE NOBEL PRIZES
Brian Josephson, Physics Department, Cambridge University

Physicists attempt to reduce the complexity of nature to a single
unifying theory, of which the most successful and universal, the quantum
theory, has been associated with several Nobel prizes, for example those to
Dirac and Heisenberg. Max Planck’s original attempts a hundred years ago
to explain the precise amount of energy radiated by hot bodies began a
process of capturing in mathematical form a mysterious, elusive world
containing “spooky interactions at a distance,” real enough however to
lead to inventions such as the laser and transistor.

Quantum theory is now being fruitfully combined with theories of
information and computation. These developments may lead to an
explanation of processes still not understood within conventional science
such as telepathy, an area where Britain is at the forefront of research.

Telepathy? Explained someday by quantum mechanics? The
reaction among physicists was fast, predictable, and allergic. “It is
utter rubbish,” said David Deutsch, a quantum physicist at Oxford
University. “Telepathy simply does not exist. The Royal Mail has
let itself be hoodwinked into supporting ideas that are complete
nonsense.” “I am highly skeptical,” said Herbert Kroemer of the
University of California at Santa Barbara, himself a Nobel
laureate. “Few of us believe telepathy exists, nor do we think
physics can explain it. It also seems wrong for your Royal Mail to
get involved. Certainly, if the U.S. postal services did something
like this, a lot of us would be very angry.” The Royal Mail
mustered a limp defense. “The trouble is that there are only a
couple of British physics prize winners we could have asked, and
we picked Josephson,” said a spokesman.
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The condescension of the physics community is unwarranted.
Josephson was a hero, and still is. When I read his discussions of
paranormal phenomena, they don’t strike me as strident, or
nonsensical on their face. He seems truly curious about these
possibilities. He wants scientists to look into them more carefully.
Quantum theory is plenty weird in itself, nearly as far-fetched as
the things he is thinking about. A hundred years ago, no one
would have believed that electrons could synchronize by the
billions and pass through impenetrable barriers.

This is not to say I agree with Josephson. His belief that “some
people can bend metal in situations where they are not in
physical contact with it” is tough to swallow. In any case, when I
think about what has become of him, my main feeling is one of
wistfulness. Even after 30 years apart, many of us in the physics
community still miss him.
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• Six •

BRIDGES

IT WAS A TIME OF HIDDEN PARALLELS, of lives in imperceptible
synchrony. The year was 1962. Brian Josephson was beginning
graduate school. Arthur Winfree was entering college. Michel
Si�re was shivering in a cave deep underground in France,
subjecting his body to the unknown e�ects of “life beyond time.”
Norbert Wiener was riding his unicycle through the corridors of
MIT, eating peanuts and smoking his cigar, on the lookout for his
next audience. Lev Landau lay clinging to life in a Moscow
hospital, comatose for months after his devastating car accident.
All had made, or were destined to make, seminal contributions to
the science of sync. Yet all were oblivious of one another. It was
only decades later that we began to realize the true depth of the
ties among them, and between them and Christiaan Huygens,
who, almost exactly 300 years earlier, sick in his bedroom,
observed his pendulum clocks swinging in sympathy. We now see
their work as part of an intricate whole, bridged by mathematics.

The �rst bridge to be noticed joins the familiar world of
everyday experience to the strange world of the quantum. In
1968, D. E. McCumber of Bell Laboratories and W. C. Stewart of
RCA Laboratories independently �gured out how to analyze the
electrical characteristics of a Josephson junction as if it were an
ordinary element in a circuit. Just as a resistor obeys Ohm’s law
(the current through a resistor is proportional to the voltage
across it), a Josephson junction obeys its own distinctive
relationship between current and voltage. Speci�cally, when an
externally imposed current is driven through a junction, the
current splits up and �ows through three separate channels, each
representing a di�erent conduction mechanism. Part of the
current is carried by Cooper pairs of electrons—the weird
supercurrent that su�ers no resistance as it tunnels through the
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insulating barrier—while the remaining parts are carried by
normal, unpaired electrons and by displacement current (a form
of conduction associated with the changing voltage across the
junction).

By taking all three pathways into account, McCumber and
Stewart found that the junction’s dynamics were most naturally
expressed in terms of its changing phase, a measure of how out of
sync the quantum waves are from one side of the barrier to the
other. This was already a novelty: In the usual laws of electricity,
there’s no vestige of anything bearing the stamp of quantum
mechanics. Looking deeper, McCumber and Stewart noticed that
the equation for the electrical oscillations was an old friend in
disguise, an equation known to any student of freshman physics.

It was the equation for the motion of a pendulum.
This is the sort of coincidence that �lls a mathematician with

awe. “It is a wonderful feeling,” said Einstein, “to recognize the
unity of a complex of phenomena that to direct observation
appear to be quite separate things.” On the surface, Huygens’s
pendulums and Josephson’s junctions seem like polar opposites.
Pendulums are comfortable and familiar, human in scale, as
common as a child playing on a swing, as cozy as the ticking of a
grandfather clock. Superconducting junctions are alien, almost
otherworldly, no bigger than a bacterium, with frenzied electrical
oscillations 100 billion times faster than a heartbeat, the surreal
consequence of electrons passing through impenetrable barriers
like ghosts walking through walls. No matter. Those di�erences
are gloss. Fundamentally, the dynamics of Josephson junctions
and pendulums are the same. Their patterns in time are identical:
two variations on a single algebraic theme.

Unfortunately, the recognition of an old friend also brings up
an inescapable di�culty. The equations for the pendulum are
nonlinear.

Speci�cally, the gravitational torque on the pendulum is a
nonlinear function of its angle. You can understand why by
imagining how hard it is to hold a barbell away from your body
with your arm extended at various angles: straight down,
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sideways at shoulder level, directly overhead, and so on. (It’s
important here not to confuse the di�erence between weight and
torque. Wherever the barbell happens to be, gravity pulls down
on it equally hard—the downward pull is determined by its
weight alone. But at some angles, gravity also tends to twist your
arm, wrenching it downward. Torque measures the strength of
that twisting e�ect.) When your arm is straight down, there’s no
torque at all, no tendency to twist your arm to either side. As you
rotate your arm up at a slight angle—still almost straight down,
but cocked a little to one side—gravity exerts a small torque. At
�rst the torque grows nearly proportional to the angle. The
torque at 2 degrees de�ection is double that at 1 degree, to a very
good approximation. For these small angles of de�ection, the
torque is said to be a linear function of the angle: double the
angle, double the torque. In this case a graph of torque versus
angle would fall on a straight line (hence the term linear).

But the approximate linearity breaks down as the angle
increases. The torque grows slower than you’d expect; it falls
below a straight-line extrapolation of the earlier trend. The
largest torque occurs when your arm is sticking straight out from
your side, at a 90-degree angle. It’s tough to hold a barbell like
that for long. If you lift your arm even higher, above your
shoulder, now the torque begins to decrease, eventually reaching
zero torque when the barbell is directly overhead. Thus, the curve
of torque versus angle looks like an arch. It bows down. It’s
de�nitely not linear. In fact, it’s an arc of a sine wave.

Now we see the connection to the Josephson junction. This sine
function is the same one that appeared earlier in the direct-
current Josephson e�ect, where the supercurrent is proportional
to the sine of the phase across the junction. That’s the analogy:
The phase across the junction is like the angle of the pendulum.
As it turns out, all the other terms in the equation have
counterparts as well. The �ow of normal electrons corresponds to
the damping of the pendulum caused by friction. The pendulum’s
mass is like the junction’s capacitance. And the torque applied to
the pendulum is like the external current driving the junction.

Such mechanical analogies are always valuable in science. They
make the unfamiliar familiar. Here the analogy allows us to
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transfer our intuition about pendulums to Josephson junctions.
For example, when the junction is in steady operation, the phase
is constant. In that case, there are no dynamics, and nothing to
study; the junction acts like a perfect superconductor, with only
supercurrent �owing across it. The mechanical analog would be a
pendulum twisted to the side by a constant torque, resting
motionless, cocked at an angle below the horizontal. Friction and
inertia are absent, since nothing’s moving. Gravity alone balances
the applied torque. This simple case occurs only if we send less
than a critical amount of direct current through the junction.

The more interesting case is when we drive the junction with
more than the critical current. Then the phase suddenly begins to
change in a complicated way as a function of time. Once the
phase starts varying, a voltage develops across the junction. Then,
because of the alternating-current Josephson e�ect, a
supercurrent starts to oscillate back and forth between the
superconductors. Meanwhile, this voltage also drives some
ordinary, unpaired electrons through the resistive channel, while
the displacement current vies for its share of the total current as
well. So all three channels become active. Their interplay
produces a bewildering ebb and �ow of current among the three
of them. All of this complexity can be traced to the nonlinear
dynamics of the phase across the junction. In mechanical terms,
you should picture a pendulum rotating over the top at variable
speed, hesitating on the upswing, accelerating on the downswing,
all the while balancing the applied torque against the �uctuating
combinations of friction, gravity, and inertia.

If we make things even more complicated and allow the torque
itself to vary in time, like the back and forth agitation of a
washing machine, the pendulum’s whirling can become chaotic,
rotating this way and that, changing direction haphazardly. The
veri�cation of the corresponding electrical spasms in a Josephson
junction was one of the early experimental triumphs of chaos
theory. Before that, physicists had always seen the pendulum as a
symbol of clockwork regularity. Suddenly it was a paradigm of
chaos.

The essential point is that the dynamics of a whirling pendulum
and a Josephson junction are governed by the same equation, and
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that equation is nonlinear. As stressed earlier, nonlinear problems
are rich, fascinating, and very hard. They lie at the frontier of
mathematics, and far beyond. The advances in chaos theory in
the 1970s and 1980s (dealt with in greater detail in the next
chapter) opened our eyes to the dynamics of a driven pendulum
or Josephson junction, and allowed us to decipher them.

The connection between pendulums and Josephson junctions is
just one of many remarkable bridges in the landscape of sync. My
colleagues and I recently stumbled across another one, perhaps
even more unexpected, linking populations of biological
oscillators to the dynamics of Josephson junctions coupled
together in large arrays. The meaning of this latest connection
remains cryptic, but it seems likely to be important, because it
joins two great bodies of science. One part deals with the ancient
observations of life in sync: the �re�y trees of Thailand and
Malaysia, the nightly choruses of crickets, the daily cycles of
plants and animals entrained by the sun. The other deals with the
study of inanimate sync, beginning with Huygens and his
sympathetic pendulum clocks, a line that fell dormant for
hundreds of years, only to be reawakened with the invention of
the marvelous oscillators of the twentieth century: electrical
generators and phase-locked loops, lasers and transistors, and
now superconducting Josephson junctions. Although it was
always clear that groups of living and nonliving oscillators were
each prone to synchronize spontaneously, it was only in 1996
that we realized how similar the underlying mechanisms can be.
The resemblance, it turns out, is familial—a sign of the same
mathematical blood.

The connection was uncovered through the study of Josephson
junction arrays, an architecture that corresponds to the next level
in the hierarchy of sync. We have already discussed the lowest,
subatomic level, the one considered by Josephson himself—
trillions of synchronized Cooper pairs of electrons, tunneling back
and forth coherently through a junction, creating the
supercurrent that oscillates across its insulating barrier. The next
step is to couple many of these electronic oscillators together into
an array and explore the synchronization among them. In terms
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of an earlier analogy, the Cooper pairs are like the individual
violinists in an orchestra, harmonizing to form a well-disciplined
string section—a Josephson junction. Then many di�erent
sections (strings, woodwinds, percussion) blend into an even
larger ensemble, an orchestra—an array of Josephson junctions.
No conductor is assumed, however; the array is supposed to
synchronize itself.

The challenge is to predict the group behavior of Josephson
junctions, given what is known about them as individuals. The
question is important because Josephson arrays are used in many
modern technologies, from brain scanners and other kinds of
medical imaging equipment, to detectors of electromagnetic
radiation at the wavelengths of interest in radio astronomy and
atmospheric pollution monitoring. The U.S. Legal Volt (the
o�cial standard of voltage that allows laboratories worldwide to
compare their results) is maintained by the National Institute of
Standards and Technology, using an array of 19,000 Josephson
junctions coupled in series. Circuit designers would love to be
able to predict the best layout for an array serving a particular
function, but because of the intractability of the governing
nonlinear equations, they’ve had to rely on instinct, or trial and
error.

Theorists have tried to o�er guidance by forcing the equations
into a linear mold, at the cost of drastic approximations. This
Procrustean approach has occasionally shed light on the most
symmetrical kinds of collective behavior, such as the perfectly
synchronized state where all the junctions oscillate in lockstep.
But as an exploratory tool, linear theory is miserable. It’s too
myopic to o�er any hint of the myriad alternative ways an array
might organize itself.

Only nonlinear dynamics, with its emphasis on geometry and
visualization and global thinking, is up to the task. Of course, the
job is daunting, to look at all possibilities at once, to explore the
dynamics of hundreds of nonlinear equations, corresponding to a
mathematical �ow in an abstract space of hundreds of
dimensions. But around 1990, buoyed by the successes of chaos
theory, the nonlinear community was ready for this challenge.
Theorists were feeling con�dent and hungry. Mathematical
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biologists had already plunged into high-dimensional spaces,
groping around in the dark, trying to understand their idealized
models of coupled �re�ies and neurons and heart cells. This was
the new perspective that Kurt Wiesenfeld, a young physicist at
the Georgia Institute of Technology, wanted to bring to the
analysis of Josephson arrays.

By 1990, Kurt had already made a name for himself. In 1987,
he had cowritten the paper that introduced the concept of “self-
organized criticality,” an ambitious theory that promised to
explain why so many complex systems seem perpetually poised at
the brink of catastrophe. The theory was later applied to explain
the peculiar statistical patterns observed in mass extinctions,
earthquakes, forest �res, and other complex processes in which
domino e�ects propagate through the system, usually producing
small cascades and occasionally cataclysmic ones. The work was
bold and controversial. Most physicists saw it as an important
advance in our understanding of complex systems, though some
skeptics dismissed it as the latest fad. One joker referred to it as
“self-aggrandizing triviality.”

At the time, Kurt was a postdoctoral fellow at Brookhaven
National Laboratory. Now he was an assistant professor, looking
to venture out on his own. He’d always been fascinated by
coupled nonlinear oscillators, and had even dabbled speci�cally
in coupled pendulums at the beginning of his work on self-
organized criticality. So he felt at home with the circuit equations
for Josephson junction arrays, which reminded him of the
pendulum problems he was used to. His entry to the �eld came
when he began collaborating with Peter Hadley, a graduate
student at Stanford University, and his adviser Mac Beasley, an
expert on superconductivity, who had already realized that
nonlinear dynamics should have something to o�er to the
analysis of Josephson arrays. When they enlisted Kurt’s help, the
project took o�. It was a strong team. Hadley was the
hardworking grad student, resourceful and sharp at computer
simulations. Beasley was the lanky, white-haired adviser, savvy,
full of aphorisms and experience. Kurt was a top gun in nonlinear
dynamics, one of the best around.
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They decided to focus on “series arrays,” with all the junctions
chained end to end. That sort of architecture was the most
tractable from a mathematical perspective, and also of
technological interest for applications to power generation.
Although a single Josephson junction produces only about a
microwatt of power—too puny to be practical for anything—its
output could be greatly ampli�ed by cooperation. Just as an
audience clapping in sync makes a lot more noise than any
individual person, a synchronized array of Josephson junctions
would be a much more potent source of radiation than any
solitary one. For example, if you could �nd a way to coax a
thousand junctions to oscillate in phase, the power delivered to
another device—a “load” in parallel with the array—would be
ampli�ed a millionfold. (The combined power is proportional to
the square of the number of junctions.) The hard part is �guring
out a way to sync them. No one knew the optimal architecture for
the circuit or the best kind of load. In fact, no one really knew
why arrays should or should not synchronize at all. This was a
fundamental issue, a roadblock for the whole �eld.

Kurt and his collaborators knew that the electrical
characteristics of the load—the way it impeded the �ow of
current—were likely to be crucial. (With no load at all, the
junctions would never synchronize; they wouldn’t even be able to
feel each other’s electrical oscillations.) The simplest kind of load
would act like a resistor, passing current in proportion to the
voltage across it. Or it might behave more like a capacitor (which
blocks direct current but is permeable to alternating current) or
an inductor (which has the opposite characteristics: porous to
direct current, resistant to rapidly alternating current). In general,
the load could involve some combination of those three kinds of
impedance, weighted with di�erent strengths—a lot to choose
from.

By simulating dozens of cases on the computer, the team
mapped out the stability characteristics of the synchronized state,
and learned which loads best synchronized the array. But they
also ran across something they weren’t looking for, something
eye-catching and hard to miss. When the arrays didn’t sync, they
usually fell into a di�erent kind of order: All the junctions
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oscillated with the same period but stayed as far out of step as
possible, almost as if they were repulsive. The team referred to
this curious mode of organization as the antiphase state; later it
came to be known as the splay state.

For two junctions, the splay state is like what Huygens
observed when his clocks were in sympathy: The pendulums
swing at the same rate, but exactly half a cycle out of step. One
says tick when the other says tock. With more than 2 junctions,
the splay state divides the cycle into equal parts. If there are 10
junctions, they will execute identical motions, splayed a tenth of
a cycle apart. All move in the same way, equally staggered in
time. It’s tempting to visualize this group behavior as a graceful
choreography, a wave rippling through the array, but that image
is misleading. The wave doesn’t necessarily propagate from one
junction to its neighbor; they can take their cues in any order. If
the electrical oscillations were mechanical instead, a splay state
would look something like a row of dancing robots, all
performing the same contorted sequence of moves, but arranged
arbitrarily in space: One robot does something, then far down the
line, another does the same thing, then back somewhere else,
another starts in. All permutations are allowed. The robots can
dance in any order; each ordering is a valid splay state. They
di�er only in spatial arrangement, not in the moves performed or
the timing between them.

The larger the array, the more permutations are possible. The
number grows extremely rapidly, even faster than exponential.
With 5 junctions, there are 24 splay states. With 10, there are
362,880. Kurt thought this explosive proliferation might o�er a
basis for a promising memory architecture for a future Josephson
computer. Each memory could be stored as a di�erent splay state.
Instead of a static collection of 0s and 1s, it would be encoded as
a dynamic pattern, a swirling dance of electrical activity in the
array. (Neuroscientists believe that our memory for odors works
something like this, where the oscillators are neurons in the
brain’s olfactory bulb, and di�erent patterns of excitation encode
di�erent smells.)

With only a few junctions, you could make a gigantic memory,
as large as you wanted. There was only one catch: For the scheme
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to work, each state would have to be stable, to prevent corruption
by random noise in the circuitry. So now the question became,
Are the splay states stable? And how does their stability depend
on the load? At the time, Kurt was unable to solve the problem
mathematically. More important, he realized he still lacked a
global understanding. Besides synchronized states and splay
states, what else might be out there? And how does it all �t
together? His goal was ambitious: to understand all possible kinds
of collective behavior, for any number of junctions in series, and
in parallel with any kind of load.

When I met Kurt at a conference in Texas in 1990, we felt an
immediate rapport. We were about the same age, with similar
backgrounds and taste in scienti�c problems—and we found that
we laughed a lot together. Now, as he told me about his vision for
the Josephson array problem, I thought it might be fun to work
on it together. Kurt, perhaps feeling a little guilty about what a
treat this was going to be, reminded me about the possible
technological applications of the work (the sort of serious
justi�cation you’re supposed to o�er if someone asks you why
you work on what you do). But to be honest, the applications
were not the real reason we were interested in these arrays. The
main attraction was pure curiosity, just the pure pleasure of
working out the math for a beautiful system of coupled
oscillators.

In particular, there was something beguiling about the
equations themselves. Every junction appeared to be coupled
equally to every other. Even though they were physically
connected in series, like the links in a chain, the equations made
them look like they were connected all-to-all. That surprised me,
and delighted me. I was already familiar with that strange,
supersymmetrical kind of connectivity from my previous work on
the Peskin model of heart cells and the Winfree and Kuramoto
models of biological oscillators. In those settings, all-to-all
coupling was chosen purely for expedience. No one knew the
right equations anyway, so it was natural to start with the easiest
case. Though, of course, it was a caricature: Real heart cells and
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�re�ies interact more strongly with their neighbors than with
those far away.

So when the same old egalitarian coupling appeared in the
equations for the Josephson array, I nodded knowingly. Here
comes the standard approximation. No, no, Kurt told me, it’s
really like that. All-to-all coupling is rigorously correct here. It
comes straight from the circuit equations, a consequence of the
fact that when junctions are in series, the same amount of current
�ows through each of them, like water passed along in a bucket
brigade. He promised to send me a long letter after the
conference was over, with all the details spelled out.

Even before I opened the envelope, I knew from the way he
wrote my address that he was going to be fun to work with. He
printed in calligraphy—graceful, undulating letters, precise and
whimsical at the same time. Over many years of grading students’
tests, I’d come up with a kind of amateur handwriting analysis
that never failed: Whenever all the answers were printed in tight
little letters, machine perfect, almost as if typewritten, I knew the
student was going to be near the top of the class. This rule, by the
way, says nothing about messy handwriting. A student who
scrawls his answers might be muddled or brilliant or anywhere in
between. But calligraphy? That had to be a good sign.

Kurt suggested we begin with the most idealized possible
problem: two identical Josephson junctions connected in series,
and driven by a constant current. Suppose the load is a resistor,
again the most vanilla choice, and instead of the usual three
channels for current �ow in each junction, assume each has only
two pathways, one for supercurrent and another for normal
current. (For certain kinds of junctions, the third pathway—the
displacement current—can be neglected, to a good
approximation.)

The advantage of these simpli�cations was that we could then
visualize the system’s dynamics by drawing ordinary two-
dimensional pictures. At any given instant, each junction has a
well-de�ned phase, just as a pendulum captured in a snapshot
appears cocked at some angle. Graphing one phase horizontally,
and the other vertically, we could represent all possible
combinations as a point in a square, with 360 degrees of possible
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phases on either side. This square is called the system’s “state
space.” It has an amusing geometrical property, reminiscent of
the old video games where a spaceship sailing o� the right edge
of the screen magically reappears on the left edge, and one
crashing into the bottom reappears on the top. The state space for
this Josephson array would have the same magical feature,
because a phase of 360 degrees is physically indistinguishable
from one of 0 degrees (just as a pendulum hanging straight down
would still be hanging straight down if you rotated it by a full
turn). Since the left and right edges of the square correspond to
the same physical state, mathematicians imagine them as being
fused seamlessly into one, as if you rolled a piece of paper into a
cylinder and taped the edges together. Furthermore, the top and
bottom edges are also the same, so they should be taped together
too, which means the cylinder is bent around into a doughnut
shape, forming a surface known as a torus.

The conclusion, then, is that the state space for this simplest of
Josephson arrays is equivalent to the surface of a torus. Every
point on the torus corresponds to an electrical state of the array,
and vice versa. As time passes and the array changes its state
from moment to moment, the corresponding point on the torus
glides smoothly from place to place, like a speck of dust carried
on the surface of a gentle stream. The �ow pattern for this
imaginary stream—its whorls and eddies, backwaters and torrents
—are all inherent in the circuit equations for the array. Given the
present values of the phases, the equations dictate how they will
change in the next instant.
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The equations are nonlinear, so we couldn’t hope to solve them
explicitly, but we thought it might be possible to infer the overall
qualitative features of the �ow pattern. For example, stagnation
points (places on the torus where the speck gets stuck) would
correspond to states of electrical equilibrium for the array, with
all currents and voltages constant in time. The stability of such
states could be assessed by imagining the speck to be nudged
away from them; if it always returns, as if it were being sucked
down a drain, the equilibrium state is stable. Or suppose the �ow
pattern contains a closed loop, an eddy around which a speck can
circulate endlessly, always revisiting its starting position after a
certain amount of time. Such a loop would signify a periodic,
repetitive form of behavior—an electrical oscillation in the array.
Kurt and I knew that such loops were bound to occur, but we
didn’t know anything about their stability, whether they’d funnel
nearby states into themselves or not.

The simplest loop is the synchronous oscillation, where the
phases of both junctions are equal at all times. The corresponding
trajectory �ows along the main diagonal of the square. It starts in
the lower left corner, then travels northeast until it exits at the
top right corner, where it instantly returns to the lower left (since
360 degrees and 0 degrees correspond to the same phase). When
viewed on the square, the trajectory appears to jump
discontinuously from one corner to the other, but on the torus—
the true state space for the system—there is no jump. The
transition is seamless.

When we analyzed the overall �ow pattern, we were shocked
to �nd that every other trajectory repeats itself in a similar way.
Every solution is periodic. On the face of it, that might not sound
so surprising. A pendulum swinging to and fro would always
repeat its behavior, at least in the simple textbook case where
there’s no friction in its bearings and no air resistance. In that
case, it doesn’t matter whether you start the pendulum swinging
in a large arc or a small one—either way, it always repeats. The
same is true for other kinds of “conservative” mechanical
systems, hypothetical idealizations where all forms of friction and
dissipation are imagined to vanish, and mechanical energy is
perfectly conserved, with none lost to heat. But that’s precisely
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why the periodic behavior of the Josephson array was such a
shock to us. This array was oozing with friction. In electrical
terms, friction is resistance. The junctions themselves contained
an e�ective resistance (corresponding to the pathway for normal
current), and the load was a resistor. Yet somehow this array was
impersonating a conservative system.

Kurt and I wondered if this paradoxical behavior might be an
artifact of studying only two junctions. With more than two,
maybe the system could spread its wings and show a more
representative range of behavior. I had some old computer
programs lying around from my earlier work on biological
oscillators, the ones I’d used to simulate the Winfree and
Kuramoto models, with hundreds of colored dots running around
a circular track, and also one for the Peskin model of heart cells,
where it proved so helpful to strobe the system whenever one of
its oscillators �red. All these programs were easy to adapt to the
Josephson array equations. With Kurt now back at Georgia Tech
and me back at MIT, it made sense to divide the labor. Kurt and
his student Kwok Tsang pursued the mathematical analysis for
more than two junctions, while I tried to get the simulations
rolling.

Ten junctions seemed like a good starting point: few enough to
be manageable, but too many to visualize easily. Instead of a �ow
on a square or the surface of a torus, the trajectories now lived in
a 10-dimensional space. Undaunted, my computer programs
crunched through the nonlinear equations, inching forward one
tiny step at a time, and then displayed the evolving phases of the
junctions as 10 dots running around a circular track. The images
were dizzying. The dots swirled around, leaving an overwhelming
impression of swirling but not much else. It was especially
di�cult to perceive any gradual adjustments in relative
positioning. Some relief was provided by the strobe trick. When a
pre-assigned junction reached a certain phase, an imaginary �ash
went o� and illuminated the phases of the other nine junctions.
That took care of the swirling, but there were still 9 dots to watch
simultaneously. Following 9 dots amounts to picturing a 9-
dimensional space.
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The human brain cannot readily visualize more than three
dimensions, and the �at screen of the computer limited the
display even further to two. I needed some way to expand my
mind, to try to grasp what was going on in this nine-dimensional
wilderness. After playing around for a while, I �nally settled on a
multipanel format, like in those hokey movies from the 1960s,
with split screens showing di�erent actors in each one. One panel
graphed the phase of junction number 2 versus junction number
3, with one axis dedicated to each. Other panels showed the same
thing for junctions 3 versus 4; 5 versus 6; and so on. Junction
number 1 was assigned to trigger the strobe: Whenever it crossed
a designated starting line (a speci�c phase in its cycle), the
computer plotted the corresponding point in each panel,
representing the simultaneous phases at that instant. So the
computer screen was �lled with panels, continuously updated
with each stroboscopic �ash.

Before looking at the system through these new theoretical
goggles, I needed to prepare myself for what I might see. In the
worst case, if the solutions to the equations were horribly
complicated, the dots would hop around wildly in each panel,
gradually �lling out an amorphous blob. If they contained a bit of
structure, the blob might be lacy, with striations in it. Or if things
were as paradoxically simple as they were for two junctions, each
dot would keep landing on the same point, boring a hole into the
computer screen, never budging from its birth pixel. That
incessant repetition would signal that all the trajectories were still
periodic (because for a periodic solution, whenever junction 1
crosses the starting line to trigger the �ash, junctions 2 and 3
would always appear in their proper places, and likewise for
every other panel).

I unleashed the computer and stared at the screen. After a
while, a single dot appeared simultaneously in each panel,
meaning that junction 1 had completed one lap and �red its
strobe. Then another lap, and another. In every panel, the dots
kept landing close to the original ones, but not quite on top of
them. That was already interesting. The near misses meant the
trajectories for 10 junctions were not periodic, con�rming what
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we had suspected: Two junctions were too special, not a reliable
indicator of what to expect in larger arrays.

As the computer continued to churn, a di�erent pattern
materialized. The dots were tracing out a curve, not a blob, and
their motion was meticulous, con�ned to a razor-thin path,
extending it, �lling it out. All the panels were showing di�erent
versions of the same basic structure: a distorted, triangular loop
with rounded corners. I wondered if maybe I’d chosen a
pathological starting point by accident, so I tried many other
initial conditions. My jaw dropped when I saw the results. Every
starting point gave rise to its own rounded triangle, and all the
separate triangles �t neatly inside one another like Russian dolls.

This structure was incredible. It meant that the equations
contained a secret symmetry, a hidden regularity that must be
causing this order. I’d never seen anything like it. Every trajectory
had an unimaginably vast, 10-dimensional landscape to explore,
with the potential to wander up and down, front and back, left
and right, and in 7 other dimensions that we don’t even have
words to describe, and yet they all did nothing of the sort. It was
as unlikely as walking a tightrope forever and never falling o�.
Something was con�ning the solutions to a slice of all
possibilities. It didn’t even matter when I added more junctions to
the array: 20, 50, 100—all yielded the same Russian-doll pattern
of nested triangles. When I told Kurt the news, he was every bit
as �abbergasted. Either the computer was playing tricks on us, or
there was something unprecedented about the mathematics of
Josephson arrays.

Over the next four years, many of us became obsessed with the
mystery. Kurt and his student Steve Nichols ran computer
simulations on a wider class of arrays, and kept detecting the
same telltale signs of astonishing order. Jim Swift, a
mathematician at Northern Arizona University and a friend of
Kurt’s from graduate school, dreamed up an ingenious way to
approximate the equations that governed the dynamics of these
arrays, replacing them with so-called averaged equations that
were much easier to analyze but that nevertheless retained the
essence of the original equations. (Like all puzzle solvers,



170

mathematicians often resort to approximations when a problem
seems too tough to approach head-on, at least at �rst.) By
simplifying the problem, Jim opened the door to its mathematical
analysis. Following his lead, my student Shinya Watanabe found
the Russian-doll structure lurking in the solutions to Jim’s
averaged equations; then, in an analytical tour de force, he went
on to prove that much of the same structure was latent in the
original, unaveraged circuit equations. The upshot was the
discovery of a new “integrable system,” a rare jewel in
mathematics. It has no particular application, at least not that we
know of. It’s more like �nding a pretty shell on the beach.

One of the most wonderful things about curiosity-driven
research—aside from the pleasure it brings—is that it often has
unexpected spin-o�s. The techniques developed by Jim and
Shinya allowed us, for the �rst time, to tackle the dynamics of
Josephson arrays in the more realistic case where the junctions
are not identical. Engineers had never been able to analyze
disordered arrays, though they knew full well that real junctions
always di�er by a few percent in their electrical properties;
there’s no way to fabricate them more uniformly than that with
present manufacturing technology. The variability of the
junctions limits their usefulness in arrays, because it opposes the
coherent operation that engineers seek. When such arrays are
driven by external currents, they are found to be temperamental:
At currents below some threshold, they remain incoherent, with
all the junctions oscillating at random phases such that their
voltages interfere destructively and cancel out; but when the
threshold is crossed, the array spontaneously synchronizes. To try
to make sense of this behavior, Kurt and I (in collaboration with
his friend Pere Colet) used Jim’s averaging technique to massage
the equations into a more manageable form.

There, staring us in the face, was the Kuramoto model—an
enigma like the monolith in 2001: A Space Odyssey, buried under
the soil, waiting for us apes to �nd it, beckoning, the key to sync.
Until now, the Kuramoto model had been thought to be nothing
more than a convenient abstraction, the simplest way to
understand how groups of dissimilar oscillators could
spontaneously synchronize, and under what circumstances. It was
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born out of pure imagination, concocted as a caricature of
biological oscillators: crickets, �re�ies, cardiac pacemaker cells.
Now here it was, unearthed, in the dynamics of superconducting
Joseph-son junctions. It reminded me of that wonderful feeling
that Einstein talked about, the recognition of hidden unity.

Soon after we published these results, I received a letter
postmarked Kyoto, Japan, handwritten in graceful script. “I was
surprised and really delighted,” wrote Yoshiki Kuramoto. “I didn’t
have a slightest idea that my simple model could ever �nd any
example in real physical systems.”

The Kuramoto model has always been a solution waiting for a
problem. It was never intended as a literal description of
anything, only as an idealized model for exploring the birth of
spontaneous order in its simplest form. Yet its newfound
connection to Josephson arrays immediately explained why these
devices should synchronize abruptly. The phase transition was
fundamentally the same as the one that Winfree had discovered
in his model of biological oscillators, and that Kuramoto had later
formalized so elegantly in his solvable model. Experts on
Josephson junctions had seen this transition in their own
computer simulations, years earlier, but without a theoretical
basis for understanding it, it had never attracted attention
(illustrating the adage that you should never trust a fact until it’s
been con�rmed by theory).

Since 1996, the Kuramoto model has turned up in other
physical settings, from arrays of coupled lasers to the
hypothesized oscillations of the wispy subatomic particles called
neutrinos. We may be catching the �rst glimpses of a deep unity
in the nature of sync. Whether there will be any practical
applications remains to be seen. Given how many diseases are
related to synchrony and its disruption (epilepsy, cardiac
arrhythmias, chronic insomnia) and how many devices rely on
synchrony (Josephson and laser arrays, electrical power grids, the
global positioning system), it seems safe to say that a deeper
understanding of spontaneous sync is bound to �nd practical
bene�t.
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The widespread occurrence of the Kuramoto model raises the
question of why this particular mathematical structure should be
so common. To be honest, it probably isn’t all that common. I
have focused on it because it is the only case of spontaneous
synchrony we understand well. On theoretical grounds, one can
show that it arises only whenever four speci�c conditions are
met, and is not expected otherwise. First, the system in question
must be built from an enormous number of components, each of
which is a self-sustained oscillator. That is already a strong
constraint. The individual elements must have extremely simple
dynamics: pure rhythmicity along a standard cycle, without chaos
or turbulence or anything complicated, just repetitive motion.
Second, the oscillators must be weakly coupled, in the sense that
the state of each oscillator can be characterized by its phase
alone. If the coupling is strong enough to distort any oscillator’s
amplitude signi�cantly, the Kuramoto model will not apply. The
third condition is the most restrictive: Each oscillator must be
coupled equally strongly to all the others. Very few systems in
nature are literally like that. Oscillators normally interact most
strongly with their neighbors in space, or with a collection of
virtual neighbors de�ned by a network of mutual in�uence.
Finally, the oscillators must be nearly identical, and the amount
of dispersion in their properties should be comparable to the
weakness of their coupling.

Given all these conditions, the dynamics of the Kuramoto
model and its relatives might start to seem self-evident. Yet the
sudden onset of synchrony still comes as a surprise. Even after
sync breaks out, we often lack intuition about it, especially about
how it could have occurred so abruptly on its own— as illustrated
recently by the Millennium Bridge �asco.

The Millennium Bridge was supposed to be the pride of
London. Erected at a cost of over $27 million, the elegant, avant-
garde footbridge was London’s �rst new river crossing in more
than a century, linking the City and St. Paul’s Cathedral on the
north bank of the Thames to the Tate Modern museum on the
south. Its design was radical—the world’s �attest suspension
bridge, a sinuous ribbon 320 meters long, with low-slung
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outriggers and slender steel cables stretched taut across the river.
The concept grew out of an unusual collaboration between the
engineering �rm Ove Arup, the architect Lord Norman Foster,
and the sculptor Sir Anthony Caro. “A blade of light,” Lord Foster
dubbed it, imagining its appearance when illuminated at night. “I
remembered going to the pictures and seeing Flash Gordon. As he
got to the edge of an abyss he hit a button and this light-bridge
appeared. That’s what we wanted to create, something as close to
�ying as possible.” Though the engineers at Arup were
responsible for building the structure and ensuring its soundness,
Lord Foster and Sir Anthony seemed happy to share the credit at
the televised inaugural led by the Queen.

The bridge opened to the public on a sunny Saturday, June 10,
2000. As soon as police gave the word, hundreds of excited
Londoners surged onto the deck from both ends. Within minutes
it began to wobble, 690 tons of steel and aluminum swaying in a
lateral S-shaped vibration like a snake slithering on the ground.
Alarmed pedestrians clung to the handrails to steady themselves
but the wobbling grew ever more violent, ultimately reaching
de�ections of 20 centimeters from side to side.

Roger Ridsdill-Smith, one of the young engineers at Arup who
came up with the innovative design, looked over at the police
crowd-controllers. This wasn’t supposed to be happening. His
mind raced—nothing like this had been predicted by the
computer simulations, the safety assessments, the wind-tunnel
experiments. The bridge was safe, he was sure of that. It couldn’t
possibly collapse like the Tacoma Narrows Bridge, the infamous
“Galloping Gertie” preserved on grainy old �lm strips, caught in
its death throes, twisting in the wind, crumbling in a �t of
torsional oscillations. Still, something was causing the bridge to
resonate. Police restricted access to the bridge, but the swaying
continued. Panicked and humiliated, the authorities closed the
Millennium Bridge on Monday, June 12, just two days after it
opened.

Critics of the original design snorted about the blade of light’s
comeuppance. Lord Foster was no longer so eager to take credit;
besieged by reporters, he extruded some ill-tempered words about
his engineering collaborators. Arup, the engineering �rm,
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immediately set about testing the bridge’s vibrational
characteristics to determine what had gone wrong. They attached
huge shaking machines to the bridge and systematically wiggled
it at a controlled range of frequencies. When the bridge was
shaken horizontally at about 1 cycle per second, it slithered back
into the S-shaped wobble seen on opening day.

That was an important clue. One cycle per second is half the
frequency of normal human walking. All bridge designers know
that people walk at a pace of about two strides per second, but
the main e�ect of these repetitive footfalls is to create a vertical
force, not a sideways one, so that couldn’t be the cause of the
lateral wobbling. Suddenly the engineers knew the culprit. People
do create a small sideways force with each step—you push o�
one way when you plant your right foot, and the other way when
you plant your left one. That alternating sideways force oscillates
at half the stride frequency, one cycle per second, not two. No
one had ever thought to worry about that; it wasn’t part of the
standard code for bridge designers in the United Kingdom. In any
case, the sideways force is small, and since there’s normally no
coordination between people in large groups, all the leftward and
rightward forces occur at random times and therefore tend to
cancel each other out. But if for some reason everyone were
stepping in sync, all the sideways forces would add up and
become concentrated. That could de�nitely cause trouble.

The engineers went back and looked at the television news
footage of opening day and saw that was exactly what had
happened. As the bridge swayed, the pedestrians unconsciously
adjusted their pace to walk in time with the lateral movement.
This exacerbated the vibration, which impelled more people to
lose their balance and simultaneously swing to the same side,
reinforcing their synchrony and aggravating the vibration still
further. It was this chain reaction—the positive feedback between
the people and the bridge—that no one had ever anticipated, and
that triggered the wobbling of the Millennium Bridge.

This resonance e�ect is di�erent from the famous one that
requires soldiers to break step before they cross a bridge, to avoid
exciting dangerous vibrations in it. Soldiers arrive at the bridge in
sync, whereas the pedestrians were strolling at random; the
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designers had no reason to expect them to spontaneously
coordinate their footfalls. They’d prudently considered the
possibility that a pack of vandals might deliberately jump up and
down in sync, and designed the bridge to withstand that insult,
but it had never dawned on them that a crowd of 2,000 civic-
minded people could inadvertently synchronize their strolling.

It’s still unclear what initiated the synchrony on opening day.
The best guess is that a nucleus of sync was created by accident:
Once the crowd is large enough, there’s a chance that at some
stage, enough people will step in sync by accident that a critical
threshold will be crossed and the bridge will begin to wobble
slightly. Once that happens, the feedback e�ect kicks in and
reinforces the swaying.

Arup’s later investigations showed that this kind of chain
reaction is possible only if the bridge is very long, �exible, and
crowded—the volatile mix of ingredients that combined on the
Millennium Bridge that day. In particular, they found there’s no
sign of trouble if there are fewer people than the threshold
number. It’s not as if the bridge shakes a little for a small number
of people and gradually builds up as the numbers increase. Either
it doesn’t shake at all, or it wobbles violently and without
warning, once the threshold is crossed. Like the straw that breaks
the camel’s back, the onset of wobbling is a nonlinear
phenomenon.

In fact, it sounds very much like the phase transition predicted
by the models of Winfree and Kuramoto. Just as the theories
suggest, the oscillators (in this case, people’s footfalls) are
incoherent below threshold. The forces they exert cancel each
other out. They remain incoherent even as the coupling between
them is increased; the coherence does not grow gradually. Then
suddenly, once the coupling exceeds a certain threshold (because
there are enough people on the bridge to shake it su�ciently),
synchrony breaks out cooperatively.

We can see another conceptual unity here. The Millennium
Bridge was a case of sync induced by weak coupling through an
intermediate. That theme has been an undercurrent throughout
the past few chapters. The pedestrians’ interactions were
mediated through the vibrations they induced in the bridge, in
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much the same way that Huygens’s pendulums felt each other by
shaking the board from which they were both suspended. In
superconductivity, Cooper pairs form because electrons deform
the atomic lattice slightly; that deformation provides a weak
attraction between them, just as a bowling ball rolling on a
waterbed tends to pull another along in its wake. Even in a series
array of Josephson junctions, the same mechanism is present: The
junctions interact only because of the electrical oscillations they
induce in the load. The individual oscillators in all four cases are
completely di�erent—electrons, pendulums, high-tech devices,
people—but the synchronization mechanism is essentially the
same.

The crux of this explanation was con�rmed by Arup’s engineers
after several months of careful testing, involving not only their
huge mechanical shakers but also controlled experiments with
people walking across other bridges and laboratory studies of
individual people balancing themselves on wobbly footing. But
incredibly, just two days after the bridge closed, and before any
studies had been conducted, a reader of London’s Guardian had
already arrived at the correct explanation. On June 14, 2000, the
following letter to the editor appeared:

Out of step on the bridge

Wednesday June 14, 2000

The Guardian

The Millennium Bridge problem (Millennium bug strikes again, June 13)
has little to do with crowds walking in step: It is connected with what
people do as they try to maintain balance if the surface on which they are
walking starts to move, and is similar to what can happen if a number of
people stand up at the same time in a small boat. It is possible in both
cases that the movements that people make as they try to maintain their
balance lead to an increase in whatever swaying is already present, so that
the swaying goes on getting worse.

Is it true that “the bridge is never going to fall down,” or at any rate get
damaged, as a result of the swaying? That has been said about bridges
before, and those responsible for this one need to understand, before
making such pronouncements, that the problem involves more than
engineering principles.
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The author, with his con�dent mix of scienti�c insight and
contempt for received wisdom, signed his name:

Prof. Brian Josephson
Department of Physics
University of Cambridge
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III

EXPLORING SYNC

• Seven •

SYNCHRONIZED CHAOS

HE DIDN’T GIVE THE IMPRESSION OF BEING a revolutionary. A small,
modest man, seventyish, prone to speaking in a monotone, Ed
Lorenz looked and acted more like a quiet country person, like a
farmer you might see at a roadside stand in Maine. I’d often see
him when I ate dinner at the MIT cafeteria in Walker Memorial.
He’d hobble in with his wife, holding hands, holding canes with
their free hands. Every time I taught my chaos course, we’d go
through the same ritual each year, and I’d come to look forward
to it. I’d call up Professor Lorenz and invite him to come give a
guest lecture to the class. He’d say, with genuine puzzlement, as
if it were an open question, “What should I talk about?” And I’d
say, How about the Lorenz equations? “Oh, that little model?”
And then, as predictable as the seasons, he’d show his face to my
awestruck class, and tell us not about the Lorenz equations but
about whatever he was working on then. It didn’t matter. We
were all there to catch a glimpse of the man who’d started the
modern �eld of chaos theory.

“That little model” had changed the direction of science
forever. In 1963, while trying to understand the unpredictability
of the weather, Lorenz wrote down a set of three di�erential
equations, nonlinear ones, but not horrible-looking. In fact, to a
mathematician or physicist, they looked deceptively simple, like
the standard exercises found in textbooks. I could solve that,
you’d think to yourself. But you couldn’t. No one could. The
solutions to the Lorenz equations behaved like nothing
mathematics had ever seen. His equations generated chaos:
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seemingly random, unpredictable behavior governed by
nonrandom, deterministic laws.

At �rst, nobody noticed the new arrival. Lorenz’s paper
“Deterministic Nonperiodic Flow,” buried on pages 130 to 141 of
the Journal of the Atmospheric Sciences, was cited only about once
a year for the �rst decade of its existence. But once the chaos
revolution was in full swing, in the 1970s and 1980s, the little
model averaged a hundred citations a year.

The �rst wave hit when a few scientists in diverse �elds began
to realize that they were all seeing manifestations of the same
mysterious phenomenon. Ecologists stumbled upon chaos in a
simple model for the dynamics of a wildlife population. Instead of
leveling o� or repeating in cycles, the simulated population
unexpectedly boomed and crashed erratically from one
generation to the next, even though there was nothing random in
the model itself. Astronomers were perplexed by their
measurements of the rotational motion of Hyperion, a small,
potato-shaped moon of Saturn; instead of spinning on one axis
like most satellites, it tumbled haphazardly, as if doing drunken
somersaults. Physicists took time o� from pondering quarks and
black holes and began to pay attention to more mundane
phenomena that they’d previously dismissed as annoyances: the
�tful pulsations of unstable laser beams, the noisy voltage
oscillations of certain electrical circuits, even the dripping of
leaky faucets. All of these, it turned out, were to become icons of
chaos. Ironically, a handful of pure mathematicians starting with
Henri Poincaré had known about chaos for 70 years, but almost
no one else could decipher their jargon or understand their
abstractions, so their ideas had little impact outside their small
priesthood.

And that’s typical of the obstacles facing the development of
any cross-disciplinary science. Most scientists work comfortably
in their narrow specialties, walled o� from their intellectual
neighbors by barriers of language, taste, and scienti�c culture.
Lorenz was not like that. He was a meteorologist whose �rst love
had been mathematics. There were people like him in every �eld,
mavericks within their own communities. What they had in
common was a feeling for dynamics, for �ow, for hidden patterns
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and symmetries, and above all, for the lure of the darkest corner
of theoretical science: the realm of nonlinear problems.

The mathematician Stanislaw Ulam once said that calling a
problem nonlinear was like going to the zoo and talking about all
the interesting non-elephant animals you see there. His point was
that most animals are not elephants, and most equations are not
linear. Linear equations describe simple, idealized situations
where causes are proportional to e�ects, and forces are
proportional to responses. If you bend a steel girder by two
millimeters instead of one, it will push back twice as hard. The
word linear refers to this proportionality: If you graph the
de�ection of the girder versus the force applied, the relationship
falls on a straight line. (Here, linear does not mean sequential, as
in “linear thinking,” plodding along, one thing after another.
That’s a di�erent use of the same word.)

Linear equations are tractable because they are modular: They
can be broken into pieces. Each piece can be analyzed separately
and solved, and �nally all the separate answers can be
recombined—literally added back together—to give the right
answer to the original problem. In a linear system, the whole is
exactly equal to the sum of the parts.

But linearity is often an approximation to a more complicated
reality. Most systems behave linearly only when they are close to
equilibrium, and only when we don’t push them too hard. A civil
engineer can predict how a skyscraper will sway in the wind, as
long as the wind is not too strong. Electrical circuits are
completely predictable—until they get fried by a power surge.
When a system goes nonlinear, driven out of its normal operating
range, all bets are o�. The old equations no longer apply.

Still, you shouldn’t get the idea that nonlinearity is dangerous
or even undesirable. In fact, life depends on nonlinearity. In any
situation where the whole is not equal to the sum of the parts,
where things are cooperating or competing, not just adding up
their separate contributions, you can be sure that nonlinearity is
present. Biology uses it everywhere. Our nervous system is built
from nonlinear components. The laws of ecology (to the extent
we know them) are nonlinear. Combination therapy for AIDS
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patients—drug cocktails—are e�ective precisely because the
immune response and the viral population dynamics are both
nonlinear; the three drugs in combination are much more potent
than the sum of the three of them taken separately. And human
psychology is absolutely nonlinear. If you listen to your two
favorite songs at the same time, you won’t get double the
pleasure.

This synergistic character of nonlinear systems is precisely
what makes them so di�cult to analyze. They can’t be taken
apart. The whole system has to be examined all at once, as a
coherent entity. As we’ve seen earlier, this necessity for global
thinking is the greatest challenge in understanding how large
systems of oscillators can spontaneously synchronize themselves.
More generally, all problems about self-organization are
fundamentally nonlinear. So the study of sync has always been
entwined with the study of nonlinearity.

The synergistic character of nonlinear systems is also what
makes them so rich. Every major unsolved problem in science,
from consciousness to cancer to the collective craziness of the
economy, is nonlinear. For the next few centuries, science is
going to be slogging away at nonlinear problems. Starting in the
1960s and 1970s, all of the pioneers of sync—people like Wiener,
Winfree, Kuramoto, Peskin, and Josephson—were already blazing
one path up the mountain, on the trail of spontaneous order in
enormous systems of oscillators. With the rise of chaos theory, an
army of new allies had joined the quest, clambering up a separate
trail but headed for the same peak.

Nonlinear problems had always been opaque. It was for this
reason that Lorenz’s headway on the problem of chaos was so
encouraging. Now, suddenly, it became clear that even the
simplest nonlinear systems could display very complicated
behavior, much more complicated than anyone had realized. That
might sound like a pessimistic conclusion, but it raised the hope
that some seemingly random phenomena might harbor a deeper
lawfulness within.

And then came the second wave of chaos theory, which
revealed that chaos itself, belying its misleading name, contained
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a stunning new kind of order. The pivotal discovery was made by
the physicist Mitchell Feigenbaum, who showed that there are
certain universal laws governing the transition from regular to
chaotic behavior. Roughly speaking, completely di�erent systems
can go chaotic in the same way. His predictions were soon
con�rmed in experiments on electronic circuits, swirling �uids,
chemical reactions, semiconductors, and heart cells. It was as if
the old Pythagorean dream had come true: The world was not
made of earth, air, �re, and water—it was made of number.
Feigenbaum’s laws transcended the super�cial di�erences
between heart cells and silicon semiconductors. Di�erent
materials, the same laws of chaos. Other universal laws would
soon be discovered. The logjam seemed to be broken.

It was a euphoric time for nonlinear science. Chaos—the word
itself was cool. The �eld was touted by some as the third great
revolution of twentieth-century physics, along with relativity and
quantum mechanics. It had penetrated some of the mysteries of
nonlinearity for the �rst time, and established links between
�elds that previously seemed unrelated. In 1987, James Gleick’s
best-selling book Chaos brought chaos theory to the masses, with
stories of heroes like Lorenz and Feigenbaum, an intense, chain-
smoking genius with Beethoven hair, wandering the streets of Los
Alamos in the middle of the night, looking for the secret of
turbulence. And then, when Je� Goldblum played a chaos
theorist in Jurassic Park, dressed in leather and looking like a rock
star, chaos had truly arrived—especially after he demonstrated
the butter�y e�ect on Laura Dern’s hand.

The butter�y e�ect came to be the most familiar icon of the
new science, and appropriately so, for it is the signature of chaos.
The phrase comes from the title of a 1979 paper by Lorenz called
“Predictability: Does the Flap of a Butter�y’s Wings in Brazil Set
O� a Tornado in Texas?” The idea is that in a chaotic system,
small disturbances grow exponentially fast, rendering long-term
prediction impossible.

A depressing corollary of the butter�y e�ect (or so it was
widely believed) was that two chaotic systems could never
synchronize with each other. Even if you took great pains to start
them the same way, there would always be some in�nitesimal
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di�erence in their initial states. Normally that small discrepancy
would remain small for a long time, but in a chaotic system, the
error cascades and feeds on itself so swiftly that the systems
diverge almost immediately, destroying the synchronization.
Unfortunately, it seemed, two of the most vibrant branches of
nonlinear science—chaos and sync—could never be married.
They were fundamentally incompatible.

Plausible as it sounds, the argument outlawing synchronized
chaos is now known to be wrong. Chaos can sync.

This startling phenomenon was discovered in the early 1990s,
and with it came another change of perspective about chaos
itself. Traditionally, chaos had been viewed as a nuisance,
something to be suppressed and engineered away. Later, in the
heyday of the revolution, chaos became a celebrated curiosity. Its
pervasiveness in the natural world was recognized, and its hidden
order exposed. No one knew whether it was good for anything,
but that didn’t matter. It was fascinating for its own sake. Now,
with the discovery of synchronized chaos, the sea changed again.
Overnight, chaos promised to be useful. Physicists and engineers
dreamed of ways to harness its remarkable properties to do
potentially practical things, like scramble cell-phone calls and
other wireless forms of communication to prevent eavesdroppers
from intercepting them.

The discovery of synchronized chaos also enriched our
understanding of sync itself. In the past, sync had always been
associated with rhythmicity. The two concepts are so tightly
linked that it’s easy to overlook the distinction between them.
Rhythmicity means that something repeats its behavior at regular
time intervals; sync means that two things happen
simultaneously. The confusion occurs because many synchronous
phenomena are rhythmic as well. Synchronous �re�ies not only
�ash in unison, they also �ash periodically, at �xed intervals.
Cardiac pacemaker cells �re in step, and at a constant rate. The
moon turns once as it orbits Earth; both its spin and its orbit
follow cycles that repeat themselves regularly.

But we all know that, at least in principle, sync can be
persistent without being periodic. Think of the musicians in an
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orchestra. All the violins come in at the same time, and stay in
sync throughout. Yet they are not periodic: They do not play the
same passage over and over again. Or imagine the world
champions in pairs �gure skating. Their graceful movements
occur in tandem, but are ever inventive, never repetitive.

These displays of sync without cycles impress us, delight us,
sometimes even move us. They seem to require intelligence and
artistry, which is why the discovery of synchronized chaos was so
astonishing: It demonstrated that mindless things can pull o� a
primitive version of the same feat. Purely mechanical systems can
glide along unpredictably while remaining in perfect concert.

To understand how synchronized chaos works, the �rst step is
to understand chaos itself. Unfortunately, many of us begin with
faulty preconceptions about what chaos is like. (Incidentally, the
same is not true of periodicity. We instinctively understand it
correctly. All the cycles around us—the beating of a heart, the
ticking of a grandfather clock, the changing of the seasons, the
insu�erable beep-beep-beep of a truck backing up—give an
accurate sense of what periodicity really means. You can feel the
rhythmic pounding of a drum in the pit of your stomach as the
parade marches by. Now we need to develop the same kind of
visceral feel for chaos.)

Part of the confusion stems from the word itself. In colloquial
usage, chaos means a state of total disorder. In its technical sense,
however, chaos refers to a state that only appears random, but is
actually generated by nonrandom laws. As such, it occupies an
unfamiliar middle ground between order and disorder. It looks
erratic super�cially, yet it contains cryptic patterns and is
governed by rigid rules. It’s predictable in the short run but
unpredictable in the long run. And it never repeats itself: Its
behavior is nonperiodic.

The chaos governed by the Lorenz equations, for example, is
vividly illustrated by a strange and beautiful contraption, a
desktop waterwheel designed by Willem Malkus, one of Lorenz’s
former colleagues at MIT. It’s intended as a pedagogical aid to
give students an image of chaos in action. The original low-tech
device, designed by Malkus and his colleague Lou Howard, was a
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lazy Susan with a dozen leaky paper cups attached to its rim in
the manner of chairs on a Ferris wheel. As Malkus told me, this
prototype was a “messy a�air”—as water was poured in from a
watering can to set the wheel in motion, it would slowly drain
through the cups and spill all over the table and �oor.

His improved waterwheel, on the other hand, is a completely
self-contained machine.

A plastic wheel, about a foot in diameter, rotates in a plane
tilted slightly from the horizontal (unlike an ordinary
waterwheel, which rotates in a vertical plane). With the �ip of a
switch, water is automatically pumped up into an overhanging
manifold (a perforated hose) and then sprayed out through
dozens of small nozzles into separate chambers around the rim of
the wheel (the counterpart of the cups in the low-tech version).
At the bottom of each chamber, the water leaks out through a
pinhole and collects in a common reservoir underneath the
wheel, where it is pumped back up through the nozzles. This
recirculation scheme provides a steady in�ow of water.

When you turn on the machine, nothing much happens at �rst.
The wheel is motionless. The water makes a pleasant gurgling
sound as it �lls the chambers; meanwhile, those chambers are
draining, but at a slower rate. Once the chambers get too full, the
wheel becomes top-heavy and starts to swing around in one
direction, like an inverted pendulum falling over. That rotation
carries a new set of chambers under the manifold while
simultaneously transporting some of the �lled ones out from
under the nozzles. Soon you start to feel like you’re seeing the
pattern: The wheel is consistently rotating in one direction, say
counterclockwise. After another minute, however, the rotations
become increasingly sluggish, barely making it over the top, as
the wheel becomes more and more imbalanced from the lopsided
placement of water around its rim. As the wheel strains to make
one last revolution, it doesn’t quite succeed and slows to a halt,
then reverses direction, now turning clockwise. Wait a little
longer and soon the wheel settles into its remarkable steady-state
behavior: a haphazard sequence of clockwise and
counterclockwise turns, punctuated by reversals at unpredictable
times. It might spin three times clockwise, then once
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counterclockwise, four times one way, seven times the other.
There’s no discernible

trend. The long-term behavior is nonperiodic. The motion never
damps out and never repeats.

What’s so surprising here is that the waterwheel turns
erratically, even though there’s nothing erratic about the way it is
being driven. The water is pumped in at a steady rate. Yet the
wheel can’t seem to make up its mind. What’s even more
disconcerting is that the behavior is not reproducible. The next
time you turn on the waterwheel, its pattern of reversals will be
di�erent. If you take tremendous care to ensure that everything is
almost the same as it was the last time, its motion will track for a
while but then diverge, yielding a completely unrelated sequence
of turns and reversals thereafter.

Of course, if you started the wheel absolutely the same way, it
would repeat. That’s what it means to be deterministic: The
current state determines the future state uniquely. The motion of
the wheel is governed by deterministic equations—Newton’s laws
of motion and the laws of �uid mechanics—so in principle, if you
knew all the variables initially, you could predict the wheel’s
motion forever into the future. The equations themselves contain
no noise or randomness or other sources of uncertainty.
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Furthermore, if you solve the equations on a computer, using the
same starting values for all the variables, the predicted outcome
will be the same every time. In that sense, everything is
reproducible.

But in the real world outside the computer, the variables are
never exactly the same from run to run. The slightest di�erence—
a drop of water in one of the chambers, left over from the
previous experiment, or a pu� of air exhaled by an overexcited
spectator—will alter the motion of the wheel, at �rst
imperceptibly, but very soon with incalculable consequences.

These, then, are the de�ning features of chaos: erratic,
seemingly random behavior in an otherwise deterministic system;
predictability in the short run, because of the deterministic laws;
and unpredictability in the long run, because of the butter�y
e�ect.

The phenomenon of chaos raises some subtle philosophical
issues that can trick the unwary. For example, a few of my
students have pooh-poohed the butter�y e�ect as obvious. We all
know that little things can make a big di�erence in the course of
our own lives, and even in the lives of nations. With so many
complexities, so many variables unaccounted for, insigni�cant
events can sometimes trigger disproportionate chain reactions.
Think of the ancient verse about the downfall of a kingdom:

For want of a nail, the shoe was lost;
For want of a shoe, the horse was lost;
For want of a horse, the rider was lost;
For want of a rider, the battle was lost;
For want of a battle, the kingdom was lost!

But what was not widely appreciated until chaos theory was that
similar cascades can a�ict even the simplest systems:
waterwheels and tumbling moons and dripping faucets,
mechanical systems where all the laws are known and there are
only a few variables. Even there, the seeds of chaos lie dormant,
ready to unfold their surprises.

Another subtlety: In chaos, every point is a point of instability.
It’s worse than the quandary faced by Robert Frost’s traveler in
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“The Road Not Taken”—a life ruled by chaos is even more
precarious. Every moment would be a moment of truth. Every
decision would have long-term consequences that would alter
your life beyond recognition. Button your shirt starting from the
top instead of the bottom, and there’s no telling how di�erently
things might turn out, years later. (Our lives might actually be
like that; we get to follow only one trajectory, so we have no way
of knowing what fate would hold for the others, where we start
buttoning from the bottom �rst. But to retain a measure of sanity,
one has to believe that nearly all such decisions are
inconsequential. This dilemma was explored in the �lm Sliding
Doors, which depicts two radically di�erent versions of a
woman’s life, depending on whether or not she catches a subway
train before the doors slide closed.)

In contrast to chaotic systems, rhythmic systems don’t show
such inordinate sensitivity to small disturbances. Smack a
metronome—it stutters, but then resumes its relentless ticktock.
The timing is o� from where it would have been, but that
deviation does not grow as time passes. We can see this more
clearly if we imagine two identical metronomes, initially in step.
Disturb one of them; after it recovers, it will be out of step from
the other by a �xed interval. The discrepancy does not grow.
More generally, when a nonchaotic system is disturbed slightly,
the disturbance either doesn’t grow at all or else grows very
mildly, increasing in proportion to how much time has passed.
One says that the errors grow no faster than linearly in time.

The important point here is a quantitative one. The linear
growth of errors implies that nonchaotic systems are predictable,
at least in principle. The tides, the return of Halley’s comet, the
timing of eclipses: All of these are strongly rhythmic and hence
predictable, because tiny disturbances do not mushroom into
major forecasting errors. To forecast a nonchaotic system twice as
long, you just measure its initial state twice as precisely. To go
three times longer, you improve your measurements threefold. In
other words, the horizon of predictability also increases linearly:
that is, in direct proportion to the precision with which the initial
state is known.
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Chaotic systems, on the other hand, behave in a radically
di�erent way, and it is here that we begin to grasp the truly
demoralizing implications of the butter�y e�ect. The amount of
time we can successfully predict the state of a chaotic system
depends on three things: how much error we’re willing to tolerate
in the forecast; how precisely we can measure the initial state of
the system; and a time scale that’s beyond our control, called the
Lyapunov time, which depends on the inherent dynamics of the
system itself.

Roughly speaking, we can only predict for an amount of time
comparable to the Lyapunov time; after that, the errors in the
measurement of the true initial state have snowballed so much
that they exceed the allowable tolerance. By lowering our
standards or improving our initial measurements, we can always
predict longer. But the rub is the obstinate way the predictability
horizon depends on the initial precision: If you want to predict
twice as long yet still achieve the same accuracy, it will now cost
you not twice the e�ort but ten times as much. And if you are
ambitious and want to predict three times longer, that will cost a
hundred times the e�ort; four times longer, a thousand times the
e�ort, and so on. In a chaotic system, the required precision in
the initial measurement grows exponentially, not linearly.

That’s devastating. It means, in practice, that you can never
predict much longer than a small multiple of the Lyapunov time,
no matter how good your instruments become. The Lyapunov
time sets a horizon beyond which acceptable prediction becomes
impossible. For a chaotic electrical circuit, the horizon is
something like a thousandth of a second; for the weather, it’s
unknown but seems to be a few days; and for the solar system
itself, �ve million years.

It’s because the horizon is so long for the solar system that the
motions of the planets seem utterly predictable to us today; and
on the time scales of a human life, or even of the whole history of
astronomy, they are predictable. When we calculate planetary
alignments hundreds of years into the past or the future, our
predictions are reliable. But any claims about the positions of the
planets 4 billion years ago, at the dawn of life on Earth, would be
meaningless.
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The �nal subtlety about chaos has to do with a strange kind of
order lurking within it. Chaos is not formless (again, despite the
word’s ordinary meaning). A hint of its underlying structure
appears in the motion of the toy waterwheel, with its never-
ending succession of rotations and reversals; although the
sequence never repeats in detail, its overall character stays the
same. Chaos has an essence, a quality that never changes.

When Lorenz was analyzing his little model back in the early
1960s, he happened upon the essence of chaos incarnate. It took
the form of a shape, an alien thing, not quite a surface, but not a
solid volume either. It wasn’t easy to visualize it back then, long
before the advent of modern computer graphics. Even after
Lorenz saw it in his mind’s eye, he struggled to �nd the words to
convey its peculiar geometry. He described it as an “in�nite
complex of surfaces.” Today we call it a “strange attractor.”

Just as a circle is the shape of periodicity, a strange attractor is
the shape of chaos. It lives in an abstract mathematical space
called state space, whose axes represent all the di�erent variables
in a physical system. Lorenz’s equations involved three variables,
so his state space was three-dimensional. For the waterwheel—an
exact mechanical analog of the Lorenz equations—one of the
variables tells how fast the wheel is rotating and in which
direction, while the other two characterize two particular aspects
of how the water is distributed around the rim of the wheel. The
values of these variables at any instant de�ne a single point in
state space, corresponding to a snapshot of the system at any one
moment.

In the next moment, the state will change as the wheel rotates
and the water �ows in and redistributes itself. Moving from state
to state, the system evolves, carried along by its own dynamics.
Like the diagrams in an Arthur Murray dance lesson, the Lorenz
equations are rules about where to step next. They de�ne
in�nitesimal arrows at every point in state space. Wherever the
state happens to be, it must follow the arrow at that point, which
brings it immediately to a new point. Following the arrow there
for an instant, it proceeds to the next point, and so on. As time
passes and the values of the variables change, the point cruises
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through state space, tracing a continuous path called a trajectory,
sailing like a comet through an imaginary realm that exists only
in a mathematician’s mind. The beauty of this idea is that it
converts dynamics into geometry. A chaotic motion becomes a
picture, something we can see, a static image we can stare at,
inspect, and study.

What does chaos look like? The trajectory wanders around
forever in state space. It can never close or cross itself, because
chaos never repeats. Lorenz was able to prove that his trajectory
was forever con�ned inside a certain large sphere, so it could
never escape to in�nity. Trapped in this ball, sentenced to wander
around for eternity without ever intersecting itself, the trajectory
must follow an extremely elaborate path. The temptation is to
picture it like a tangled ball of string, a wild mess, with no
structure to it.

But Lorenz’s primitive computer graphics indicated that the
trajectory was moving in a highly organized way, exploring only
a tiny portion of the available space. In fact, it seemed to be
attracted onto a particular surface—a delicate, microscopically
thin membrane whose shape, ironically, resembled a pair of
butter�y wings. The trajectory would loop around one of the
wings, spiraling out from its center. Then, when it got close to the
edge of the wing, it would dart over to the other wing, and begin
spiraling out again. The trajectory made an unpredictable number
of loops around each wing before jumping to the other one, just
as the waterwheel makes an unpredictable number of rotations in
one direction before reversing.

As Lorenz struggled to make sense of what the computer was
telling him, he realized something had to be wrong. He knew the
trajectory couldn’t be con�ned to a surface: There would be no
way for it to avoid crossing itself. The butter�y wings might look
like a single surface, but they would actually have to be built
from an in�nite number of layers, packed so closely together that
they would appear indistinguishable, like sheets of mica.

This in�nite complex of surfaces—this strange attractor—
embodies a new kind of order. Though the trajectory’s motion is
unpredictable in detail, it always stays on the attractor, always
moves through the same subset of states. That narrowness of
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repertoire accounts for the order hidden in chaos and explains
why its essence never changes.

To make these abstractions more concrete, visualize a strange
attractor as a futuristic parking garage from the Twilight Zone. The
garage is completely automated. While you sit passively behind
the steering wheel, a towing apparatus hitches to your car and
pulls you along through the garage. Like the Lorenz attractor, the
garage has two wings; in this case, let’s call them the east and
west towers, both with in�nitely many levels. When you’re ready
to go home, you �ick the switch to turn on the towing apparatus.
You descend for a while, and feel like you’re making progress,
though you’re becoming dizzy from circulating around so many
levels, when you suddenly sense that you have made no progress
at all, and you have somehow arrived near the top level of the
opposite tower. As the hell ride continues, you circulate
endlessly, every so often making unpredictable switches between
the two towers. You are destined to drive forever. Although you
never get out, you never retrace your path. Occasionally you
might return to the same level of the same tower, but never in
quite the same place.

This is the fate of a trajectory on the Lorenz attractor. The
towing apparatus is the di�erential equation; it is what
determines the trajectory, both its speed and direction at every
instant. The rules are completely deterministic: The trajectory’s
fate is determined by its initial conditions. By analogy, if you
start from the same parking space in the garage, you and your car
will be towed along the same path every time, speeding up and
slowing down in the same way. The butter�y e�ect expresses
itself through sensitive dependence on initial conditions: In the
metaphor, if you and the person in the car next to you ask to
leave at the same time, the towing apparatus takes you both on
the same ride for a while—as you look out your windows at each
other in desperation—but very soon you diverge, veering apart
onto di�erent levels and di�erent fates. After that, your patterns
of circulation around the two towers are completely uncorrelated.
Nevertheless, the existence of the strange attractor ensures a
certain kind of order. You’re always stuck in the garage,
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circulating endlessly through the same kinds of states, though
never in quite the same sequence.

Although the shape of chaos is nightmarish, its voice is oddly
soothing. When played through a loudspeaker, chaos sounds like
white noise, like the soft static that helps insomniacs fall asleep.
In the autumn of 1988, when Lou Pecora began to daydream
about using chaos to do something practical, he sensed a promise
in its sound, where everyone before him had heard only a bland,
meaningless hiss.

Pecora is a lighthearted, playful physicist with a self-e�acing
manner and an easy laugh. In the mid-1980s, he was working at
the U.S. Naval Research Laboratory in Washington, studying
positron annihilation in solids, spin waves in magnets, and other
problems in solid-state physics. Looking for a change of direction,
and intrigued by the excitement around chaos theory (the hottest
topic in physics at the time), he tried to justify switching his
research to such an esoteric subject. He knew his superiors would
be more receptive if he could propose a way to harness chaos for
practical bene�t, military or otherwise. This pragmatic line of
thought, natural as it seems in retrospect, had never occurred to
anyone. Until then, chaos theory had been dominated by pure
researchers, scientists fascinated by nature, not by engineering.
Practical applications never crossed their minds.

Once Pecora asked himself whether chaos could be useful, he
immediately thought of communications. Maybe secret messages
could be shrouded in chaos, making them harder for an enemy to
intercept and decode. An eavesdropper might not realize a
message was being sent, and even if he did, he might have
trouble pulling it out of the noise. To have any hope of making
this encryption strategy work, Pecora knew he would �rst have to
�gure out how to synchronize a chaotic transmitter and receiver.
All forms of wireless communication rely on synchronization. In
the case of radio, for example, the process of tuning to a
particular station locks the receiver to the frequency of the
broadcast transmission. Once the sync is established, the song on
the radio is extracted through a process called demodulation,
which teases the music apart from the radio wave that carries it.
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The challenge now was to generalize the same idea to chaos,
where the carrier would be a chaotic wave instead of a periodic
one.

Pecora and his postdoctoral fellow Tom Carroll had no
background in communications and both were still newcomers to
chaos, so they weren’t sure where to begin. The quickest way to
gain insight seemed to be through computer simulations; at least
they wouldn’t have to invest weeks of e�ort building gadgets that
didn’t work anyway. So they tinkered on the computer,
simulating various pairs of chaotic systems, linking them in
di�erent ways and hoping their wild �uctuations would fall in
step. Nothing worked. The butter�y e�ect was too powerful. The
simulated transmitter and receiver would stay together for a
while, but soon came the inexorable drift and breakdown of
synchrony.

Feeling discouraged, Pecora headed to Houston for the annual
chaos meeting, a conference called Dynamics Days. He sat in the
audience listening to the leaders in the �eld, trying to
concentrate. But his mind kept wandering back to the
synchronization problem. By the end of the conference, he was no
closer than before. He caught a late plane home and arrived at his
doorstep well past midnight, feeling exhausted and cranky. His
wife and kids were fast asleep. Soon after he dozed o�, he was
awakened by the cries of his seven-month-old daughter, Anna,
who needed a bottle. His wife volunteered to take care of her, but
Pecora said no, he’d like to do it.

There in the stillness of his house, sitting peacefully with his
baby daughter, cradling her in his arms, Pecora felt himself relax.
His brain stopped buzzing. Later, when he returned to bed, the
solution hit him. “I need to drive chaos with chaos—I need to
drive the receiver with a signal that comes from the same kind of
system.” Although he worried that he’d forget the idea, he was
too tired to climb out of bed to write it down.

When he woke up the next morning, the idea was still there. He
couldn’t wait to test it. He thought of trying it on the Lorenz
equations, but he wasn’t comfortable yet with solving di�erential
equations on the computer, so he worked instead with a chaotic
system that was easier to program. Pecora started the transmitter
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and receiver in di�erent states, and then asked the computer to
predict their behavior far into the future. As the numbers poured
out, they bobbled erratically—the aperiodicity expected of chaos
—but amazingly, their values converged toward each other. They
were synchronizing. By driving the receiver with a chaotic signal
transmitted from a duplicate of itself, Pecora had coaxed them to
�uctuate in lockstep.

In technical terms, his scheme can be described as follows:
Take two copies of a chaotic system. Treat one as the driver; in
applications to communications, it will function as the
transmitter. The other system receives signals from the driver, but
does not send any back. The communication is one-way. (Think
of a military command center sending encrypted orders to its
soldiers in the �eld or to sailors at sea.) To synchronize the
systems, send the ever-changing numerical value of one of the
driver variables to the receiver, and use it to replace the
corresponding receiver variable, moment by moment. Under
certain circumstances, Pecora found that all the other receiver
variables—the ones not replaced—would automatically snap into
sync with their counterparts in the driver. Having done so, all the
variables are now matched. The two systems are completely
synchronized.

This description, although correct mathematically, does not
begin to convey the marvel of synchronized chaos. To appreciate
how strange this phenomenon is, picture the variables of a
chaotic system as modern dancers. By analogy with the Lorenz
equations, their names are x, y, and z. Every night they perform
onstage, playing o� one another, each responding to the slightest
cues of the other two. Though their turns and gestures seem
choreographed, they are not. On the other hand, they are
certainly not improvising, at least not in the usual sense of the
word. There’s nothing random in how they dance, no element of
chance or whimsy. Given where the others are at any moment,
the third reacts according to strict rules. The genius is in the
artfulness of the rules themselves. They ensure that the resulting
performance is always elegant but never monotonous, with motifs
that remind but never repeat. The performance is di�erent from
minute to minute (because of aperiodicity) and from night to
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night (because of the butter�y e�ect), yet it is always essentially
the same, because it always follows the same strange attractor.

So far, this is a metaphor for a single Lorenz system, playing
the role of the receiver in Pecora’s communication scheme. Now
suppose that time stands still for a moment. The laws of the
universe are suspended. In that terrifying instant, x vanishes
without a trace. In its place stands a new variable, called x’. It
looks like x but it is programmed to be oblivious to the local y
and z. Instead, its behavior is determined remotely by its
interplay with y’ and z’, variables in a transmitter far away in
another Lorenz system, all part of an unseen driver.

It’s almost like the classic horror movie Invasion of the Body
Snatchers. From the point of view of the receiver system, this new
x would seem inscrutable. “We’re trying to dance with x but
suddenly it’s ignoring all of our signals,” think y and z. “I’ve
never seen x behave like that before,” says one of them. “Hey, x,”
the other whispers, “is it really you?” But x wears a glazed
expression on its face. Just as in the movie, x has been taken over
by a pod. It’s no longer dancing with the y and z in front of it—its
partners are y’ and z’, unseen doppelgängers of y and z, remote
ones in the parallel universe of the driver. In that faraway setting,
everything about x’ looks normal. But when teleported to the
receiver, it seems oddly unresponsive. And that’s because the
receiver’s x has been hijacked, impersonated by this strange x’
coming from out of nowhere. Sensitive souls that they are, y and
z make adjustments and modify their footwork. Soon all becomes
right again. The x, y, z trio glides in an utterly natural way,
�owing through state space on the Lorenz attractor, the picture of
chaotic grace.

But what is so sinister here, and so eerie, is that y and z have
now been turned into pods themselves. Unwittingly, they are now
dancing in perfect sync with their own doppelgängers, y’ and z’,
variables they have never encountered. Somehow, through the
sole in�uence of the teleported x’, subtle information has been
conveyed about the remote y’ and z’ as well, enough to lock the
receiver to the driver. Now all three variables x, y, and z have
been commandeered. The unseen driver is calling the tune.
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Pecora’s simulations showed that his scheme would work for
equations in the computer. Now the question was whether it
would work in the lab, where no two systems are ever identical
or free from outside disturbances. He considered what chaotic
system would be the most manageable experimentally. Electronic
circuits seemed like the natural choice; they’re fast, cheap, and
easy to measure, giving plenty of data in a short time. Carroll
agreed, and set to work trying to implement the Lorenz equations
in electronic hardware. Almost immediately he found himself
stymied. Those particular equations involve multiplication of x
and y in one term, and x and z in another. To perform those
operations electronically requires multiplier chips, and Carroll
was �nding that his o�-the-shelf components were too unreliable
to provide the accuracy he needed. A more serious problem was
that the variables in the Lorenz equations change by a factor of
100,000 as the system evolves. That enormous dynamic range
exceeds the capabilities of the power supplies typically used to
drive electronic circuits. Reluctantly, Pecora and Carroll scrapped
the idea of a Lorenz circuit.

In search of alternatives, they consulted with Robert Newcomb,
an electrical engineer at the University of Maryland who had
designed his own brand of chaotic circuits. Newcomb had let his
imagination run free. He hadn’t felt compelled to make circuits
that mimicked Lorenzian waterwheels or lasers or any other
physical system; he was just curious about chaos and wanted to
explore it electronically. Carroll followed one of Newcomb’s
recipes and con�rmed that the resulting circuit produced wild
�uctuations in voltage and current. Plotted on an oscilloscope,
the variables traced out a strange attractor—not the same as
Lorenz’s butter�y wings, but similar. The circuit was running at
thousands of cycles per second and giving fast, beautiful chaos.

Now the synchronization scheme could be tested. Carroll built
a second copy of the circuit, and wired it to the �rst one
according to Pecora’s rules. The theory predicted that the two
circuits should both oscillate spasmodically but in perfect
lockstep. To test for synchrony, Carroll set the oscilloscope to plot
the receiver voltage y versus its transmitter counterpart y’. If the
two �uctuating variables were equal, they should line up on a 45-



198

degree diagonal (because when y is graphed horizontally, and y’
is graphed vertically, the horizontal displacement y must equal
the vertical displacement y’ if their values are always equal). And
since y and y’ are always changing from moment to moment, they
should race back and forth along that diagonal line but never
depart from it.

Carroll �ipped the switch to start the circuits. Within two
milliseconds, the voltages leapt onto the diagonal and stayed
there. “My hair still stands up when I think about it,” Pecora told
me. “I don’t think I’ll ever have a moment like that again. It’s like
seeing one of your kids being born.”

Last day of classes, MIT, December 1991. I’d just given the �nal
lecture in my chaos course, and everyone had �led out except for
one student. Beaming with pride, he handed me a piece of paper
crammed with handwritten formulas and theorems, all enclosed
in perfect rectangular boxes. To prepare for the upcoming �nal
exam, he’d distilled the whole course to a single page. Looking at
his minuscule, machinelike printing, I knew what I was dealing
with. Sure enough, Kevin Cuomo turned out to be one of the best
students in the class.

Cuomo was doing his Ph.D. research on synchronized chaos in
electrical circuits and their possible uses in communications. At
the time, I was vaguely aware of Pecora and Carroll’s 1990 paper,
but had not studied it carefully. Cuomo wanted to tell me all
about it—the words came tumbling out in a torrent—but then he
jumped to his own work, and encouraged me to come see a
circuit he’d built—the �rst electronic implementation of the
Lorenz equations—and he also wanted me to check a
mathematical proof he’d discovered, a demonstration of a new
synchronization scheme that would always work for the Lorenz
equations, no matter how the receiver and transmitter were
started. He took a breath and continued: Pecora and Carroll had
not o�ered any such proof, and that worried him—the reasoning
wasn’t especially di�cult, just a standard application of
Lyapunov functions, like we’d done in class—so maybe he was
missing something?
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As it turned out, Cuomo had done everything right. His proof
was sound, and his circuit did simulate the Lorenz equations (to
this day, Pecora cheerfully admits that he has no idea how
Cuomo got it to work). But none of this is what Cuomo is known
for. Over the course of the next year, he and his adviser Al
Oppenheim would be the �rst to demonstrate that chaotic
encryption was possible: Synchronized chaos really could be used
to enhance the privacy of communications.

Their method is based on masking, the same strategy used
(unsuccessfully and unforgettably) by the secretive couple in
Francis Ford Coppola’s movie The Conversation. Fearing that they
are under surveillance, a man and woman walk around a busy
town square and whisper to each other, trusting that the loud din
of street musicians will hide their conversation. In Cuomo and
Oppenheim’s version, the background noise is provided by the
hiss of electrical chaos, generated by the variable x from a Lorenz
circuit. Before any message is sent to the receiver, x is added on
top of it, to mask it. For good coverage, x must be much louder
than the message (just as the street music needs to be much
louder than the whispered conversation) over its entire range of
frequencies. Of course, if the receiver can’t disentangle the
message from the mask, nothing has been accomplished. This is
where synchronization comes in. Cuomo’s scheme ensures that
the receiver, when driven by the hybrid signal (message plus
mask), will synchronize to the mask, but not to the message. In
e�ect the receiver regenerates a clean version of the mask.
Subtracting it from the hybrid signal reveals the message. The
method confers privacy because an eavesdropper has no easy way
to perform the same decomposition; he wouldn’t know what to
subtract, what part of the combined signal is mask and what part
is message.

A year after he took my course, Cuomo returned to give a live
demonstration of his encryption scheme to my latest crop of
chaos students. First he showed us his transmitter circuit: a small
board loaded with resistors, capacitors, operational ampli�ers,
and analog multiplier chips. The voltages x, y, z at three di�erent
points in the circuit were proportional to Lorenz’s variables of the
same names. When Cuomo graphed x against y on an
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oscilloscope, the familiar butter�y wings of the strange attractor
appeared as a glowing, ghostly image on the screen. Then, by
hooking the transmitter up to a loudspeaker, Cuomo enabled us
to hear the chaos. It crackled like static on the radio. Next he
grabbed another circuit board, a receiver built to match the
transmitter, and connected them with an alligator clip in a
strategic place. Using the oscilloscope again, he demonstrated
that both circuits were now running in sync, o�ering the usual
45-degree diagonal test as evidence.

Cuomo brought the house down when he used the circuits to
mask a message, which he chose to be a recording of the hit song
“Emotions,” by Mariah Carey. (One student, apparently with
di�erent taste in music, asked, “Is that the signal or the noise?”)
After playing the original version of the song, Cuomo played the
masked version. Listening to the hiss, one had absolutely no sense
that there was a song buried underneath. Yet when this masked
message was sent to the receiver, its output synchronized almost
perfectly to the original chaos, and after instant electronic
subtraction we heard Mariah Carey again. The song sounded
fuzzy but was easily understandable.

When Cuomo and Oppenheim’s paper was published in 1993,
their dramatic results came as no surprise to Lou Pecora. He and
Tom Carroll had been toiling along the same lines for three years
already, but they weren’t allowed to say anything or publish what
they’d found.

As early as the fall of 1989, once their chaotic circuits were
successfully synchronizing, Pecora and Carroll had begun
considering the problem of chaotic encryption. Lacking even a
rudimentary background in communications or coding theory,
they came up with a clumsy method, one that required sending
two signals. One signal was used to establish synchrony between
the receiver and the transmitter. The second was a hybrid, a mask
with a message added to it at very low power. It’s essentially the
same strategy that Cuomo and Oppenheim proposed a few years
later, though less elegant in the sense that Cuomo’s method uses
only one signal (x plus message) for double duty—it both



201

establishes sync and carries the message. But the general idea is
the same.

The Space Warfare group at the Naval Research Laboratory
became interested in Pecora and Carroll’s work, because of the
potential it o�ered for new ways of encoding and encrypting
satellite communications. They had been funding Carroll for the
preceding year, and now wanted a closer look at what the
physicists were up to. A senior o�cer told Pecora to keep quiet
about the work until the Space Warfare people had a chance to
evaluate it; they were going to send an outside expert to assess
the circuit. Pecora was given strict instructions about how to
behave. He and Carroll were not allowed to ask the expert
anything: not who he worked for, not even his name. What
should we call him? Pecora asked. “Call him Bill,” said his
superior. In private, Pecora and Carroll referred to him as Dr. X.

Dr. X turned out to be a young man, serious and competent,
carrying a computer loaded with software for simulating analog
circuits. He seemed unfamiliar with chaos theory, but he clearly
understood the communications ideas, and managed to get his
own simulations of the circuit running very quickly. Pecora and
Carroll were later informed that Dr. X had concluded that their
circuit performed as described, though he had doubts about
whether it could be made digital and secure.

Other visitors from the Space Warfare group soon followed.
Pecora, in his naïveté, bet one of them a beer that he could hide a
sine wave in the chaos, and challenged the visitor to extract it.
The visitor ran the circuits for a minute, measured the voltage
waveforms, then did a computation called a fast Fourier
transform to measure the strengths of all the component
frequencies being transmitted. The sine wave stood out nakedly
as a spike in the spectrum. Pecora realized then that he had a lot
to learn about encryption.

The Space Warfare scientists concluded that this new scheme
was interesting but hardly something the navy should depend on.
Pecora and Carroll were �nally given permission to disclose their
results, but because they wanted to apply for a patent, their
lawyer advised them to extend their silence about what they were
doing. So they still didn’t publish anything.
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Space Warfare also put them in touch with a contact at the
National Security Agency, the ultrasecretive arm of the
government concerned with the making and breaking of codes.
Pecora visited the agency headquarters and presented his results
to an audience of cryptographers who listened attentively, but
wouldn’t respond to any of his questions. “It was like talking in a
black hole,” said Pecora. “Information goes in and none comes
out.” After the meeting, Pecora realized he’d forgotten something
and needed to get back in touch with his contact at NSA. Having
lost the phone number, he looked in the phone book, and was
surprised to �nd a listing for this most clandestine of
organizations. He dialed the number and reached an information
desk. The conversation was reminiscent of a Monty Python
sketch:

“May I have the phone number for Colonel Y?”
“I cannot con�rm or deny that anyone named Colonel Y works here.”
“OK, how about if I give you my number and you tell him to call me
back?”
“I cannot con�rm or deny that he works here.”
“This is the information desk, isn’t it?”
“Yes. What information would you like?”

The early work on synchronized chaos led to a jubilant sense of
optimism about the prospects for chaotic encryption, especially
among physicists with no background in cryptography. It was
common in the early 1990s to see papers in physics journals with
hopeful titles about “secure” communications. But the experts
knew better. From the beginning, Al Oppenheim cautioned
Cuomo and me about hyping the results. “You must never call
this method secure,” he warned. “Secure means secure—
unbreakable. We don’t know if it’s secure. It may give some low
level of privacy, but that’s all. Masking schemes are usually pretty
easy to break.”

For people using cellular phones, even a minimal level of
privacy would be welcome. Princess Diana needed it when
reporters intercepted her conversations with her lover James
Gilbey, later publicized as the embarrassing “Squidgy” tapes.
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Prince Charles was caught speaking even more intimately to
Camilla Parker Bowles in 1989. When Newt Gingrich and his
lawyers were discussing the ethics case against him, their cell-
phone conversation was taped by Democratic loyalists using a
police scanner. Cell-phone scramblers do exist today, but they
tend to cost several hundreds of dollars. Chaotic masking might
turn out to be a cheaper alternative for defeating casual
eavesdroppers.

For military and �nancial applications, on the other hand,
much stronger encryption is required. So far, chaos-based
methods have proved disappointingly weak. Kevin Short, a
mathematician at the University of New Hampshire, has shown
how to break nearly every chaotic code proposed to date. When
he unmasked the Lorenzian chaos of Cuomo and Oppenheim, his
results set o� a mini-arms race among nonlinear scientists, as
researchers tried to develop ever more sophisticated schemes. But
so far the codebreakers are winning.

One of the most promising developments comes from the 1998
work of Gregory VanWiggeren and Rajarshi Roy, physicists then
working at the Georgia Institute of Technology. They gave the
�rst experimental demonstration of chaotic communications
using lasers and �ber optics, instead of electrical generators and
wires. In their optical system, chaotic waves of light carried
hidden messages from one laser to another at speeds of 150
million bits per second, thousands of times faster than the rates
achieved electronically. And there’s no theoretical barrier to even
higher speeds.

Another advantage of communicating with chaotic lasers is that
the chaos is much more complex, making it tougher to crack. The
complexity is quanti�ed by a number called the dimension of the
strange attractor, which is a natural generalization of the
ordinary concept of dimension. But unlike a straight line (which
is one-dimensional) or a �at plane (which is two-dimensional),
strange attractors typically have dimensions that are fractions.
The Lorenz attractor, for example, is made of in�nitely many two-
dimensional sheets, which implies that it has an in�nite surface
area but no volume. Arcane as it may sound, it’s more than a
surface but less than a solid, and its dimension, accordingly, is
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greater than 2 but less than 3. For VanWiggeren and Roy’s
erbium-doped �ber lasers, the dimension of the strange attractor
is unknown but it is almost certainly a fraction and, more
important, it is huge. It seems to be at least 50, corresponding to
an extremely wild form of chaos. It remains to be seen whether
this new form of encoding will be more secure than its
predecessors.

Leaving encryption aside, the more lasting legacy of
synchronized chaos may be the way it has deepened our
understanding of synchrony itself. From now on, sync will no
longer be associated with rhythmicity alone, with loops and
cycles and repetition. Synchronized chaos brings us face-to-face
with a dazzling new kind of order in the universe, or at least one
never recognized before: a form of temporal artistry that we once
thought uniquely human. It exposes sync as even more pervasive,
and even more subtle, than we ever suspected.
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SYNC IN THREE DIMENSIONS

MY FIRST ENCOUNTER WITH SYNC OCCURRED BY chance on a dismal
day in Cambridge, England, in 1981. I was studying math there
on a Marshall Scholarship after graduating from college, and
feeling entirely displaced. The English girls never got my jokes,
the brussels sprouts were gray, the drizzle was relentless, and the
toilet paper was waxy. Even my coursework was drab: old-
fashioned topics in classical physics, like the rotational dynamics
of spinning tops. It was complicated stu�, and not inspiring.

Hoping to rekindle my academic passion, I walked across the
street to He�er’s Bookstore to browse the books on
biomathematics. (As a senior in college, I had written a thesis
about the geometry of DNA, and that whole experience—doing
original research with a world-class biochemist, using some of the
math I was learning and applying it to an unsolved problem
about chromosome structure—had been so thrilling that I was
convinced I wanted to become a mathematical biologist.) As I
scanned the shelves, with my head tilting sideways, one title
popped out at me: The Geometry of Biological Time. Now that was
a weird coincidence. My senior thesis on DNA had been subtitled
“An Essay in Geometric Biology.” I thought I had invented that
odd juxtaposition, geometry next to biology. But the book’s
author, someone named Arthur T. Winfree, from the biology
department at Purdue University, had obviously connected them
�rst.

The blurb on the back �ap looked promising: “From cell
division to heartbeat, clocklike rhythms pervade the activities of
every living organism. The cycles of life are ultimately
biochemical in mechanism but many of the principles that
dominate their orchestration are essentially mathematical.” I
dipped into the table of contents. Right away I could see that this
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was the work of an unusual scientist. No, not just unusual. Arthur
T. Winfree was breaking all the rules. Above all, he was playful.
In a chapter about the mathematics of the menstrual cycle, he
used data from his own mother. Other chapters had equally
quirky elements in them: puns in their titles, personal stories from
the author (“Nixon chose that week to invade Cambodia”), and I
started to wonder if Winfree was for real. So I slid the book back
into its place on the shelf, and left the store.

A few days later I felt myself being tugged back to He�er’s.
Winfree’s book was beckoning, and I had to look at it again. To
check his credentials, I turned to the bibliography: 36 papers
between 1967 and 1979, with several in the most prestigious
journals, such as Science, Nature, and Scienti�c American. That
should have been convincing enough, but for some reason I put
the book back again, only to revisit it a few days later. Eventually
it occurred to me that this was getting ridiculous—and God forbid
that someone else might snatch the store’s only copy. I
surrendered and bought it.

Every day of reading the book was a new delight. Winfree’s
synthesis was brilliant and utterly original. Chapter by chapter,
he built a mathematical framework that exposed an underlying
unity in how various biological oscillations work. He applied his
ideas to heart rhythms, brain waves, menstrual cycles, circadian
rhythms, the cell division cycle, even waves in the gut. But his
ideas went far beyond that. They made startling predictions that
had kept turning out right in experiments. Some of them dealt
with matters of life and death.

For the �rst time, I could sense my career path beginning to
unfold. Excitedly I wrote to Winfree to ask for ideas about where
to go to graduate school for mathematical biology. (I hadn’t
heard of any formal programs in it. The subject was too new, too
much on the fringe.) Two weeks later, my pulse quickened when I
picked up the mail and spotted the Purdue return address. Inside,
scrawled in red Magic Marker on blue-lined school paper, with a
few phrases connected by swooping arrows, was a reply from
Winfree himself:
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Steven Strogatz:
Well, of course you should come to me.

And after two pages of generous advice, he closed with:

Do keep in touch: You sound interesting.
Art Winfree

That was a dream come true. By then Winfree had become my
hero. But he was in a biology department, and a graduate degree
in biology was not in my plans—math was my subject. So how
about a summer job with him? I sheepishly raised that possibility.
Two weeks later, a reply arrived:

12–10-81

5 min after receiving yours of 12–1-81

Dear Steven–––

This week a pile of $ fell on me so yes, I can provide a summer salary
[… ] There is plenty of space in my lab and 2 Apple computers w/ various
wonderful attachments. [… ] I will be working at topol. puzzles about 3-D
twisted + knotted waves in Zhabotinsky’ soup, + “moonlighting”
applications to cardiac muscle (My Scient. Amer. article on sudden cardiac
death will �ll you in this spring.) I would be super-delighted to enlist your
partnership in these endeavors. I think we could learn a lot together.

I will not encourage [… ] or [… ] or anybody else to o�er you a
position until you decline this one. I hope you won’t.

Impulsively,
Art Winfree

Winfree’s research agenda, stated in idiosyncratic code in his
letter to me, was ahead of what everyone else was thinking
about. Of course he was well outside the mainstream of normal
science, with its tendency toward narrow specialization and its
emphasis on reductionism, drilling down to smaller and smaller
units of inquiry—he wasn’t thinking about single genes or quarks
or neuron channels. But he was even outside the chaos
revolution, which all of its practitioners felt was in the vanguard,
but which was, in fact, already reaching maturity and about to
give way to the next great trend: the study of nonlinear systems
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composed of enormous numbers of parts. Later christened as
“complexity theory,” this movement would come to seem like a
natural outgrowth of chaos, in some ways its �ip side—instead of
focusing on the erratic behavior of small systems, complexity
theorists were fascinated by the organized behavior of large ones.
Winfree’s earliest work on spontaneous synchronization of
biological oscillators had already touched on that theme. By now
it had matured in several ways.

For example, his letter mentioned his plans to work on “3-D
twisted + knotted waves.” The key phrase here is 3-D. No one
had ever looked into the behavior of self-sustained oscillators
interacting in three-dimensional space. As we have seen earlier,
when theorists �rst started analyzing the dynamics of oscillator
populations, they ignored space altogether and concentrated on
time alone, on rhythms in step, with no regard for how the
oscillators were situated geographically. The breakthroughs of
Wiener, Kuramoto, Peskin, and even Winfree himself had been
restricted to the simplest possible case of all-to-all coupling,
where each oscillator a�ects every other one equally. Global
coupling was always recognized as nothing more than an
expedient �rst step—it was the quickest way into the jungle of
many-oscillator dynamics. There was no spatial structure to
worry about; every oscillator is a neighbor to every other. Once
that case was in hand, the next step up on the theoretical ladder
was to consider oscillators arranged in a one-dimensional chain
or ring. As you might expect, now something new can happen,
something beyond pure synchrony: Waves of activity can
propagate steadily from one oscillator to the next. In fact, in
oscillator models with local coupling, waves turned out to be
more common than sync. That makes intuitive sense from our
own experience as fans at a football game: In a huge stadium, it’s
a lot easier to start “the wave” and keep it going than it would be
to get the whole crowd standing up and sitting down
simultaneously. When a few mathematicians tried to climb even
higher, to two-dimensional sheets of oscillators, they had to hold
on for dear life. The analysis became almost intractable. So when
Winfree decided to keep climbing—to go three-dimensional—no
one else followed.
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The reason for thinking about such questions, of course, is that
most real oscillators are coupled locally, not globally. The
intestine is a long tube of oscillating nerve and muscle cells,
segmented into rings that squeeze rhythmically, but
choreographed so that waves of digestion travel in the right
direction, from the stomach to the anus. Each ring of oscillatory
tissue is coupled electrically to its nearest neighbors on either
side, making the intestine e�ectively a one-dimensional chain of
oscillators. The stomach is something like a two-dimensional bag
of neuromuscular oscillators, in the sense that its cells churn
rhythmically and interact mainly with their neighbors along the
surface of the stomach wall. And the heart is a thick, three-
dimensional collection of dictatorial oscillatory cells (the
pacemaker cells in the sinoatrial node and their subordinates) and
subservient “excitable” cells that obey their commands; if
triggered by a strong enough electrical stimulus, they �re once
and return to rest, awaiting the next triggering pulse. When the
heart is functioning normally, the pacemaker generates a wave of
electrical excitation that spreads along specialized conduction
�bers to the pumping chambers (the ventricles), causing them to
contract and pump blood to the rest of the body.

In pathological cases, however, the excitable cells can mutiny
and sustain a wave of their own, a rotating electrical tornado that
fends o� the incoming signals from the pacemaker. Cardiologists
had known for decades that such “rotating action potentials,” or
“circus movements,” could lead to tachycardia (abnormally fast
heartbeat) and then degenerate into the lethal arrhythmia called
ventricular �brillation, where the heart muscle writhes helplessly,
twitching and quivering but not pumping any blood. Every year,
hundreds of thousands of apparently healthy people—people with
no prior history of heart disease—die suddenly when their hearts
fall into this pernicious mode of organization. When Winfree
mentioned “‘moonlighting’ applications to cardiac muscle” in his
letter, he was referring to these strange electrical tornadoes. He
wanted to �nd out why they start, how they behave, and what
could be done about them. Once the basic science was
understood, he hoped, it should enable the design of de�brillators
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that are gentler than today’s crude devices, which burn the heart
in order to save it.

In 1981, nonlinear dynamics had certainly not advanced to the
stage where it could predict the behavior of such rotating waves
in three dimensions. There was no hope of calculating their
evolution in time, their lashing about, their swirling patterns of
electrical turbulence. Even if the calculations were possible
(assisted by a supercomputer, perhaps), any such attempt would
be premature, since one wouldn’t know how to interpret the
�ndings. In fact, no one even knew what a mug shot of one of
these shadowy villains might look like. (They’d never been seen
directly by cardiologists.) So Winfree felt that the �rst step was to
learn how to recognize them, to anticipate their features in his
mind’s eye; he would worry about their modus operandi later.

For the study of shapes in three dimensions, a coarser
mathematics was needed, one that didn’t care about time but
only about space. When Winfree mentioned “topol. puzzles,” he
was referring to the branch of mathematics called topology, the
study of continuous shape, a kind of generalized geometry where
rigidity is replaced by elasticity. It’s as if everything is made of
rubber. Shapes can be continuously deformed, bent, or twisted,
but not cut—that’s never allowed. A square is topologically
equivalent to a circle, because you can round o� the corners. On
the other hand, a circle is di�erent from a �gure eight, because
there’s no way to get rid of the crossing point without resorting to
scissors. In that sense, topology is ideal for sorting shapes into
broad classes, based on their pure connectivity. Winfree’s plan
was to use topology to classify the kinds of waves one might
encounter in three-dimensional �elds of excitable cells. Knowing
what was possible, he’d know what to look for in later
experiments and would have a hope of recognizing what would
otherwise seem like bizarre, alien structures.

When I arrived at Winfree’s lab on a muggy day in June 1982,
he was engrossed in some paperwork, sitting alone at a lab bench
with his shirt wide open. I was a little embarrassed by the
informality—my dad had accompanied me on the cross-country
drive from Connecticut to Indiana, and this was his �rst look at
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my new hero—but Winfree disarmed us with his unbuttoned
friendliness. Soon my dad took his leave, and it was just Winfree
and me alone in his lab, with its beakers and Bunsen burners and
razor blades everywhere. (I later found out that razor blades were
his tool of choice for cutting. He’d happily shout “Zzzzupp!”
whenever he wielded one to slice a piece of wire or millipore
�lter paper.)

The lab was quiet. No grad students or postdocs. But I was
prepared for that—in earlier correspondence, when I’d asked who
else would be working with us, Winfree wrote back, “Now I could
make up tales about the other students + co-workers. But truth
to tell, I have none. Maybe I am away too much to form
relationships, maybe I have body odor, dunno… but population
density = 1 in my lab. You will be a singular event. Does that
undermine your con�dence?”

We had only three months to work together, so I needed to
learn quickly. Winfree felt I should get my hands dirty: no math
or computers for a while. My �rst project was an experiment on
what Winfree called Zhabotinsky soup, a chemical reaction that
supports waves of excitation remarkably like the electrical waves
that trigger the heartbeat. But it’s much simpler than a real heart
—it’s not even alive—and it has no muscles or motion of any
kind. It’s an idealized arena for exploring excitable wave
propagation in its purest form. In that way, it plays the same role
for heart waves that fruit �ies play for genetics: a convenient
simpli�cation that captures the essence of more complicated
phenomena.

Normally, the most amusing outcome you can hope for in a
chemistry experiment is a pu� of smoke or a noxious odor. In
comparison, Zhabotinsky soup o�ers nonstop entertainment.
When brewed according to its original recipe, it acts like a
spontaneous oscillator, the chemical analog of pacemaker cells. It
changes colors back and forth, rhythmically alternating between
sky blue and rusty red dozens of times, before eventually relaxing
to equilibrium about an hour later. At the molecular scale, the
performance would appear even more impressive, if only we
could see it: trillions of coupled oscillators, hoo�ng in perfect
sync, the largest line dance ever assembled.
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In its new, more subtle recipe, the reaction is excitable. At �rst
it looks disappointingly inert. The oscillations are gone. But if you
pour a thin layer of the red soup into a petri dish and then prick
it with a silver wire or a hot needle, it suddenly launches a blue
circular wave that expands and spreads like a grass�re. This is a
chemical wave, a pulse of propagating excitation in which the
reaction switches from a reduced state to an oxidized one. Once
the wave has passed, the reaction reverts to quiescence and turns
red again, just as grass eventually grows back after a grass �re.
(This analogy is not perfect, however. The chemicals recover
more rapidly than the prairie; a second wave can follow right
behind.)

Chemical waves are completely di�erent from the waves
studied in traditional physics courses, like sound waves or the
ripples on a pond. When a chemical wave spreads by di�usion,
the surface of the liquid does not bob up and down. It remains
motionless. What moves is a pattern of excitation, a kind of
chemical contagion. Nor do these waves weaken like sound or
ripples as they travel away from their origin. Each patch of the
medium provides a fresh source of energy that refuels the wave,
preventing it from damping out.

Now suppose you detonate two chemical waves at two di�erent
points in the petri dish. The blue circles expand and creep toward
each other. When they collide, they do not interpenetrate or add
up: They annihilate. And they do so for the same reason that
onrushing grass �res snu� each other out: Neither can burn
through the other’s ashes. In this metaphor, the ashes correspond
to a region of exhaustion, a refractory zone in the wake of the
wave. The chemical medium needs time to recover before it can
become excited again.

In many ways, this chemical medium behaves like the human
sexual response. Sexual arousal and recovery depend on the
properties of nerve tissue, which, like Zhabotinsky soup, belongs
to a general class of systems called excitable media. A neuron has
three states: quiescent, excited, and refractory. Normally a neuron
is quiescent. With inadequate stimulation, it shows little response
and returns to rest. But a su�ciently provocative stimulus will
excite the neuron and cause it to �re. Next it becomes refractory
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(incapable of being excited for a while) and �nally returns to
quiescence. The parallels with chemical waves extend to action
potentials, the electrical waves that propagate along nerve axons.
They too travel without attenuation, and when two of them
collide, they annihilate each other. In fact, all of these statements
are equally true of electrical waves in another excitable medium:
the heart. That’s the beauty of this abstraction—the qualitative
properties of one excitable medium hold for them all. They can
all be studied in one stroke. The family resemblance among
Zhabotinsky soup, nerve tissue, and heart muscle persists right on
down to the structure of the mathematical equations that govern
their nonlinear dynamics. The analogy runs deep.

But Zhabotinsky soup o�ers a number of advantages, especially
for a beginning experimenter. No animals need to be sacri�ced.
There’s no confusing anatomy, like the intricate tangle of neural
networks or the twisted-�ber architecture of the heart muscle.
Best of all, the waves are visible to the naked eye and they move
slowly, so there’s no need for any elaborate recording equipment.
In contrast, the visualization of waves on the heart remains a
formidable technical challenge to this day, even for labs with
huge budgets, requiring voltage-sensitive dyes, multielectrode
arrays, and other state-of-the-art technology.

With the help of Zhabotinsky soup, scientists have begun to
unravel the secrets of wave propagation in excitable media. In
particular, it was in Zhabotinsky soup that a new kind of wave
was discovered: a rotating, self-sustaining wave shaped like a
spiral. Although its geometry is graceful, its consequences are
destructive. Rotating spiral waves on the heart are the culprits
behind tachycardia and, in the worst case, ventricular �brillation
followed by sudden cardiac death.

The discovery of Zhabotinsky soup and its remarkable spiral
waves is a tale of dogma, disappointment, and ultimate
vindication. Of course, Zhabotinsky soup is not its real name—
that’s just what Winfree always called it. Today it’s known as the
BZ reaction, for Belousov and Zhabotinsky, the Russian scientists
who invented it and re�ned it, respectively.
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In the early 1950s Boris Belousov was trying to create a test-
tube caricature of the Krebs cycle, a metabolic process that occurs
in living cells. When he mixed citric acid and bromate ions in a
solution of sulfuric acid in the presence of a cerium catalyst, he
observed to his astonishment that the mixture became yellow,
then faded to colorlessness after about a minute, then returned to
yellow a minute later, then became colorless again, and
continued to oscillate dozens of times before �nally reaching
equilibrium after about an hour.

Nowadays it comes as no surprise that chemical reactions can
oscillate spontaneously; such reactions have become a standard
demonstration in chemistry classes. But in Belousov’s day, his
discovery was so radical that no one would believe it. It was
thought that all solutions of chemical reagents must go
monotonically to equilibrium, because of the laws of
thermodynamics. Journal after journal brushed o� Belousov’s
paper. One editor even salted his rejection letter with a snide
remark about Belousov’s “supposedly discovered discovery.”

Dejected, Belousov resolved never to share his breakthrough
with his chemist colleagues. He did publish a brief abstract in the
obscure proceedings of a Russian medical meeting, but hardly
anyone noticed it until years later. Nevertheless, rumors about his
amazing reaction circulated among Moscow chemists in the late
1950s, and in 1961 a graduate student named Anatol Zhabotinsky
was assigned by his adviser to look into it. Zhabotinsky con�rmed
that Belousov had been right all along, and brought this work to
light at an international conference in Prague in 1968, one of the
rare occasions that Western and Soviet scientists were allowed to
meet. At that time there was fervent interest in biological and
biochemical oscillations, and the BZ reaction was seen as a
manageable model of those more complex systems.

The analogy to biology turned out to be surprisingly close. In
early 1970, A. N. Zaikin and Zhabotinsky found propagating
waves of excitation in thin, unstirred layers of BZ reaction. The
waves resembled concentric circles, and they annihilated upon
collision, just like electrical waves in neural or cardiac tissue.
They even seemed to emanate from something analogous to
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pacemakers, randomly scattered points that belched waves
spontaneously.

After learning of this work, Winfree wrote to Zhabotinsky
(whom he’d met two years earlier as a fellow grad student at the
Prague conference) to ask whether he’d ever seen any other wave
patterns besides concentric rings. Winfree had observed spiral
waves in his own lab experiments on a certain kind of fungus, but
that was a far more complex system composed of living creatures
with circadian clocks. He wondered if spirals could also occur in
Zhabotinsky’s much simpler chemical system. He doubted it on
mathematical grounds; he thought he could prove that the waves
had to be closed rings. But still no reply from Zhabotinsky. The
mail from the Soviet Union was maddeningly slow in those days,
especially between scientists (national security agencies at both
ends were probably busy steaming open the envelopes). Winfree
couldn’t bear the suspense. He concocted Zaikin and
Zhabotinsky’s recipe for himself, and sure enough, spirals popped
up everywhere. Winfree had no way of knowing it, but
Zhabotinsky had also seen them in his 1970 thesis work, and
Valentin Krinsky in Puschino had anticipated them in any
excitable medium, heart muscle included. Spiral waves are now
recognized to be a pervasive feature of all chemical, biological,
and physical excitable media.

Boris Belousov would be pleased to see what he started.
In 1980, he, Zhabotinsky, and three other scientists were

awarded the Lenin Prize, the Soviet Union’s highest medal, for
their pioneering work on oscillating reactions. But it wasn’t much
consolation—Belousov had died 10 years earlier.

The most striking thing about spiral waves is that they seem to
be alive. They’re self-sustaining. They don’t need pacemakers: A
spiral wave is its own pacemaker. If you watch one in a thin layer
of excitable BZ reaction, it looks like a perpetual pinwheel,
chasing its tail and regenerating itself endlessly.

In a way, the rotation is merely incidental. More
fundamentally, the wave is propagating, advancing perpendicular
to itself at each point along the wavefront. The confusion occurs
because of a quirk about spiral geometry: Propagation looks like
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rotation. (Think of the optical illusion seen on old barbershop
poles. The helix painted on the rotating pole seems to be
propagating upward. But of course it’s not moving up at all; it’s
merely turning along with the pole. Here rotation masquerades as
propagation—the converse of the same e�ect in spiral waves.)

Nevertheless, there is a sense in which the rotation of a spiral
wave is real. Each point in the surrounding medium oscillates
periodically; it’s re-excited whenever the wave passes through. So
every point in the petri dish cycles through the familiar stages of
excitation, refractoriness, quiescence, and then re-excitation.
What’s new here is that the spiral wave has created an oscillation
that’s structured in space as well as time. Instead of lockstep
synchrony—the spatial uniformity that Belousov saw in his
earliest experiments, where the whole beaker changed color at
once—the oscillation is now like “the wave” initiated by the fans
at a football game, which circulates around the stadium as people
stand up and sit down at just the right time.

For an even closer analogy, imagine a ring of a thousand
dominoes carefully arranged on the �oor. Suppose that we have
enlisted the help of a speedy assistant who agrees to reset any
domino immediately after it has fallen. We tip the �rst domino,
and a wave of toppling begins to propagate around the ring. The
assistant follows close behind, furiously resetting the dominoes.
Here a tipping domino corresponds to the excited state, a fallen
one is refractory, and an upright one is quiescent. Such a wave
will circulate endlessly, or until the assistant collapses.

A biological version of the same experiment was done by the
physiologist A. G. Mayer in 1906 with the help of a jelly�sh. He
fashioned a ring of neuromuscular tissue from the rim of the
jelly�sh’s umbrella-shaped dome, and then electrically stimulated
it at one point, taking care to allow wave propagation in one
direction only. The neural impulse circulated for six days,
executing about half a million cycles.

So it’s clear that waves can circulate persistently around one-
dimensional loops of excitable media. But there’s a problem with
extending the same ideas to two dimensions, the important case
for spiral waves. In the discussion above, we implicitly assumed
that the medium had recovered from its refractory period by the
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time the wave returned. That’s a valid assumption if the loop is
big enough or if the wave speed is slow enough. But near the
center of a spiral wave, this assumption breaks down: The loop
traversed by the excitation has become too small.

The upshot is that the central core of the spiral does not
oscillate like the rest of the medium. It doesn’t display rhythmic
variations in color, or peaks and troughs in light intensity, or any
other sign of oscillation. The cycle amplitude drops to zero. Such
a point is called a phase singularity, meaning that the phase of
the surrounding oscillation cannot be sensibly de�ned there.
Phase becomes ambiguous. This puzzling situation is analogous to
what happens at the North and South Poles. At those singular
points on the surface of the Earth, all the time zones converge
and the cycle of day and night breaks down. The sun neither rises
nor sets; it merely circles along the horizon. So it’s senseless to
ask what time it is at the poles. It’s all times, and no times.

But for a spiral wave, the phase singularity is more than a point
of remote geographical interest. It’s the engine that drives the
wave. Amazingly, as long as the core is intact, the entire spiral
wave can regenerate itself, no matter what damage is done to its
outer arms. And spiral waves are tough to eradicate for another
reason: They emit waves almost as fast as the medium will allow.
So they are able to fend o� other incoming waves, such as the
concentric circles launched by distant pacemakers. The
encroaching waves are annihilated in collisions with the spiral
arms. They can make no headway. On the contrary, the faster
spiral waves inexorably advance on the slower pacemakers,
usurping their territory and eventually snu�ng them out. That’s
why, in the long run, a dish of BZ reaction always looks like a
paisley pattern �lled with spirals, with no circular waves in sight.
Only one spiral can resist another.

Here we see a case of spontaneous order, pure and simple. Start
with a soup of chemicals that happens to be excitable. Then touch
it with a silver wire and slosh it around to set up a random
pattern of excitation. No structure, just a mess, and yet out of it
emerges a paisley. There’s nothing mystical about it. The pattern
follows from the laws of excitable media, and those laws in turn
come from nonlinear dynamics.
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By playing with Zhabotinsky soup in Winfree’s lab for a few
days, I picked up the basic facts about spiral waves. For my next
task, Winfree suggested that I try to reproduce an experiment
about a new kind of spiral wave that had recently been submitted
to Nature. After a few weeks of failure, it became apparent to
Winfree that I was an experimental clod (no news to me of course
—such ineptitude takes years of re�ning).

Fortunately, Winfree’s main goal for the summer was in a
completely di�erent direction. As he mentioned in his letter, he
wanted to work on “puzzles about 3-D twisted + knotted waves
in Zhabotinsky’ soup.” The questions were: What are the three-
dimensional generalizations of spiral waves? What do they look
like? Can we visualize them? And what are the mathematical
rules governing their allowed shapes?

He’d already made a good start. Soon after his discovery of
two-dimensional spiral waves in 1970, he imagined what would
happen if he took a thin layer of BZ reaction harboring a �at
spiral and then progressively deepened the layer. Like a bas-
relief, the spiral would rise into the third dimension and sweep
out a continuous stack of spirals—a surface shaped like a scroll.

Meanwhile, the singular point at the core would elongate to a
singular �lament at the edge of the scroll. And just as a spiral
wave rotates around its core, a scroll wave must rotate around its
�lament.

A rotating scroll wave: Science had never seen anything like it.
It was not easy to �nd analogies. A scroll wave is a chemical
tornado. Yes, except that the liquid remains motionless. What
moves is a wave of chemical activity, a three-dimensional vortex
of spreading excitation. Furthermore, tornadoes reach from
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the clouds to the ground—but where do scroll waves end?
Winfree convinced himself that they could not just stop
somewhere in the middle of the liquid. They would either have to
terminate on the boundary—the walls of the beaker, or the air-
liquid interface at the top—or maybe they didn’t have to end at
all. In other words, a scroll wave might bite its own tail and close
on itself. Instead of a tornado, it would be more like a smoke
ring.

This image captivated Winfree. Do such “scroll rings” really
exist? In 1973 he proved that they did. His experiment was
ingenious. Instead of the usual beaker full of liquid BZ reaction,
he prepared a tall stack of porous nitrocellulose �lter papers
saturated with the same chemicals. After setting up what he
thought were the right conditions to conjure a scroll ring, he let
the reaction proceed and then suddenly �xed it chemically,
capturing the telltale pattern in a state of suspended animation.
To examine the specimen, he sliced the stack into thin layers, like
a microscopist preparing slides of an exotic organism, and then
reconstructed it slice by slice on sheets of nonre�ecting glass. The
specimen turned out to be just as expected: a doughnut-shaped
wave with a spiral cross section.

But then Winfree wondered if other kinds of scroll rings could
exist. Could scroll waves be twisted through a whole number of
turns before closing? Belts can twist in this way: Why not scroll
rings? Or could they be tied in knots? Could rings link through
one another, like bracelets or chain mail? As he considered the
specter of an in�nite zoo of scroll rings, linked and twisted and
knotted in diverse ways, Winfree soon discovered that one of the
hypothetical beasts was forbidden.
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Using a theorem from topology, Winfree proved that a twisted
scroll ring was impossible, at least as a solitary entity. Its
structure was self-contradictory. If the ring were twisted, it
automatically had to be threaded by another singular �lament,
and that meant that the original ring was not alone after all. The
topological theorem had unveiled a second scroll, unforeseen but
guaranteed to be linked through the �rst. With further e�ort,
Winfree could show that although an isolated twisted scroll ring
was forbidden, a mutually linked pair was not. It seemed to be a
perfectly viable structure.

The implication was tantalizing: Scroll ring geometry was
lawful. Some con�gurations were admissible, while others were
not. There were rules waiting to be discovered.

The �rst order of business was to picture what twisted scroll
rings would look like. Winfree’s abstract topological argument
implied that a twisted scroll ring had to be threaded by another
singular �lament, but neither he nor I could picture how the
entire structure—the twisted scroll plus its additional threading
singularity—would �t together globally. In fact, when Winfree
had once tried to hand sketch it years earlier, he accidentally
produced a nonsense picture in the style of Escher, like the one in
which zombies are climbing four �ights of stairs that impossibly
lead back to the bottom landing.

But now everything would be di�erent. This was the modern
era—1982— and we had Apple computers. The computer could
draw the surface for us; we just had to tell it what to draw. My
job was to write a computer program that would calculate the
surface by brute force. The idea was simple: The twisted scroll is
nothing more than a circle of spiral ribs, each of which is cocked
slightly compared to its neighbors. So I told the computer to
calculate a bunch of points on a spiral, then copy and advance
that entire spiral one notch around the circle, and twist it by one
notch at the same time. Do this over and over, until the spiral
returns to the starting position, having made one orbit around the
circle and one full twist. The only tricky thing was, how long
should each spiral rib be? That is, how many turns should it
have? Here chemistry gives the answer: The spiral wave keeps
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going until it bangs into another one. Portions of the colliding
spirals beyond that should be erased, because they would have
annihilated each other (as colliding waves do in excitable media).

As requested, the Apple IIe spat out a table of a few hundred
numbers, representing a meshwork of points on the twisted scroll
surface. Now all we needed to do was run those numbers through
a graphics program, and it would �nally unveil the twisted scroll
ring. I revved up the software that Winfree had invested in—Bill
Budge 3D Graphics System—and we held our breath. Hmmm. The
pictures turned out to be too coarse—not enough mesh points.
Unfortunately, Bill Budge’s system couldn’t take anymore—it was
already groaning under our demands. Our last resort was to
connect the dots by hand. We printed out the clunky pictures, and
used colored pencils to embellish the hard copy, hoping to see
something stunning. No luck. The unveiling would have to wait.

Meanwhile Winfree and I started on the more theoretical
questions, searching for the rules of scroll-wave topology. With
no clear direction to go, we felt like we needed better intuition.
Winfree kept big blobs of red and green dental wax in his lab,
along with orange molding clay and an endless supply of pipe
cleaners. All of these were indispensable for making sculptures of
knots and links and twisted surfaces.

That was how we worked. While I sat at the computer or the
lab bench, molding dental wax and trying to visualize shapes
never seen before, he would draw scroll-wave pictures on an
artist’s sketchpad, always in Magic Marker, and then zzzzupp the
good ideas with a razor and tape them into his lab notebook.
Hours would pass. Occasionally one of us would interrupt the
silence with what felt like an insight. Then we would struggle to
explain the vision, and clarify it, and check it for sensibility,
always grasping for words because three-dimensional geometry is
so elusive and di�cult to convey. But eventually we always
understood each other, and together we started to hammer the
ideas into the glimmerings of a theory. These mathematical
conversations were intense but exhilarating. For me, it felt like
having a second brain, only a much better one. This went on all
day long, day after day. Usually we ate lunch together, and on
sunny days we’d sit by the pool at his apartment, while he
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sketched on his pad and I pictured surfaces in my head. By ten at
night, one of us usually had a headache and we’d quit.

By August, we had �gured out the rules for all possible
con�gurations of linked and twisted rings. But knots were hard.
We didn’t know any rules for them. So we started with the
simplest case: a single scroll ring, with a trefoil knot tied in it. (To
make a trefoil, take a shoelace, tie an overhand knot in it as if
beginning to tie your shoe, and then fuse the tips together. The
resulting curve is a knotted loop that looks something like the
silhouette of a three-leaf clover.)

We wondered whether a trefoil-shaped scroll ring could make
mathematical and chemical sense. If it were sitting in a beaker of
BZ reaction, would it always have to be linked by other rings, or
could it exist on its own, if it were also twisted in the right way?
And if so, how much twist was right? What would the waves
emanating from it look like?

To make these abstractions more palpable, I rolled some dental
wax into long, stringy pieces, and then bent them and squished
their ends together until they looked like a trefoil. That was
supposed to be the singular �lament, the source and inner edge of
the scroll wave. Next came the challenge of making a wax model
of the scroll-wave surface itself. If the singular �lament is like the
long, thin wooden dowel of a scroll, the wave is like the
parchment that unrolls from it. It’s a surface that begins and ends
at the dowels, while curling tightly around them at the same
time. Fortunately, the curling was inessential, in a mathematical
sense: It could always be removed by pulling the scroll wave taut
(imagine the wave is made of spandex). What’s crucial about the
scroll wave is that it begins and ends on the �lament. It’s a
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surface that has no other boundary. With another color of wax, I
began developing the wave surface, one patch at a time, always
starting along the �lament and working my way in, until all the
patches merged into one continuous sheet.

The next question was, Does that sheet have one side or two?
That might sound crazy: What is a one-sided surface? The most
famous example is a Mobius strip, a ribbon of paper that is given
half a twist and then closed to make a ring. If you start with your
�nger somewhere, and then trace around the loop, your �nger
eventually comes back on the other side of the paper (though
that’s the wrong way to say it—there is no “other” side; the front
and back are the same). In that sense, the Möbius strip has only
one side.

If my wax surfaces were like this, it would be bad. Chemistry
dictates that the scroll wave has to be a two-sided surface,
because of a basic fact about excitable media: Waves propagate
perpendicular to themselves, burning into quiescent territory and
leaving refractory ashes behind. That means that the wave has
both a front and a back, but a Möbius strip doesn’t. Or to say it
another way, imagine that you paint one side of the Möbius strip
red—the side that’s supposed to burn forward—and then paint
the other side black—the side where the ashes are. But they’re
the same side, so you’ll end up painting black on top of red. The
whole notion of forward propagation makes no sense if the wave
is one-sided.

There are various ways of drawing a trefoil. Curiously, some
lead to one-sided surfaces (and are therefore forbidden) while
others give the desired two-sided surfaces, providing candidates
for the shape of the wavefront. After a bit of playing around, I
realized that all acceptable surfaces were topologically
equivalent; with the appropriate bending and stretching, each
could be deformed continuously into any of the others. So there
was only one right answer, and here it was. This is what the
scroll-wave surface for a trefoil would have to look like.
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The remaining question was whether the resulting scroll would
be twisted, and if so, to what extent. To measure the twist
experimentally, I laid a piece of thread along the wax surface,
always running parallel to its outer edge but just a millimeter
inside it, and continued it all the way around the surface until it
closed into a loop. That loop also formed a trefoil knot, just like
the original �lament, and together they de�ned the two edges of
an imaginary ribbon.

This ribbon reminded me of something in my senior thesis in
college, which had dealt with the topology of supercoiled DNA
molecules. A key concept there was a mathematical quantity
called the linking number of DNA, which, roughly speaking,
measures how many times one strand of DNA winds around the
other, above and beyond the winding implied by the double helix
itself. It depends on both the twist in the DNA and its three-
dimensional path through space. Now, for scroll waves, the
linking number of the ribbon would contain all the important
information about the twist of the wave, as well as the shape of
its knotted �lament. When I calculated the linking number, it
came out to be zero. Beautiful—it was that simple. Trefoil-shaped
scroll waves can exist, and they always come with zero twist.
Later we proved that the same must be true for any knot, not just
a trefoil.

When the summer ended, I moved to Boston to begin graduate
school at Harvard, but Winfree and I kept in touch. We had
papers to write, and we still had two lingering puzzles to solve. In
the winter of that year, I visited him at his parents’ home in
Longboat Key, Florida, where we �nally solved the problem of
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scroll-wave topology in its most general form. We proved that an
arbitrary number of scroll rings could be linked, twisted, and
knotted in diverse ways, as long as they satis�ed a single
equation: The linking number of each ring’s ribbon, plus all its
mutual linkings with the other rings, must sum to zero. Otherwise
the structure was forbidden. With tongue in cheek, we called this
the exclusion principle, by analogy with the Pauli exclusion
principle in chemistry, which constrains the atomic structure of
the elements and gives rise to the patterns in the periodic table.
For us, the “elements” were the allowed con�gurations of scroll
rings and knots, ranked in order of increasing complexity.
“Hydrogen” was a single scroll ring, with no knots or twists in it.
“Helium” was two rings, linked through each other and twisted
once.

A few months later, we spent the summer at Los Alamos
National Laboratory, working on the world’s fastest
supercomputer. (It was a Cray-1, but the local bomb makers had
a more ominous name for it: the “X machine.”) With the help of
Mel Prueitt, the resident expert on computer graphics, we �nally
produced pictures of a twisted scroll ring that clearly unveiled the
gnarled singularity that, on abstract mathematical grounds, we
knew must thread through its center. Winfree and I both gasped
when we saw it. It was like �nally meeting a beloved pen pal
from another country, whose face we had only dimly imagined.

In the 20 years since then, there’s been an explosion of interest
in spiral and scroll waves. Chemists have made much more
careful measurements of the BZ reaction, using computer-aided
video recording, and they’ve discovered that spirals don’t always
pivot about one point—they often meander. The inner tip of a
spiral wave can rotate in circles, or trace out �ower patterns, or
even wander chaotically. Mathematicians have jumped on those
results, eagerly explaining them as instabilities stemming from
nonlinear dynamics.

In all of this, the Holy Grail remains cardiac arrhythmias. A
number of cardiologists and physiologists have con�rmed
experimentally that spiral and scroll waves can cause tachycardia,
though the route to ventricular �brillation remains controversial.
The most likely suspects are a meandering spiral wave, the
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disintegration of one spiral into many, and the thrashing
instabilities of a three-dimensional scroll wave. Several teams of
cardiologists and mathematicians are working intensely on this
problem, and the true culprit could be identi�ed soon.

During all this time, Winfree has relentlessly pursued scroll
waves and their possible role in cardiac arrhythmias. He remains
consumed with visions of knots and links; but now he is
concerned with their dynamics, no longer the frozen geometry
that we explored together. Equipped with the immense power of
today’s supercomputers, he and his students have simulated how
linked and knotted scroll waves would move. Their �laments �ail
about, writhing violently, as waves from part of one �lament slap
against another. Yet many of these structures turn out to be
remarkably stable; they do not spontaneously untie themselves. In
that sense, they are fundamental, like the elementary particles in
quantum physics. They are the basic localized solutions of the
�eld equations for excitable media. They have to be important.
That’s why Winfree will never give up on them.

He has also sought (but not yet found) a simple law that might
explain how the �laments slither and writhe. Even if there were
an elegant answer, no one knows whether it would matter for
arrhythmias: In cardiac muscle so far, only the most elementary
scroll wave, a straight scroll with no knots or links, has been
found. Undaunted, Winfree has returned to the lab bench and
invented a new kind of optical tomography for the BZ reaction, in
hopes of capturing a snapshot of his elusive particles. He has been
showered with well-deserved recognition: a MacArthur genius
award in 1984, the Einthoven Award in cardiology in 1989, and
the Norbert Wiener Prize in applied mathematics in 2000. His son
Erik, who was a prepubescent computer whiz when I knew him,
recently won a MacArthur prize too—the �rst pair of father and
son winners.

In terms of his contribution to coupled oscillators and sync,
Winfree taught us what wonders exist when oscillators are
allowed to mingle in space, how they organize themselves around
points of timelessness, spawning spirals in two dimensions and
scroll waves in three. In the years to come, scientists would begin
exploring an even more general form of connectivity, with
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oscillators coupled not to their neighbors in ordinary space, but
to their neighbors in a mysterious and powerful kind of network
—the kind that connects us all by just six degrees of separation.
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• Nine •

SMALL-WORLD NETWORKS

IN JOHN GUARE’S 1990 PLAY SIX DEGREES OF SEPARATION, a character
named Ouisa ruminates about the mystery of life in a small
world:

I read somewhere that everybody on this planet is separated by only six
other people. Six degrees of separation. Between us and everybody else on
this planet. The president of the United States. A gondolier in Venice. Fill
in the names. I �nd that A) tremendously comforting that we’re so close
and B) like Chinese water torture that we’re so close. Because you have to
�nd the right six people to make the connection. It’s not just big names.
It’s anyone. A native in a rain forest. A Tierra del Fuegan. An Eskimo. I am
bound to everyone on this planet by a trail of six people. It’s a profound
thought…. How every person is a new door, opening up into other worlds.

A few years later, on a snowy winter afternoon in Reading,
Pennsylvania, three inebriated fraternity brothers at Albright
College came to a similarly cosmic conclusion: Every American
movie actor can be connected to Kevin Bacon (the pug-nosed
dancing rebel in Footloose and star of the cult favorite Tremors, a
�lm about giant carnivorous worms) in four steps or less. Charlie
Chaplin, for instance, has a Bacon number of 3. He was in A
Countess from Hong Kong with Marlon Brando, who was in
Apocalypse Now with Laurence Fishburne, who was in Quicksilver
with Kevin Bacon. Suspecting they were on to something big, the
frat boys contacted the Jon Stewart Show, then a late-night talk
show on MTV. They were invited to play a round on the air, after
which the game spread over the Internet and triggered a
nationwide craze among college students. The Oracle of Bacon—a
Web site that automatically computes the shortest possible chain
of costars between Kevin Bacon and any other �lm actor—was
chosen by Time magazine as one of the top 10 Web sites of 1996.
At the height of the craze it was receiving 20,000 hits a day.
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Other parlor games soon followed. In 1999, “Six degrees of
Marlon Brando” broke out as a fad in Germany, as readers of Die
Zeit tried to link a falafel vendor in Berlin with his favorite actor
through the shortest possible chain of acquaintances. And during
the height of the Lewinsky scandal, the New York Times printed a
diagram of the famous people within “six degrees of Monica,”
from Bill Clinton and Saddam Hussein to O.J. Simpson and, of
course, Kevin Bacon.

Silly as all this seems, there is something serious going on here.
As a society, we have become obsessed with connectedness. We
are struggling to make sense of the complex networks that have
recently in�ltrated our lives, networks whose reach is immense,
whose structure we can only dimly perceive, and whose
functioning bewilders us. We’re confused about the consequences
of globalization, disoriented by the Web, worried about contagion
in the �nancial markets, and terri�ed of al Qaeda. Sometimes the
fears prove unfounded—Y2K never set o� the catastrophic ripple
e�ect that pessimists predicted. But on August 10, 1996, a fault in
two electrical power lines in Oregon led, through a cascading
series of failures, to blackouts in 11 states and two Canadian
provinces, leaving about 7 million customers without power for
up to 16 hours. The Love Bug worm, one of the worst computer
attacks to date, propagated across the Internet on May 4, 2000,
and in�icted billions of dollars’ worth of damage worldwide.

Science itself re�ects the network zeitgeist. For example, with
the completion of the human genome project, the focus of
molecular biology has shifted from the discovery of new genes to
the analysis of gene networks. Traditionally, the genome has been
viewed as a blueprint for the construction of proteins, which in
turn act as the building blocks for the cellular structures and
molecular machines essential to life. But today we see that
metaphor as too static, too linear, a vestige of the assembly-line
mentality of an earlier era. Some of the most important genes
(the so-called regulatory genes) code for proteins that alter the
activity of other genes, turning them on or o�, forming circuits
and feedback loops. The genome starts to seem less like a
blueprint and more like a computer. The functioning of this
computer—and its malfunctioning when cells turn cancerous—
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will not be deciphered until we understand the logic of gene
networks.

Similarly, throughout the rest of science, researchers are only
now beginning to unravel the structure of complex networks,
from the nervous systems of simple organisms to the overlapping
boards of directors of the largest companies in the United States.
The size of these networks is often daunting: 30,000 genes in the
genome, millions of species in the terrestrial ecosystem, billions
of people on Earth, someday 10 billion pages on the Web. But the
problem is knottier than that. Even if we were given the complete
wiring diagram for any of these systems—a list of all the nodes
(genes, species, people) and the connections between them—we
wouldn’t know what to compute. The mass of data would be
overwhelming. Until we know what we’re looking for, the secrets
of complex networks will remain elusive.

What we need now are ideas: simple, organizing principles to
guide us through the morass of data. If history is any guide, the
most penetrating ideas will come from mathematics. By its very
nature, the mathematical study of networks transcends the usual
boundaries between disciplines. Network theory is concerned
with the relationships between individuals, the patterns of
interactions. The precise nature of the individuals is downplayed,
or even suppressed, in hopes of uncovering deeper laws. A
network theorist will look at any system of interlinked
components and see an abstract pattern of dots connected by
lines. It’s the pattern that matters, the architecture of
relationships, not the identities of the dots themselves. Viewed
from these lofty heights, many networks, seemingly unrelated,
begin to look the same.

In 1998, my former student Duncan Watts and I published the
�rst comparative study of complex networks from this point of
view. Our analysis revealed that whether the nodes in the
network are neurons or computers, people or power plants,
everyone is connected to everyone else by a short chain of
intermediaries. In other words, the “small world” phenomenon is
much more than a curiosity of human social life: It’s a unifying
feature of diverse networks found in nature and technology. Since
then, we and many other scientists have begun to explore the
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implications of small-world connectivity for the spread of
infectious disease, the resilience of the Internet, the robustness of
ecosystems, and a host of other phenomena.

The study of complex networks is only the next logical step in a
larger journey, the quest for a science of spontaneous order. The
quest thus far has taken us from the most primitive form of
coordinated behavior—a pair of identical rhythms in sync—
through ever more intricate choreographies in time and space:
from two oscillators to many, from identical oscillators to diverse
ones, from rhythms to chaos, from global coupling to local
interactions in space. The next step is to move to more general
kinds of connectivity, where neighbors are de�ned in an abstract
sense that need not be geographical. Just as the spatial coupling
between nonlinear systems spawned a new form of collective
behavior—self-sustaining spiral and scroll waves—that couldn’t
occur in simpler geometries, complex networks give rise to even
richer forms of self-organization. In fact, complex networks are
the natural setting for the most mysterious forms of group
behavior facing science today. If the day should ever come that
we understand how life emerges from a dance of lifeless
chemicals, or how consciousness arises from billions of
unconscious neurons, that understanding will surely rest on a
deep theory of complex networks. At the moment, such a theory
is almost inconceivable. But at least we know how to begin. We
need to master the principles of network architecture, to learn
how nature weaves her intricate webs. Fittingly, our �rst
excursion into this territory was by way of sync, on a detour from
what was supposed to be a study of crickets chirping in unison.

When I started teaching at Cornell in the fall of 1994, one of
my �rst chores was to administer a rite of passage known as the
qualifying exam. Four professors sit side by side in an otherwise
empty classroom, while a graduate student stands alone at the
blackboard, protected only by a piece of chalk. For a half hour,
we grill him with math questions. He’s supposed to think on his
feet, working out the answers in front of us. If he seems to be
handling a problem too comfortably, we stop him and move on,
escalating the di�culty, probing for soft spots.
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I was assigned to the applied math portion of the exam. We
were scheduled to test four or �ve students, one of whom was
Duncan Watts, a six-foot-two-inch Australian with a con�dent
smile and the physique of a Green Beret. He’d come to Cornell
because of his fascination with chaos theory. Back home he’d
majored in physics, where he was one of the top students at the
Defence Force Academy, and a �nalist for a Rhodes Scholarship.

The chair of the session nodded in my direction. “Professor
Strogatz will ask the �rst question.” I asked Duncan to solve
Laplace’s equation in a crescent-shaped region, using the method
of conformal mapping. The other professors glared at me.
Apparently that was not a topic that the students were expected
to have studied (which, being a newcomer, I had no way of
knowing). Duncan sputtered for a few seconds, saying something
about how he’d studied conformal mapping in college, though he
hadn’t thought about it for a while. Realizing my ga�e, I o�ered
to ask a di�erent question, but one of my colleagues seemed to
relish the rise in room temperature and said no, let’s see what he
does with this.

Step by step, Duncan felt his way through the problem, clearly
not remembering the standard way to solve it, but somehow
�nding a path to the right answer, almost as if by sheer
determination to hang on. He may have been �ustered, but he
never showed it. In fact, he gave the odd impression of having
fun.

That reaction made sense to me a few months later, when I
noticed a photograph of him posted on his o�ce door, showing
him hanging by his �ngertips on the face of Point Perpendicular,
a sea cli� in Australia that drops 70 meters straight down to the
ocean. I knew I’d just found my next Ph.D. student.

We began casting around for a suitable thesis project for him.
Maybe a problem about using chaotic lasers for private
communications, or one about oscillations in the vessels of the
lymph system. But neither lasers nor lymph really moved us.
After half a year of indecisiveness we were both feeling
frustrated.
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One day in the spring of 1995, I gave a lecture on �re�y
synchronization at the department of neurobiology and behavior,
where my colleague Ron Hoy and his students work on cricket
communication. I emphasized how little contact there’d been so
far between the theory of synchronization and any real biological
examples, and wondered if they could help, maybe by setting up
some experiments on the collective behavior of crickets. One of
the postdoctoral fellows, Tim Forrest, became excited; he had
been a math major in college and was now an expert in
bioacoustics. Yes, he said, he’d love to investigate how male
crickets manage to chirp together in vast choruses, in their
nightly e�ort to court females. He o�ered to catch some
“animals,” as he called them, and volunteered to devise a set of
experiments that would allow us to test our mathematical models,
or maybe even point us toward new ones.

Duncan liked the sound of this project and began meeting with
Tim every few days. Meanwhile, we fantasized about the
experiments we wanted to try. One dream was to measure the
songs of all the crickets simultaneously, to track their second-by-
second progress toward sync: something that had never been
done for �re�ies or circadian clock cells or any other collection of
biological oscillators. Another was to test for a phase transition,
long predicted by the models of Winfree and Kuramoto, but never
tested empirically. Our plan here was to alter the coupling
between the crickets systematically. At low coupling, when they
can hardly hear one another, the di�erence in their natural chirp
rates should prevent them from synchronizing. Like the runners
on the track who can’t stay together because they have too wide a
range of natural abilities, the fast crickets should drift away from
the slower ones if the coupling is too weak. The population would
lapse into cacophony. On the other hand, if we could gradually
increase the crickets’ mutual in�uence (by making their chirps
louder or longer, or by somehow making the crickets more
sensitive), the Winfree/Kuramoto theory implied we should see a
critical value of coupling, an abrupt transition where many
crickets would suddenly begin trilling in unison.

Even if we didn’t �nd a phase transition, we hoped to
document how mutual synchronization breaks out in a real
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population. Earlier experiments by one of Tim’s former advisers
had shown that an individual cricket adjusts to the calls of others.
Thus, if it hears a call just before it was planning to chirp, it shifts
its neural clock ahead by the necessary correction. Or if it hears a
chirp just after one of its own, suggesting that its behavior was
premature, its nervous system automatically corrects the clock to
�re a bit later the next time around. (In this way, the cricket
nervous system works very much like Huygens’s pendulum
clocks, with negative feedback producing the kinds of alterations
that foster synchrony.) If we could quantify the chirp rhythm of
many individual crickets in isolation, and describe how each one
modi�es its rhythm in response to the chirps of others, our
mathematics should be able to predict their communal behavior
over a wide range of conditions.

Tim built ingenious little soundproofed boxes, each to house
one cricket. Every box had its own tiny microphone for piping the
sound of its inhabitant’s chirp to other crickets, and one tiny
speaker for listening to incoming signals. This contrived
experimental design allowed us to control the interaction strength
—we could amplify the chirps or play them as softly as we
wished—and we could even control which crickets could hear
which, by hooking the boxes together in various patterns of
connectivity.

As Duncan pondered the possibilities, he began to think about
connectivity more generally. Out in the �eld, it wasn’t obvious
which crickets were listening to which. If anything, they seemed
to be scattered in the trees, forming no discernible pattern. A
male might attend only to his nearest competitors. Or maybe he
listened to all the others. It wasn’t even clear if the connectivity
mattered; maybe they’d synchronize in any case.

One day in January 1996, Duncan walked into my o�ce with
an o�beat idea—yet another change of direction for his research.
While daydreaming about connectivity, he suddenly remembered
something his father once said, about how we’re all just six
handshakes from the president of the United States. He wondered
if that were really true, and if so, what it meant about how the
world was connected.



235

Sure, I said, I’ve heard of six degrees of separation. It was a
math problem in disguise, waiting to be formulated.

But that’s not all, Duncan went on. Six degrees of separation is
related to what we’re trying to �gure out about the crickets.
Suppose a network of biological oscillators is connected in such a
way that everyone is a few handshakes apart. Does that a�ect
how the group will synchronize? Will it synchronize very fast and
very easily, because everyone is so tightly linked? Will the system
still show a phase transition as the coupling strength is increased,
like the Kuramoto model does?

Nobody knows about that, I told him, we never study those
kinds of networks. And that was his point. Oscillator theorists had
always assumed that their networks were perfectly regular, as
orderly as the atoms in a crystal. Win-free and Peskin and
Kuramoto had all built models with maximum connectivity, with
every oscillator coupled to every other. No network could be
more densely connected; no architecture could be simpler. In
later extensions of those models, mathematicians had laid the
oscillators end to end in a long chain, or positioned them
symmetrically at the corners of a square grid or a three-
dimensional lattice. Regular geometries like these were justi�able
for problems coming from physics and engineering; in arrays of
Josephson junctions, for example, the superconducting oscillators
are deliberately fabricated in neat rows and columns. Even in a
continuous medium like a beaker full of the Belousov-
Zhabotinsky reaction, the connectivity is still regular: The
chemicals di�use primarily to their nearest neighbors.

On the other hand, for the tangle of neurons in the brain,
where cells connect extensively to others nearby but also send
long-range �bers halfway across the cortex, grids and lattices
were clearly inappropriate. A better model of the geometry would
incorporate a looser, more relaxed kind of structure, a
hodgepodge of order and randomness, with clustered local
connections and haphazard global ones. Maybe the same was true
for crickets. Maybe there was a whole new class of oscillator
networks waiting to be analyzed.

I was skeptical. Coupled oscillators on regular grids were
already formidable; these new hybrid networks would be
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hopeless. But I liked Duncan’s initiative and didn’t want to sti�e
him.

As we began to bat his idea around, I started to appreciate his
larger point. The same issues were bound to arise for other kinds
of dynamical systems, not just coupled oscillators. Whenever
nonlinear elements are hooked together in gigantic webs, the
wiring diagram has to matter. It’s a basic principle: Structure
always a�ects function. The structure of social networks a�ects
the spread of information and disease; the structure of the power
grid a�ects the stability of power transmission. The same must be
true for species in an ecosystem, companies in the global
marketplace, cascades of enzyme reactions in living cells. The
layout of the web must profoundly shape its dynamics.

Yet theorists had typically skirted the issue of connectivity.
When they weren’t assuming unrealistically regular
arrangements, they lurched to the opposite extreme, modeling the
connectivity as totally random. For example, in 1969, the
theoretical biologist Stuart Kau�man proposed an idealized
model of gene networks in which each gene was regulated by the
products of two others, selected at random from the rest of the
genome: not because he believed it was really like that, but
because in 1969 nothing was known about how gene networks
were actually wired. The random assumption is a way of
throwing up one’s hands, a null hypothesis in the absence of any
information. Mathematical epidemiologists often resorted to the
same approximation; they’d assume that infected people mixed at
random with susceptible ones, even though for many kinds of
diseases (especially sexually transmitted ones), the network of
contacts couldn’t possibly be random. Like regular networks,
random ones are seductive idealizations. Theorists �nd them
beguiling, not because of their verisimilitude, but because they’re
the easiest ones to analyze.

By 1996, the twin �ctions of regular and random networks
were starting to look less plausible every day. Anyone sur�ng the
Web could sense it was both a pattern and a maze, where Web
pages link mainly to others on the same topic but occasionally
veer o� onto idiosyncratic byways. AIDS and Ebola demonstrated
that infectious diseases spread mainly within tight-knit
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communities, but also hitch rides on airplanes. So it was �tting
that Duncan was now proposing a trek into uncharted territory,
to the realm between order and randomness.

We began by trying to visualize what a network “in the
middle” might look like. The simplest approach is to take a
regular network and smoothly transform it into a random one
(somewhat like the Hollywood special e�ect of morphing one
face into another, as in Michael Jackson’s video Black or White).
For instance, halfway through the transformation, we would pick
half of the original connections in a network, delete them, and
replace them with an equal number of links strewn between
random pairs of nodes. The resulting network would still have the
same number of links as the original, but it would now be half
random, half regular. Or instead of rewiring half the links, we
could choose any other fraction between 0 and 1. By dialing in
any desired amount of rewiring, we could gradually tune the
network from 0 (the original, pristine network with no rewiring)
to 1 (a completely rewired, random mess). In between, the
network would be an adjustable blend of the two.

As a concrete example, consider 6 billion nodes arranged in a
circle. These nodes represent computers, neurons, people—
whatever the components of the network happen to be. Imagine
that each node is connected to exactly 1,000 neighbors: 500
nodes on its left, 500 nodes on its right. This is an extremely
ordered network, a beautifully symmetrical ring lattice. At this
stage the tuner is set to 0, the regular end of the spectrum. Now
slowly turn the knob up from 0 to begin the morph. A few links
break free from their moorings and redistribute themselves
haphazardly. As the metamorphosis continues, more and more
links change to random connections, eroding the symmetry of the
original ring lattice, while leaving part of its structure intact.

We introduced two statistics to quantify the network’s evolving
architecture. One of them, the “average path length,” formalizes
the intuitive idea of degrees of separation. To calculate it, take
any pair of nodes and count the number of links in the shortest
chain between them; then repeat for all other pairs of nodes, and
average the resulting chain lengths.
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For the pristine ring this calculation is easy, especially if you
picture the network as a society, where the nodes represent
people and the links represent friendships. This imaginary world
(“RingWorld”) is a bit like our own in one way—it too has 6
billion people—but otherwise it’s completely alien. Its inhabitants
are condemned to live in outlandishly regimented conditions,
with everybody standing shoulder to shoulder in an
astronomically huge circle. Let’s say then that each person is
forced to befriend the 500 people on his left, and the 500 people
on his right, but no one else. A world like this wouldn’t have six
degrees of separation; it would have a whopping 3 million.

To see why, consider the path length between you and the most
distant person on the ring, diametrically opposite you on the far
side. To reach him by the shortest chain, you’d send a signal out
to your 500th friend (the closest one to the target). From there,
the fastest path would again hop over all the intervening people,
out to that person’s 500th friend, and so on, leapfrogging around
the ring in chunks of 500 people. The entire journey requires 3
billion divided by 500 steps, which is 6 million steps. But that
was for the most distant possible target. For the closest target—a
person standing next to you—only one step is required. So on
average, the distance between you and a typical person is about 3
million handshakes, 3 million degrees of separation.

At the other end of the spectrum, when the morph is over and
the network has become totally random, the calculation is equally
straightforward. Now, remarkably, everyone is only four steps
from everyone else. The explanation has to do with exponential
growth. In a random world, if you know 1,000 people (on
average), and each of them knows 1,000 people, that means there
are 1 million (= 1,000 × 1,000) people within two steps of you,
1 billion within three, and 1 trillion—much more than the
world’s population—within four.

It’s tempting to extrapolate the same argument to our own
world, to explain how we could all be six degrees of separation
apart, but here the argument fails. It overlooks the fact that real
friendship circles overlap—that many of your friend’s friends are
your friends too, and are therefore being counted twice.
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For a hypothetical network that’s both sparse and totally
random, however, the calculation is valid, because the overlap of
friendship circles is negligible in this case. When you pick 1,000
people at random from a vast pool of 6 billion, and so do all your
friends, the chances of any overlap are only 1 in 6 million, as it
turns out. So there’s essentially no double counting. Such a world
would be bizarre, of course—you’d be just as likely to know a
peasant in the Himalayas, the Prince of Wales, or the person next
door. Your friends would be scattered across every continent and
class, every race and religion. In a world with no overlap, there’d
be no social structure, no families, no communities.

This argument highlights the importance of understanding the
concept of overlap more generally. The average amount of
overlap in a network is quanti�ed by a second statistic, the
“clustering,” de�ned as the probability that two nodes linked to a
common node will also be linked to each other (or in human
terms, the probability that friends of a friend are also friends of
each other). In the two extreme models discussed above, the
clustering can be shown to vary from a towering high of 0.75 for
the pristine ring to a subatomic low of 1 in 6 million for the
random net.

To arrive at the number 0.75, for example, you need to
recognize that you have virtually all the same friends as a person
standing right beside you on the ring (998 out of 1,000, to be
exact), so your overlap with that closest person is essentially equal
to 1. On the other hand, with your most distant friend, 500 steps
away on the ring, you share only about half the same friends
(they are the 499 people who happen to be sandwiched between
you both on the ring), so your overlap with that most distant
person is 499/1,000, which is essentially ½. For all your other
friends lying between the closest and farthest one, the overlap
changes smoothly from ½ to 1, yielding an average of ¾, which is
the 0.75 value for the clustering quoted above. Next, we can
apply similar but somewhat easier reasoning to calculate that if
the connectivity were random, the clustering would equal 1 in 6
million; have fun working it out if you’re curious. But please
don’t get lost in these details. The crucial point here is that, just
like the average path length, the clustering plunges almost a
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millionfold as we morph the network from one end of the
spectrum to the other.

Although the two statistics drop by a similar factor, they track
very di�erent aspects of the network’s architecture. Average path
length re�ects the global structure; it depends on the way the
entire network is connected, and cannot be inferred from any
local measurement. Clustering re�ects the local structure; it
depends only on the interconnectedness of a typical
neighborhood, the inbreeding among nodes tied to a common
center. Roughly speaking, path length measures how big the
network is. Clustering measures how incestuous it is.

So far we have concentrated on the traditional ends of the
network spectrum. But we’re still in the dark about what happens
in the middle. The endpoints alone tell us that the morph
somehow shrinks the ring enormously and destroys its clusters.
What remains unknown is whether the transition is gradual or
abrupt. Neither Duncan nor I could see how to solve that problem
by pure mathematics, so we used a computer to simulate the
morph on networks of large but manageable size, starting from
pristine rings with 1,000 nodes and 10 links per node. To chart
the structural changes in the middle ground, we graphed both the
average path length and the clustering as functions of the
proportion of links that were randomly rewired.

What we found amazed us. The slightest bit of randomness
contracted the network tremendously. The average path length
plummeted at �rst—with only 1 percent rewiring (meaning that
only 1 out of every 100 links was randomized), the graph
dropped by 85 percent from its original level. Further rewiring
had only a minimal e�ect; the curve leveled o� onto a low-lying
plateau, indicating that the network had already gotten about as
small as it could possibly get, as if it were completely random.
Meanwhile, the clustering barely budged. With 1 percent
rewiring, the clustering dropped by only 3 percent. Connections
were being yanked out of well-ordered neighborhoods, yet the
clustering hardly noticed. Only much later in the morph, long
after the crash in path length, did clustering begin to drop
signi�cantly.
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These results have an intuitive explanation. At the beginning of
the morph, the �rst few random links act as shortcuts—bridges
between parts of the network that would otherwise be remote.
Their disproportionate impact comes from a powerful nonlinear
e�ect: Not only do they pull two nodes together; they pull entire
worlds together. For example, I like to play chess on-line at the
Internet Chess Club, where I’ve become friendly with Emilo, the
editor of a magazine in Holland. Thanks to that shortcut, I’m
much closer to him of course, but also to thousands of other
people in Holland—all his friends, and friends of those friends—
than I was before. And though my friends don’t realize it, all of
them are now closer to him and his friends, through the single
shortcut we forged. That one bridge does a lot of work.

In our simulations, the �rst few shortcuts drastically reduced
the size of the world, but had far less e�ect on the clustering. The
implication is that the transition to a small world is essentially
undetectable at a local level. If you were living through the
morph, nothing about your immediate neighborhood would tell
you that the world had become small. You’d still have the same
number of friends, with no sense about whether they connected
you to a wider circle. Someone in a world like this might feel
insulated from the threat of a disease like AIDS—rationalizing, for
example, that none of his sexual partners were in high-risk groups
—though in reality he might be just a step or two removed.

The most important result of the simulations was that over a
broad intermediate range of rewiring, the model networks were
very clustered and very small at the same time. That peculiar
combination was new to mathematics. In traditional networks,
size and clustering go hand in hand. Random networks are small
and poorly clustered; regular ones are big and highly clustered.
The rewired networks managed to be both small and highly
clustered simultaneously.

We dubbed networks with this pair of seemingly contradictory
properties “small-world networks,” in homage to the same duality
that seems so paradoxical about human connectedness: We move
in tight circles yet we are all bound together by remarkably short
chains. The question now was whether nature makes use of this
strange form of network architecture, and if so, to what end.
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Our simulations suggested that small-world connectivity should
be widespread in real networks, since even a tiny fraction of
shortcuts would su�ce. To test that prediction, we needed
empirical examples. They weren’t easy to �nd. Any candidate had
to be fully characterized, its wiring diagram known down to the
last detail, every node and link documented, or we couldn’t
calculate the clustering and average path length.

Then I remembered that Koeunyi Bae, a student in my chaos
course the year before, had done a project about the Western
States power grid, a collection of about 5,000 electric power
plants tied together by high-voltage transmission lines across the
states west of the Rocky Mountains and into the western
provinces of Canada. Koeunyi and her adviser Jim Thorp
provided the data to Duncan. It contained a great deal of detailed
information that an engineer would �nd crucial—the voltage
capacity of the transmission lines, the classi�cation of the nodes
as transformers, substations, or generators—but we ignored
everything except the connectivity. The grid became an abstract
pattern of dots connected by lines. To check whether it was a
small-world network, we compared its clustering and average
path length to the corresponding values for a random network
with the same number of nodes and links. As predicted, the real
network was almost as small as a random one, but much more
highly clustered. Speci�cally, the path length was only 1.5 times
larger than random, whereas the clustering was 16 times larger.

Turning from technological networks to biological ones, we
next looked at the nervous system of a tiny worm called C.
elegans. More is known about this humble creature—a
transparent, soil-dwelling nematode only about a millimeter long
—than about any other animal, even including the geneticist’s
fruit �y and the oncologist’s mouse. Every one of the worm’s 959
cells has been mapped at every stage of its development, from
conception to death. Its entire genome was sequenced as long ago
as 1998. Abstruse as this organism may seem, its study has
illuminated several fundamental cellular processes, from cell
death to cell signaling to the guidance of nerve axons, all of
which were �rst discovered by worm biologists and later shown
to have signi�cance for humans. And that’s precisely why so
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much attention has been lavished on C. elegans: It is perhaps the
simplest organism that shares many of the biological processes
essential to human life.

For our purposes, the attraction of C. elegans was that its
nervous system had been completely mapped, a feat not yet
achieved for any other organism. In fact, the wiring diagram for
its 302 neurons was readily available on a �oppy diskette. As
with the power grid, we neglected the details that a specialist
would �nd most meaningful. We treated the neurons as identical
(even though biologists distinguish among 118 di�erent classes),
and regarded two neurons as connected if they’re linked by either
a synapse (a chemical connection) or a gap junction (an electrical
connection).

The resulting abstract network again turned out to be a small
world. Its average path length was a mere 18 percent larger than
that of a corresponding random net, whereas its clustering was
six times larger. What this meant was unclear. It could be that the
short path length facilitates rapid communication throughout the
creature’s body, while the high clustering probably re�ects the
presence of feedback loops and modular structure in its nervous
system.

Two radically di�erent networks, the power grid and the
nervous system: one created by mankind, the other by evolution.
One is among the largest machines ever built, a sprawling web of
synchronized generators linked by hundreds of thousands of miles
of cable. The other is a microscopic �ligree, the product of
millions of years of natural selection, a lacework snuggled in the
body of a worm. And yet despite all their di�erences, their
architecture is strikingly similar. Both networks are almost as
small as they could possibly be. Both are highly structured and
de�nitely not random. Admittedly, our approximations clouded
the interpretation of these �ndings—the small-world architecture
of both networks might be irrelevant to their function, and
therefore meaningless. Time would tell. But for now the
coincidence was tantalizing.
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Social networks also seemed likely to be small worlds, though
we were unaware of any supporting evidence beyond the
anecdotal. In particular we wondered if the notion of “six degrees
of separation” was based on hard, veri�able data. Perhaps it was
nothing more than an urban legend. (John Guare himself couldn’t
remember—he thought it might have come from Guglielmo
Marconi, inventor of the wireless telegraph, back in the years
when he was connecting the planet with telegraph stations.)
Without real data, we couldn’t be sure if our theory was as
broadly applicable as we suspected it might be. Did it apply to
networks of human beings, as well as to power grids and nervous
systems?

Our �rst lead came from a conversation with Joel Cohen, a
mathematical biologist at Rockefeller University who’d used
network theory to model the structure of ecological food webs.
When I mentioned that we were trying to educate ourselves about
the empirical basis for six degrees of separation, he said, “You
mean the small-world problem” and directed us to the classic
work of Stanley Milgram.

In 1967, Milgram, a social psychologist at Harvard, devised an
experiment to test whether American society was more like an
array of disconnected islands or one giant, interlocking web. The
experiment was intended to trace a line of acquaintances between
two randomly chosen people in the United States. Milgram gave a
folder (an impressive-looking booklet, somewhat like a passport
with the Harvard seal embossed on it) to a person at the start of
the chain, with instructions to send it toward a designated target
person, but with a caveat: “If you do not know the target person
on a personal basis, do not attempt to contact him directly.
Instead, mail this folder… to a personal acquaintance who is
more likely than you to know the target person… it must be
someone you know on a �rst-name basis.” In this way the folder
would march its way across the country from acquaintance to
acquaintance, gradually zeroing in on the target. To initiate the
chains, Milgram solicited volunteers from the Midwest, for
reasons he later explained: “As a crude beginning, we thought it
best to draw our starting people from some distant city such as
Wichita, Kansas, or Omaha, Nebraska (from Cambridge, these
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cities seem vaguely ‘out there,’ on the Great Plains or
somewhere).” The Nebraska study involved 160 starting people,
all of whom were trying to reach the same target, a stockbroker
who lived in Sharon, Massachusetts, and worked in Boston. At the
time, Milgram wasn’t sure any of the chains would get through,
or how many steps they might require. “When I asked an
intelligent friend of mine how many steps he thought it would
take, he estimated that it would require 100 intermediate persons
or more to move from Nebraska to Sharon,” Milgram wrote.

The result: After passing through only 2–10 intermediate
acquaintances, 44 folders successfully reached the target. The
median number of intermediaries was 5, corresponding to 6 links
in the chain—the number now enshrined in popular culture as six
degrees of separation. (The other chains weren’t completed,
because some people couldn’t be bothered to cooperate and pass
the folder along.)

Intriguing as these results are, they remain inconclusive. The
chains might not have been the shortest ones possible, so the true
average path length can’t be estimated. It could even be in�nite:
There could be pairs of people in the United States who live in
unbridgeable social universes, with no chains between them. And
without more information about the network’s local connectivity,
it was impossible for us to calculate its clustering. To answer
these more detailed questions, we still needed to �nd a social
network that was fully characterized, with every node and link
documented beyond dispute.

Mathematicians themselves had jokingly begun such an
enumeration, centering their universe around Paul Erdős, a
Hungarian savant who was utterly incompetent at all aspects of
everyday life—he couldn’t (or wouldn’t) even butter his own
toast. Yet Erdős was one of the most proli�c and inventive
mathematical minds of the twentieth century. High on
amphetamines, wandering around the world with nothing but his
beaten-up old suitcase, he’d show up at your doorstep and
announce, “My brain is open,” meaning he was ready to work on
an unsolved math problem with you.

Erdős collaborated with so many people that it became a
popular game among mathematicians to compute your “Erdős
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number.” If you’re one of the honored few to have co-authored a
paper with him (there are 507 such people), you have an Erdős
number of 1. If you have never written a paper with Erdős
himself, but you have written one with someone who has, then
you have an Erdős number of 2. The joke in mathematical circles
was that anyone who’s anyone will have an Erdős number of 2 or
less. There’s a Web site that lists all the people lucky enough to
be 1s and 2s, but no list of 3s is available. It would be enormous.
(I’m among them.) Unfortunately, without the full list, we
couldn’t calculate average path length or clustering for this social
network either. Human networks were proving to be frustratingly
elusive.

Whenever we described our work to laypeople, they invariably
brought up the Kevin Bacon game. We’d always laughed that o�,
but now we began to see an opportunity here, a way out of our
quandary. The network of movie actors could be a surrogate for a
social network. Instead of people connected by friendships, the
net would consist of actors connected by movies. Two actors
who’ve appeared in the same �lm are considered to be one step
apart; if they’ve never been in a �lm together but have a common
costar, they’re two steps apart, and so on. Though a bit
whimsical, this network had the advantage of being
comprehensive. The Internet Movie Database includes the cast of
virtually every feature �lm ever made. On the other hand, its size
would also cause a problem: As of April 1997, the network
contained nearly a quarter of a million actors, so the calculation
would be gigantic. Even Cornell’s supercomputer, one of the
largest in the world, was going to have trouble holding all the
data in memory.

Fortunately, Brett Tjaden (aka The Oracle of Bacon), a
computer scientist at the University of Virginia, had already spent
several weeks computing the shortest chain of movies between
any pair of actors. Along the way he found that the network has
an interesting global structure. It’s dominated by one enormous,
connected piece (known as the “giant component”) with 90
percent of all actors in it, including Kevin Bacon and every other
actor you’ve ever heard of. But it also contains a smattering of
tiny islands, pockets of obscure actors cut o� from the rest of the
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acting universe (for example, people who appeared in one movie
that they made in �lm school with all their friends, none of
whom ever acted in another movie again).

Using Tjaden’s data, Duncan computed that any two randomly
chosen actors in the giant component are separated, on average,
by just 3.65 movies: an impressively small number, considering
that the actors come from every country, genre, and era, from
silent �lms to the present. If the network had been completely
random, the corresponding number would have been smaller, but
not much: 2.99. The clustering, on the other hand, turned out to
be extraordinarily large: 0.79, about 3,000 times larger than the
value for a random net.

So we were seeing the same duality again: short chains and
high clustering, the signature of a small-world network. For
whatever reason, maybe luck or maybe a hint of something
deeper, we were now three for three. Each of the networks we
had looked at (and they were not handpicked) had turned out to
be small worlds. That similarity was especially striking in light of
the networks’ disparate sizes and scienti�c origins. It was starting
to seem like small-world architecture might be remarkably
pervasive.

Incidentally, the analysis also toppled Kevin Bacon from his
pedestal. He ranked number 669 on the list of best-connected
actors, as measured by his average separation from everyone else
in the giant component. By this measure, the center of the
Hollywood universe is Rod Steiger. Unexpectedly, number 2 and
number 3 are Christopher Lee and Donald Pleasence, best known
for their work in cheesy horror �lms.

Having demonstrated that small-world networks not only exist,
but that they might even be ubiquitous, we still needed to address
Duncan’s original question: Would oscillators coupled in a small-
world fashion synchronize more or less readily than they would
in a traditional, regular network? That issue could �nally be
addressed, at least theoretically, with the help of the morphing
model developed earlier. Each node in the network would now
represent a self-sustained oscillator—a singing cricket, a �ashing
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�re�y, a pacemaker neuron—and the links would re�ect the
pattern of interactions.

One of the simplest models of this sort had previously been
studied by Kuramoto and his colleagues Hidetsugu Sakaguchi and
Shigeru Shinomoto. They’d considered the same kinds of
oscillators as in the original Kuramoto model—phase oscillators
with distributed natural frequencies, mutually coupled by an
attractive sine-wave interaction. (Think of a roomful of people
trying to applaud in unison by speeding up or slowing down—
depending on their timing relative to the collective clap—in an
attempt to overcome their diverse clapping speeds, which run the
gamut from stately to frenetic.) But unlike the original Kuramoto
model, where the oscillators were coupled all-to-all, the Japanese
physicists now assumed a ring of connectivity, with oscillators
arranged in a circle, each coupled to a �xed number of neighbors
on either side. (Picture a circular arena—a football stadium—
where each fan listens exclusively to others sitting next to him.)
Kuramoto and his colleagues found that a ring of dissimilar
oscillators could not easily achieve widespread synchrony; it
tended to fragment into many small groups of neighbors, all
cycling at the same average speed within a group, but varying
from group to group. Di�erent sections of the stadium would now
be clapping at di�erent rates.

We wondered if rewiring the ring might enhance its ability to
synchronize. As in earlier simulations, we morphed the ring
lattice toward a random net by converting some of its original
connections to random ones. (It was as if a few fans had cellular
phones, piping in the applause from remote parts of the stadium
that none of their section mates could perceive.) We found that a
tiny percentage of such shortcuts—on the order of 1 or 2 percent
in a ring of 1,000 oscillators—changed the overall dynamics
dramatically. The system �ipped spontaneously from parochial
discord to global consensus. Now all the oscillators locked their
rhythms to a single compromise frequency.

Though we couldn’t see how to explain these results
mathematically, an intuitive explanation suggested itself: The
shortcuts were providing high-speed communication channels,
enabling mutual in�uence to spread swiftly throughout the
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population. Of course, the same e�ect could have been achieved
by connecting every oscillator directly to every other, but at a
much greater cost in wiring. The small-world architecture
apparently fostered global coordination more e�ciently.

By the same token, perhaps small-world architecture would be
advantageous in other settings where information needs to �ow
swiftly throughout an enormous complex system. The test case we
studied next is a classic puzzle in computer science called the
“density classi�cation problem for one-dimensional binary
automata.” In plainer language, imagine a ring of 1,000
lightbulbs. Each bulb is on or o�. In the next time step, each bulb
looks at its three neighbors on either side, and using some sort of
clever rule (to be determined), it decides whether to be on or o�
in the next round. The puzzle is to design a rule that will allow
the network to solve a certain computational task, one that
sounds ridiculously easy at �rst: to decide whether most of the
bulbs were initially on or o�. If more than half the bulbs were on,
the repeated execution of the rule is supposed to drive the whole
network to a �nal state with all bulbs on (and conversely, if most
bulbs were o� at the start, the �nal state is supposed to be all
o�).

The puzzle is trivial if there is a central processor, an eye in the
sky that can inspect the whole system and count whether most
bulbs were initially on or o�. But remember, this system is
decentralized. No one has global knowledge. The bulbs are
myopic: They can see only three neighbors on either side, by
assumption. And that’s what makes the puzzle so challenging:
How can the system, using a local rule, solve a problem that is
fundamentally global in character?

This puzzle captures the essence of what’s called collective
computation. Think of a colony of ants building a nest.
Individually, no ant knows what the colony is supposed to be
doing, but together, they act like they have a mind. Or recall
Adam Smith’s concept of the invisible hand, where, if everyone
makes a local calculation to act in his or her self-interest, the
whole economy supposedly evolves to a state that’s good for all.
Here, in the density classi�cation problem, similar (but much
simpler) issues can be addressed in an idealized, well-controlled
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setting. The challenge is to devise a rule that will allow the
network to decide whether most bulbs are initially on or o�, for
any initial con�guration. The network is allowed to run for a time
equal to twice its length. If there are 1,000 bulbs, the system is
allowed to execute its local rule for 2,000 steps before it has to
reach a verdict.

No one has yet found a rule that works every time. The world
record is a rule that succeeds about 82 percent of the time—that
is, it correctly classi�es about 82 percent of all initial conditions
as “more on” or “more o�” within the allotted time. The �rst rule
you might think to try—majority rule, where each bulb apes
whatever the majority of its local neighborhood is doing—never
works. The network locks up into a striped state, with blocks of
contiguous bulbs that are on, interdigitated with blocks of bulbs
that are o�. That result is unacceptable, like a deadlocked jury.
The net is supposed to converge to a unanimous verdict, with all
bulbs either on or o�.

Duncan and I guessed that a small-world network of bulbs
might be able to solve the problem more e�ciently than the
original ring lattice. Converting a few of the links to random
shortcuts might allow distant bulbs to communicate quickly,
possibly preventing the hang-up in the striped state. We studied
the performance of majority rule on ring networks with various
amounts of random rewiring. As expected, when there was very
little rewiring, majority rule continued to fail; the system was
indistinguishable from a pristine ring, and again blundered its
way into a deadlocked striped state. As we increased the amount
of rewiring, the network’s performance remained low for a while,
but then jumped up abruptly at a certain threshold—at about the
place where each bulb had one shortcut emanating from it, on
average. In this regime, majority rule now began to perform
brilliantly, correctly classifying about 88 percent of all initial
con�gurations. In other words, a dumb rule (majority rule)
running on a smart architecture (a small world) achieved
performances that broke the world record.

The network spontaneously developed the ability to compute,
once its wiring diagram was altered in a subtle way. The
suggestion is that small-world architecture may be a powerful
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design for other problems of collective computation, one that
confers surprising strength on even simpleminded local rules. As
such, it’s tempting to speculate that evolution might exploit this
architecture in its design of biological nervous systems.

The importance of small-world connectivity is even clearer for
processes involving contagion. Anything that can spread—
infectious diseases, computer viruses, ideas, rumors—will spread
much more easily and quickly in a small world. The less obvious
point is how few shortcuts are needed to make the world small.

The awesome reach of shortcuts was tragically illustrated by
the spread of AIDS through North America, believed to have been
hastened by Patient Zero, a promiscuous French-Canadian �ight
attendant who traveled worldwide and frequented bathhouses in
San Francisco, Los Angeles, Vancouver, Toronto, and New York.
At least 40 of the �rst 248 men diagnosed with AIDS had sex
either with him or with one of his previous partners.

Similarly, epidemiologists in the United Kingdom have noticed
an alarmingly new pattern of spread in the latest outbreak of
foot-and-mouth disease, a highly contagious virus that a�icts
cows, pigs, sheep, and other cloven-hoofed animals, with
devastating economic consequences for the livestock industry.
During the last outbreak in 1967, the disease propagated mainly
by airborne-particle di�usion (though it can also be carried by
birds and animals, and even on shoes and clothing). Of the
roughly 2,000 cases, more than 95 percent were localized within
100 kilometers of the source of the outbreak. In contrast, the
current epidemic already extends over a 500-kilometer range
within the United Kingdom. The di�erence is thought to be due
to changes in agribusiness, especially the increased transport of
livestock between distant dealerships and markets—the shortcut
mechanism for this disease. The virus has already spread from
England to Ireland, France, and Holland, and since the year 2000
alone, outbreaks have been reported in 34 countries. Although
foot-and-mouth disease has not yet entered the United States (as
of this writing), and hasn’t struck here since 1929, there is no
cause for complacency. As two commentators recently put it, “We
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are not just living in a ‘global village’; we are living on a global
farm.”

The propagation of computer viruses and worms on the
Internet also demonstrates the e�cacy of small-world
connectivity. Consider the Love Bug worm, which automatically
forwarded itself to everyone on a victim’s E-mail list. Given that
the on-line community is probably clustered into tight, inward-
looking circles of friends and associates, it’s a bit surprising that
the worm managed to infect so many of the world’s computers in
a matter of days; one might have expected it to circulate
endlessly within a narrow community. Presumably a few long-
range connections enabled it to leap from one social world to
another.

On a happier note, shortcuts also have bene�cial uses in our
everyday lives. In the late 1960s, the sociologist Mark
Granovetter asked hundreds of professionals and technical
workers how they found their jobs. As he recalled during a radio
interview,

When I started interviewing people about how they found jobs, of course
I found that they often found jobs through personal contacts, and I was
interested in who these contacts were, and how the information was
�owing, and why it was �owing, and I would often say to these people,
“Was this a friend you got the information from?” and they kept correcting
me and saying, “No, no, it was just an acquaintance.” And I realized after a
while, after people kept saying this to me, that there was suddenly
something systematic here. And the fundamental idea is that your close
friends are wonderful for all kinds of things—for giving you support, for
helping you when you’re sad, for doing favors that other people wouldn’t
do for you—but as sources of information they’re not very good, because
your close friends tend to know the same people you know. Whereas
people who are just your acquaintances—who might not help you out if
you were in desperate trouble—are still better sources of information
because they know so many people you don’t know. They’re really your
windows on the world, because they’re linked up to di�erent circles from
your own.

Speci�cally, Granovetter found that of the 56 percent of people
who found their jobs through personal contacts, only 17 percent
saw that contact “often” (as they would have, had the contact
been a good friend), whereas 55 percent saw their contact
“occasionally” and 28 percent saw the contact “rarely.”
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Granovetter invented a memorable phrase to describe the vital
function of these relationships outside one’s usual orbit. His now-
famous paper is titled “The Strength of Weak Ties.”

While Duncan and I were exploring small-world networks and
their possible implications, another team was independently
thinking along similar lines. At the University of Notre Dame,
László Barabási and his students Réka Albert and Hawoong Jeong
were probing the anatomy of the World Wide Web, searching for
regularities in this bewildering thicket of a billion pages
connected by hyperlinks. What they uncovered has turned out to
be yet another organizing principle for a broad class of natural
and man-made networks.

Barabási is an energetic young physicist with a delightful
Transylvanian accent and a �air for asking the right questions.
Trained in statistical mechanics (the branch of physics that deals
with enormous systems of atoms and other collections of
particles), he brought a novel set of tools to a puzzle outside the
purview of conventional physics. He and his team showed that
the Web is not only a small world, but that it displays a peculiar
pattern in its anatomy. Some pages are much more highly
connected than others, with many more incoming or outgoing
links than average. That much was not surprising: Any population
is bound to contain some outliers at the far ends of the spectrum.
But what was surprising was the shape of the distribution. It was
not a familiar bell curve, like the distribution of human heights. It
was more like the distribution of incomes, with a monstrously
long tail extending to the right. (The implications of this peculiar
structure are explored extensively in Barabási’s recent book
Linked.)

In the distributions studied in traditional statistics courses, the
average value sets a characteristic scale, a typical size for the
members of the population as a whole. For example, consider the
distribution of human heights. Nearly every adult is between two
and nine feet tall. You never meet someone an inch tall or a
hundred feet tall. Human heights have a characteristic scale of
around �ve feet, and certainly don’t deviate from it by more than
an order of magnitude (a factor of ten) on either side of the mean.
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In contrast, the income distribution spans many orders of
magnitude, from yearly incomes close to zero, all the way up to
the billions of dollars that Bill Gates makes on interest alone. A
distribution like this is sometimes called “scale free,” meaning
that it is not dominated by any single, representative scale.

What Barabási and his collaborators discovered is that the
distribution of links on the Web is similarly scale free, and for the
same reason—the curve has an outrageously long and heavy tail.
Speci�cally, the tail decays at a much slower rate than a normal
bell curve. Instead of decaying exponentially fast, it tapers o�
according to a “power law” with an exponent of 2.2. In algebraic
terms, the law says that for every tenfold decrease in the number
of incoming links, the number of pages having that number of
links will increase, on average, by a factor of 10 raised to the 2.2
power, which is roughly equal to 158. Or to put this the other
way around, pages with 10 times more links will be 158 times
less likely.

This arcane pattern holds across the entire Web, from a handful
of giant hubs like CNN and Yahoo, each with thousands of
incoming links, to the hundreds of billions of pages languishing in
obscurity, with no incoming links at all. From a purely
mathematical perspective, a power law signi�es nothing in
particular—it’s just one of many possible kinds of algebraic
relationship. But when a physicist sees a power law, his eyes light
up. For power laws hint that a system may be organizing itself.
They arise at phase transitions, when a system is poised at the
brink, teetering between order and chaos. They arise in fractals,
when an arbitrarily small piece of a complex shape is a
microcosm of the whole. They arise in the statistics of natural
hazards—avalanches and earthquakes, �oods and forest �res—
whose sizes �uctuate so erratically from one event to the next
that the average cannot adequately stand in for the distribution as
a whole. But despite 20 years of intense e�ort, the origin of
power laws remains controversial.

For all these reasons, the discovery of a power law in the Web
came as a shock and a provocation. The Web is an unregulated,
unruly labyrinth where anyone can post a document and link it to
any other page at will. There was no reason to expect any pattern
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at all. And yet the Web is apparently ordered in a subtle and
mysterious way, following the same power-law pattern that keeps
popping up everywhere.

Barabási and his team o�ered an intriguing explanation. In
their eyes, the power law is a natural consequence of network
growth. The Web is not static. New pages are born every day,
links are added, rewired, and lost, and old pages die. Suppose, to
a rough approximation, that all these processes can be ignored
except for the addition of new pages, and that new pages link at
random to existing ones, but with a preference for pages that
happen to be popular. Then richly connected nodes get richer,
and a mathematical analysis shows that a power law emerges
automatically with an exponent of 3, not far from the observed
value of 2.2. More re�ned models have since narrowed that gap.

In the past �ve years, the new ideas of small-world and scale-
free networks have triggered an explosion of empirical studies
dissecting the structure of complex networks. In case after
disparate case, when the �esh is peeled back, the same skeletal
structure appears from within. The Internet backbone and the
primate brain—both small worlds. So are the food webs of species
preying on each other, the meshwork of metabolic reactions in
the cell, the interlocking boards of directors of the Fortune 1,000
companies, even the structure of the English language itself. Most
of these networks, though not all, are scale free as well (that is,
more like the income distribution and less like the height
distribution).

At an anatomical level—the level of pure, abstract connectivity
—we seem to have stumbled upon a universal pattern of
complexity. Disparate networks show the same three tendencies:
short chains, high clustering, and scale-free link distributions. The
coincidences are eerie, and ba�ing to interpret.

For example, to construct a network for the English language,
the physicists Ramon Ferrer i Cancho and Ricard Solé considered
two words to be linked if they ever appear close together (either
next to each other or one word apart) in sentences in the British
National Corpus, a 100-million-word collection of samples of
written and spoken language from a wide range of sources,
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designed to represent a cross section of current British English.
Cancho and Solé found that you can hop from any word to any
other in this way, in just 2.67 steps, on average. It seems at �rst
like almost anything can happen (because reasonable English
sentences are in�nitely variegated), yet the linguistic network
turned out to be highly organized and far from random, with a
clustering of word associations more than 4,000 times greater
than that of an equivalent random network. The wiring diagram
of word associations is scale free with two distinct regimes:
common words (those with more than 1,000 links) obey a power
law with an exponent of 2.7, while for uncommon words the
exponent equals 1.5.

In cases like this, it’s unclear whether the patterns are
genuinely signi�cant or mere numerology. Admittedly, in all the
excitement swirling around the subject of complex networks,
there’s been a tendency to make in�ated claims. A physicist
friend of mine ribbed me with his own mock discovery—a small-
world pattern of icing on a piece of apple strudel tastes better and
has fewer calories.

The challenge now is to decode the underlying meaning of
small-world and scale-free architecture, if there is any. In one
recent attempt, Solé has observed that electronic circuits tend to
be wired in a small-world fashion, and he thinks he knows why.
Whether he was analyzing the latest digital microchips or the
clunky circuits found in old televisions, he found that all the
components were just a few electrical steps from one another, yet
they were much more clustered than they would have been in an
equivalent random circuit, thanks to the modular design favored
by engineering practice. Solé speculates that this kind of layout
may have emerged by natural selection, as alternative designs
competed for survival over time. In other words, engineers may
have unknowingly built the circuits according to small-world
principles, by trying to strike the best compromise between low
cost and high reliability.

Barabási and his team pointed out that scale-free networks also
embody a compromise bearing the stamp of natural selection:
They are inherently resistant to random failures, yet vulnerable to
deliberate attack against their hubs. Given that mutations occur
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at random, natural selection favors designs that can tolerate
haphazard insults. By their very geometry, scale-free networks are
robust with respect to random failures, because the vast majority
of nodes have few links and are therefore expendable.
Unfortunately, this evolutionary design has a downside. When
hubs are selectively targeted (something that random mutation
could never do), the integrity of the network degrades rapidly—
the size of the giant component collapses and the average path
length swells, as nodes become isolated, cast adrift on their own
little islands.

Evidence for this predicted mix of robustness and fragility is
manifested in the resilience of living cells. In a study of the
network of protein interactions in yeast, Barabási’s group found
that the most highly connected proteins are indeed the most
important ones for the cell’s survival. They reached this
conclusion by cleverly combining information from two di�erent
databases. First they looked at the connectivity data, where two
proteins are regarded as linked if one is known to bind to the
other. This interaction network follows a highly inhomogeneous,
scale-free architecture, with a few kingpin proteins mediating the
interactions among many more poorly connected peons. Then
Barabási’s team correlated the connectivity data with the results
of systematic mutation experiments, in which biologists had
previously deleted certain proteins to see if their removal would
be lethal to the cell. They found that deletion of any of the peons
(the 93 percent of all proteins having fewer than 5 links) proved
fatal only 21 percent of the time. In other words, the cell is
bu�ered against the loss of most of its individual proteins, just as
a scale-free network is bu�ered against the random failures of
most of its nodes. In contrast, the deletion of any of the kingpins
(the top 1 percent of all proteins, each with 15 or more
connections) proved deadly 62 percent of the time.

Soon after Duncan and I published our small-world paper in
Nature, we were bombarded by the mass media, from the New
York Times and CBS News to the Hungarian daily Magyar Hirlap.
People from all walks of life began contacting us with their own
thoughts and speculations. An article in Business Week suggested
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that small-world ideas could be used to redesign organizations, by
adding a few shortcuts to improve the lines of communication
between di�erent levels in the hierarchy. Someone from Senator
Paul Wellstone’s o�ce called, hoping to brainstorm about the
best way to spread the word about the liberal senator from
Minnesota, who was then entertaining a possible run for the
presidency in 2000. The most memorable call was the one from
the FBI forensic scientist who left a cryptic message on my
machine, requesting that I phone back as soon as possible. With
some apprehension I dialed the number. “Hair and �ber,” said the
voice at the other end. His question had to do with the secondary
transfer of �bers. If a �ber found on the victim matches the
sweatshirt worn by the suspect, the prosecutor will introduce that
coincidence as evidence. Naturally the defense attorney will
argue that thousands of similar sweatshirts were sold last year;
maybe the victim picked up a stray �ber left behind by someone
else previously sitting on the same seat on the bus. The question
was whether, given the probability of such secondary transfers,
the number of sweatshirts manufactured, the connectivity of
American social networks, and any other relevant data, one could
calculate the likelihood that the �ber did in fact come from the
suspect.

I wasn’t able to o�er anyone much help.

In striving to understand the origins of spontaneous order, this
infant theory of complex networks is another step on the long
journey that began with Christiaan Huygens and his sympathetic
pendulum clocks. After centuries of thinking about purely
rhythmic entities—oscillators—coupled together two at a time,
then all-to-all, then in regular networks in space, mathematicians
and scientists have only just begun to consider more complex
dynamics like chaos and excitability, and more complex
architectures like small worlds and scale-free networks.

At this early stage, our models are pale imitations of reality.
We pretend that networks are built from featureless, static,
identical nodes, connected by links with no directionality and no
diversity in their strength or character. Much still remains to be
learned about pure connectivity, but it’s also getting to be time to
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move on, to incorporate nonlinear dynamics into the networks, to
look beyond minimalist wiring diagrams. The nodes in our
models need to become oscillators, or neurons, or power plants.
The links need to be diverse and dynamic themselves. We still
know almost nothing about the laws governing the interactions
between genes, or proteins, or people.
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•Ten•

THE HUMAN SIDE OF SYNC

ON A QUIET AFTERNOON IN THE SPRING of 1994, I was sitting in my
o�ce at MIT, immersed in a calculation, when a ringing phone
dragged me back from the depths. “This is Jean calling from Alan
Alda’s o�ce. Will you hold for a call from Mr. Alda?”

A few seconds later I heard that familiar voice. “Hello, this is
Alan Alda. I don’t know if you know me, I’m an actor.”

“Yes?” I was dumbfounded.
“I just read your Scienti�c American article about

synchronization, and I’d like to come talk to you about it.”
He said he’d always been fascinated by fads, and he was

wondering if they could be explained as a kind of human
behavioral sync. It sounded pretty speculative to me, but I was
intrigued. We arranged a visit, and I gave him directions to my
o�ce—enter at the Dome, walk down the In�nite Corridor, turn
right at the Norbert Wiener poster and go to Building 2.

When he arrived, he launched into his idea, even before sitting
down. He mentioned hula hoops and pet rocks, fads that
seemingly came out of nowhere and spread infectiously. Within
weeks, millions of people were swiveling their hips or doting on
minerals. Just as abruptly, the crazes ended. How does this
process work? And why do some ideas catch on while others
�op? Is it just a matter of luck, or mass hysteria, or could there be
an underlying logic to fads? If so, he felt we should try to
understand that logic, because the same kind of social contagion
that drives fads could be put to more serious uses. For example, a
million children die each year of dehydration, even in villages
where rehydration remedies are available; what if rehydration
became “fashionable” among those children’s mothers? When
public health o�cials tried to promote the use of condoms in the
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Philippines, or to encourage girls in Africa to stay in school, they
used popular songs and comic books to deliver the message,
hoping to start an epidemic of social change. Although some real
successes were achieved this way, they tended to be temporary.
Perhaps a deeper understanding of fads would have helped create
more lasting ones.

He had researched this topic extensively: read all the classical
sociologists of crowd behavior and mob psychology, the
marketing experts and advertising gurus, even the evolutionary
biologist Richard Dawkins with his proposal that “memes” are the
psychological equivalent of genes, contagious ideas competing for
survival, with the winners proliferating through a cultural version
of natural selection. Insightful as these suggestions were, Alan felt
that no one had quite gotten to the bottom of the problem, and
that fads were as perplexing as ever. What was missing was a
detailed, testable theory of their dynamics. So when he read
about coupled oscillators and the mathematical theory behind
them, he began to wonder: Could the sudden emergence of a fad
be analogous to the way that �re�ies suddenly start blinking in
unison?

His suggestion seemed plausible but di�cult to formulate
mathematically. The existing theory of synchronization was
largely con�ned to rhythmic sync, where all the individuals are
oscillators, always repeating the same cycle, predictable as
pendulums. Human behavior could not be pinned down so easily.
Plus, the only tractable connectivities were global, all-to-all
networks, hardly relevant to the social networks through which
fads propagate. And, most frustrating of all, the rules governing
human interactions—the counterpart of coupling between
oscillators—were unknown and possibly unknowable. I was
disappointed to say it, but I couldn’t see how to help him.

Still, we chatted for three more hours. The discussion ranged
from evolution and psychology to chaos theory and quantum
mechanics. When the conversation wound down, I o�ered to
dazzle him with lunch at the MIT cafeteria in Walker Memorial.
We picked up some food, found an empty table, and kept talking
about science. A few students stared at us and whispered, and one
of my colleagues came over to gawk, under the pretense of
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needing to ask me something. Eventually it became impossible to
ignore a young student pacing back and forth, hovering at the far
end of the table. Finally he approached and waited till we looked
up.

“Um, excuse me.”
“Yes?”
“Sorry, I just have to ask: Aren’t you… Professor Strogatz?”
“Yes?”
“Oh, um, I just wanted to say I read your book about chaos and

I really liked it.”
Then he walked away. Alan and I looked at each other and

burst out laughing.
Only at MIT…

Alan’s question about fads underscored how little we know
about the human side of sync. In the past, coupled oscillator
theorists had shied away from questions of psychology and group
behavior. Yet the signs of human sync are inescapable: the herd
mentality of stock traders and the resultant booms and crashes in
the market; the brutal stupidity of mobs; the political and
business oversights caused by “group think”; and even such
harmless curiosities as that awkward moment at a cocktail party
when everyone simultaneously falls silent. These are all instances
of sync at the level of the group. The psychological dimensions of
sync also show up at the level of the individual: What is it about
music that stirs us so? Or the spectacle of sync in nature, the
graceful movements of �ocks of birds and schools of �sh? What is
it about dancing together that gives us such pleasure? Why do we
delight in coincidences?

In particular, at the time Alan brought up fads, not much was
known about the mathematics of human group behavior. Apart
from some pioneering work in the 1950s by Anatol Rapoport, and
later e�orts by mathematical sociologists and economists like
Thomas Schelling—the discoverer of the “tipping point”—the
�eld was hampered by a lack of empirical studies and
mathematical tools, and by the embryonic state of computer
simulation. In the past few years, however, the subject has
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undergone a renaissance. Sociologists are borrowing the
techniques of network theory to analyze simple models of riots,
fads, and the di�usion of innovations. Physicists have recently
investigated how Eastern European concert audiences switch
from disorganized clapping to thunderous, synchronized
applause. Complexity theorists are developing new ideas about
tra�c �ow, explaining why congestion can persist for hours—
even in the absence of accidents or other apparent causes—or
how a population of sel�sh drivers can inadvertently settle into a
cooperative pattern of �ow, where all vehicles move in tandem
like a weird, congealed mass.

The �ndings of these studies are typically counterintuitive.
Unanticipated forms of collective behavior emerge that are not
obvious from the properties of the individuals themselves. All the
models are extremely simpli�ed, of course, but that’s the point. If
even their idealized behavior can surprise us, we may �nd clues
about what to expect in the real thing.

The recent work on fads builds on a classic model developed by
the sociologist Mark Granovetter in the 1970s. He illustrated his
results with a story about a hypothetical mob involving 100
people, possibly on the brink of rioting. Granovetter assumed that
each person’s decision whether to riot or not is dependent on
what everyone else is doing. Instigators will begin rioting even if
no one else is. Other people need to see a critical number of
others causing mayhem before they’ll join in. That critical
number—the person’s threshold—is assumed to be distributed
across the population according to some probability distribution.

Granovetter’s most famous example concerns the case of a mob
with a uniform distribution of thresholds ranging from 0 to 99. In
other words, one person has threshold 0, another has threshold 1,
and so on. It’s easy to predict what will happen in a crowd like
this. The person with threshold 0 is ready to begin rioting even if
no one else is. He instigates the riot. Then the person with
threshold 1 becomes activated, since he sees one person (the
instigator) breaking windows. Now that two people are rioting,
the person with a threshold of 2 joins in. Like the burning of a
fuse, or the toppling of a row of dominoes, the riot recruits more
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and more people until everyone is involved. That much is
obvious, but here’s the twist. Suppose, said Granovetter, that we
alter the initial composition of the crowd in the slightest way.
Suppose the person with threshold 1 is replaced by someone with
threshold 2. Now when the instigator starts looting, no one else
joins him, since everyone’s threshold is greater than 1. In other
words, no riot.

The surprise here is that the two hypothetical situations are
almost indistinguishable, at least by the usual sociological
measures. The average makeup of the crowd has changed in the
smallest way possible, and the overall distributions of thresholds
are almost identical. Yet the outcomes are as divergent as they
could be: an all-out riot in one case, a lone maniac on a rampage
in the other. An onlooker might describe the �rst crowd as a
bunch of thugs and the second as a peaceful demonstration
marred by one lunatic, when in fact the two crowds are near
replicas of each other. The lesson is that the collective dynamics
of a crowd can be exquisitely sensitive to its composition, which
may be one reason why mobs are so unpredictable.

Among the many simpli�cations in Granovetter’s model,
perhaps the most serious is that everyone is assumed to have
perfect knowledge of everyone else. This approximation is the
sociological analog of the all-to-all coupling we encountered in
the simplest oscillator models, where every �re�y can see every
other. Duncan Watts (who has now gone on to become a
professor of sociology at Columbia University) has recently
worked out the mathematics for the more realistic case where
everyone is in�uenced by a speci�c subset of friends and close
associates. His model is motivated by situations where word of
mouth, or communication through a social network (as opposed
to broadcasting or global visibility) is the dominant form of
interaction. In such decentralized networks, spontaneous
outbreaks of coordinated behavior can seem particularly
mysterious. He poses the conundrum like this:

Why do some books, movies and albums emerge out of obscurity, and
with small marketing budgets, to become popular hits, when many a priori
indistinguishable e�orts fail to rise above the noise? Why does the stock
market exhibit occasional large �uctuations that cannot be traced to the
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arrival of any correspondingly signi�cant piece of information? How do
large, grassroots social movements start in the absence of centralized
control or public communication?

All these social phenomena involve herd behavior, where each
person relies on the decisions of others to guide his or her own
actions. More abstractly, imagine a network of any kind of nodes
—companies, people, countries, or other decision makers—and
suppose that each node is facing the same binary choice: adopt a
new technology or not, riot or not, sign the Kyoto treaty or not.
As in Granovetter’s model, the decision to adopt, riot, or sign is
determined by how many other nodes have already chosen to do
so, except that now each node only pays attention to its speci�c
set of “neighbors”—the nodes whose decisions in�uence it. (For
example, a company’s decision to buy a fax machine back in
1985, when they still seemed exotic, may have been strongly
a�ected by whether its business partners had already done so,
since fax machines became increasingly useful with the more
contacts who had one.) Each node’s threshold is de�ned as the
fraction of neighbors who must take action before it will. To
allow for diversity in the population, Duncan assumed that some
nodes are more adventurous than others, and also that some are
better connected. In mathematical terms, this means that both the
thresholds and the numbers of neighbors are distributed across
the population. Finally, given its allotted number of neighbors,
each node forges those links to members of the population chosen
at random (not realistic, but the analysis is hard enough even
with this approximation).

The game starts when one node is randomly chosen as a seed,
an innovator who decides to take the plunge. Visualize it as a
domino falling over. Then, one by one, in random order, each
node looks at its neighbors and checks what proportion of them
have toppled. If its threshold has been transgressed, it tips.
Otherwise it stays upright. After each node has taken its turn, the
process of checking and toppling begins anew. Some dominoes
may have tipped in the �rst round (namely those neighbors of the
seed whose thresholds were low enough to be toppled by it).
They in turn can initiate secondary waves of toppling. But if the
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seed is poorly connected, or if its neighbors are a conservative lot
with high thresholds, the trend may �zzle at the outset.

In this idealized universe, Duncan was able to determine the
exact conditions under which an enormous cascade will be
triggered by a single domino. He also managed to work out the
likelihood and size of such cascades, and the risk factors that
predispose the network to be more or less vulnerable to them.
The conclusions are necessarily statistical in character; nothing
can be said in advance about any particular simulation on the
computer. The �ne details of the outcome are di�erent from run
to run. They depend on the location of the seed, on how the
thresholds are distributed across the population, and on how the
connectivity varies from node to node. Still, some striking trends
emerge that would not have been easy to anticipate by common
sense.

The main result is that the model displays two distinct phase
transitions, popularly known as tipping points. If the network is
too sparsely connected, it fragments into tiny islands and
cascades can’t spread beyond any of them. At a higher, critical
level of connectivity—the �rst tipping point—the islands abruptly
link together into a giant mesh and global cascades become
possible. An initial seed can now trigger an epidemic of change
that ultimately infects much of the population. With further
increases in connectivity, the cascades at �rst become even larger
and more likely, as one might expect, but then—paradoxically—
they become larger yet rarer, suddenly vanishing when the
network exceeds a critical density of connections. This second
tipping point arises because of a dilution e�ect: When a node has
too many neighbors, each of them has too little in�uence to
trigger a toppling on its own. (Remember that each node
compares its threshold to the fraction of its neighbors that have
tipped, not the absolute number. The more neighbors there are,
the less impact any one of them has, in a fractional sense.)

Just before this second tipping point, the outcome is extremely
unpredictable in much the same way that real fads are. The
network can be perturbed by thousands of hopeful seeds, each of
which provokes at most a disappointing ripple that quickly peters
out. By this measure, the network appears highly stable and
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resistant to outside disturbances. Then another seed comes along,
seemingly indistinguishable from the others before it, yet this one
triggers a massive cascade. In other words, near this second
tipping point, fads are rare but gigantic when they do occur.

Here’s what’s going on, intuitively. Lurking within the network
is a connected subset of nodes that Duncan calls the vulnerable
cluster. The geometric structure of this cluster—the way it
percolates through the rest of the network—is what matters. In
marketing language the vulnerable cluster is composed of “early
adopters”: not innovators themselves but nodes that are poised
and ready to tip, if just one of their neighbors has already
toppled. Close to the second tipping point, the vulnerable cluster
is spindly and almost invisible—it occupies a very small
percentage of the whole network—so the odds of igniting it with
a random seed are small. But once ignited, it spreads a slow-
burning �re to its neighbors, enough of which pass it on to their
neighbors, continuing inexorably until the entire giant component
(the vast, interconnected meshwork of nodes that dominates the
system) is engulfed in �ame. What’s amazing about this is that
nearly all the nodes in the giant component are not early
adopters; they are a more stubborn bunch with higher thresholds,
known in the marketing literature as the “early and late
majority.” Yet because the network is so densely connected near
the second tipping point, a spark that happens to ignite the
vulnerable cluster is able to create enough momentum to
detonate nearly everyone else.

Duncan’s model is obviously a caricature—it leaves out the
richness of real social structure, and assumes all friendships carry
equal weight and that all seeds are equally infectious—but even
so, it mimics the features of real fads that seem most puzzling:
their unpredictability, scarcity, and arbitrariness. In particular,
the creeping advance of an improbable cascade near the second
tipping point is reminiscent of a low-budget hit that starts out
slowly and builds by word of mouth.

The model also makes testable predictions, not about single
fads (which are inherently unpredictable, according to the
theory), but about the statistics of many of them, viewed in
aggregate. These statistical conclusions o�er guidance about what
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interventions are most likely to trigger cascades. For example, the
analysis suggests that heterogeneity in the population has mixed
e�ects. A broader range of thresholds destabilizes the system,
making it more susceptible to fads (essentially because there are
more early adopters to provide kindling), whereas a broader
range in connectivity (greater variability in the number of
neighbors per node) tends to stabilize it. Also, cascades tend to
start in di�erent places near the model’s two tipping points. Near
the �rst one, when the network is still sparse and barely
connected, cascades are most easily initiated at the hubs, the
nodes with the most connections. Near the second tipping point,
the few cascades that do occur are typically seeded at average
nodes, inconspicuous nobodies, simply because there are so many
more of them.

In contrast to fads, there’s at least one form of human group
behavior that you can count on every day: the maddening crush
of tra�c at rush hour. According to most projections, it’s only
going to get worse. By 2020 the typical commute in Los Angeles
is expected to take twice as long as it did in the 1990s, with
tra�c crawling along at an average of 24 miles an hour. Various
proposals for unclogging highways are being considered, such as
road-use fees, improvements in mass transit systems, and separate
highways for cars and trucks. In the meantime, physicists and
complexity theorists are taking a fresh look at the dynamics that
cause congestion in the �rst place. Their new models suggest that
tra�c is more complex and unpredictable than traditionally
imagined, largely because of nonlinear interactions between
drivers.

Although we don’t normally think of it in these terms, tra�c is
a social phenomenon in the sense that one driver’s behavior
a�ects that of others nearby. If someone swerves in front of you,
you’ll need to brake suddenly, and your reaction could trigger a
wave of further braking behind you, in the worst case leading to a
catastrophic pileup. Even in less dramatic situations, every driver
has the power to impose his whims on others around him, by
tailgating, or weaving aggressively, or honking for no reason. In
that sense, congested tra�c raises the con�ict found in all social
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dilemmas: self-interest versus the common good. Everyone has an
incentive to be sel�sh—altruistic drivers don’t get home as fast.
On the other hand, rampant sel�shness makes driving unpleasant
for all of us, as when some bu�oon tries to inch across a busy
intersection and gets trapped in the middle, blocking the
crosswise tra�c and causing gridlock.

So it came as a surprise recently when a model of tra�c �ow
predicted that such widespread ruthlessness could, under the
right circumstances, lead to a state of crystalline harmony that’s
ideal for all. This self-organized state was discovered in 1998 by
Dirk Helbing, a leader in the emerging �eld of tra�c physics, and
Bernardo Huberman, a complexity theorist who normally spends
his time thinking about the Internet. They were simulating the
dynamics of a realistic mix of hundreds of virtual cars and trucks
traveling along a two-lane highway. Each vehicle obeyed certain
reasonable rules: accelerate to an optimal safe speed, slow down
to avoid colliding with a vehicle too close in front, switch lanes
and try to pass it (if there’s enough room), and so on. The
arti�cial drivers were even endowed with erratic, humanlike
qualities, such as an occasional random tendency to dawdle after
changing lanes.

Helbing and Huberman computed the long-term tra�c patterns
under a variety of di�erent conditions. When there were only a
few vehicles on the road, all the cars sailed past the slower-
moving trucks without ever decelerating, while the trucks
lumbered along at their maximum safe speed of 55 miles an hour.
At higher but still moderate densities of tra�c, some unlucky cars
found themselves trapped behind trucks for a long time, with no
room to pass or switch lanes.

At a critical density of tra�c—about 35 vehicles in each lane
per mile of road—all the cars and trucks spontaneously
synchronized, traveling down the highway like a solid block.
Remarkably, out of pure competition, with no coordinator or
central authority, a large group of sel�sh individuals ended up in
a cooperative state that was optimal for all of them. (Adam Smith
would approve.) This state was optimal in the sense that the �ux
of tra�c was as high as it could be: The number of cars and
trucks passing through a given stretch of highway per hour was
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maximized. It was also the safest way for tra�c to �ow, because
the drivers had no opportunities to change lanes or pass (the
maneuvers associated with most accidents). Helbing and
Huberman tested their model against data taken from a two-lane
Dutch highway and found evidence of the predicted state. At the
critical density, the car speeds were at their most stable, as
measured by their velocity �uctuations, and lane changing and
passing were minimized. Unfortunately—and as the model also
predicted—the crystalline state proved to be delicate. At densities
just above critical, it melted into a disorganized liquid state,
which created opportunities for passing again, leading to
unsteady, stop-and-go tra�c.

Helbing and Huberman suggest the use of computer-controlled
stoplights at on-ramps to help keep the solid block intact. The
lights would respond to instantaneous data collected from
electronic sensor wires that the cars pass over. If the sensors
detect a gap following a block of tra�c passing an on-ramp, the
light would turn green to allow more cars to stream onto the
highway, �lling the gaps to keep tra�c in sync; when the block
threatens to dissolve into a stop-and-go pattern, the light turns
red again. That strategy would di�er from the one currently used
on the Long Island Expressway, for example, where the on-ramp
tra�c lights are timed according to a preset schedule. The new
approach still wouldn’t cure the jams at the peak of rush hour,
but at intermediate densities it might help tra�c �ow more safely
and smoothly.

A di�erent form of synchronized tra�c was discovered a
couple of years earlier by Boris Kerner and Hubert Rehborn,
physicists at DaimlerChrysler in Stuttgart, when they were
analyzing data collected from sensors built into German
autobahns. For densities between free-�owing tra�c and
complete jams, they found a strange, highly congested state in
which all the cars abruptly slowed down to the same speed and
stayed in their lanes, creeping forward as a uni�ed mass. But
unlike the synchronized state found by Helbing and Huberman,
this one was not coordinated by slow-moving trucks. It occurred
all on its own, in a population of cars only. The spontaneous
slowdown seemed to occur in the vicinity of on-ramps, when an
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unusually large horde of cars squeezed onto an already busy
highway during the morning rush hour. The sudden in�ux
somehow condensed the neighboring tra�c, in the same way that
a mote of dust can help water vapor condense into a droplet.

But what was really peculiar about this state is that it lingered
for two hours, long after the in�ow from the ramp returned to
normal. In other words, the pattern takes on a life of its own. It is
self-sustaining. It even sends waves of congestion backward down
the highway. The later drivers encountering these stop-and-go
waves �nd them mystifying. Delays occur periodically for no
apparent reason.

Computer simulations later demonstrated that the pattern is not
maintained by overloading per se. After the burst on the ramp
subsides, the subsequent tra�c could just as well have �owed
freely, even with the same set of drivers, at the same density of
tra�c. That more pleasant alternative is just as stable and self-
sustaining. But the drivers can’t collectively achieve it. They are
trapped in one stable mode, unable to reach a better one. In that
respect, synchronized tra�c is like the spiral and scroll waves in
the BZ reaction, or the pernicious rotating waves responsible for
cardiac arrhythmias. Once established, these waves are hard to
kill. For immediate relief, the tra�c needs to be de�brillated.

Unfortunately, no such technology exists. What actually
happened on that particular German autobahn, on the day the
data were collected, was that the pulsating congestion dragged on
until 9:30 A.M. By that hour the ramp �ow had thinned out so
much that the pattern could no longer feed itself. The
synchronized state spontaneously dissolved and tra�c began to
�ow freely again.

Although tra�c synchronization is unintentional, most forms of
mass human synchrony are deliberate. It delights us to dance and
sing together, stomp our feet, do “the wave” at a football game.
When everybody is trying to cooperate, however, the group
behavior that actually emerges can still hold some surprises.
Consider, for example, an audience clapping in unison. That
phenomenon seems self-explanatory, which is why we’ve invoked
it repeatedly as a metaphor for other kinds of sync. But when
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scientists �nally got around to measuring it, they were startled by
what they found.

In 1999, a team of physicists, all of Eastern European descent,
went to concert halls in Romania and Hungary and recorded
several audiences clapping at the ends of opera and theater
performances. The recordings showed that the audiences clapped
tumultuously at �rst, then spontaneously switched to thunderous,
rhythmic applause at a slower tempo, and then relapsed into
cacophony, swinging back and forth six or seven times between
chaos and sync. To explore the process in more detail, Zoltan
Néda and his graduate student Erzsébet Ravasz asked individual
high school students to stand alone in a room and clap in two
di�erent ways. First, each student was asked to clap as he or she
would after an outstanding performance. This style of applause
was found to be fast and irregular, averaging four claps per
second but with wide variations, both within individuals and
across the population. Then the experimenters asked the students
to pretend they were clapping in sync with an imaginary
audience. Now the clapping slowed down to a stately two beats
per second—half as fast as before, as if people were skipping
every other beat—while also becoming much more precise, as if
there were a strong, shared understanding about what the right
tempo should be.

The behavior of an entire audience can then be explained in
these terms. Because of cultural expectations, the audience
members all know that they want to clap in unison. But some
have inherently faster or slower intrinsic clap rates. To get in
sync, everyone slows down to half the rate of individualistic
applause, and the dispersion of frequencies tightens up (as found
in the experiments on high school students). Now, as in the
coupled oscillator models of Winfree and Kuramoto, when the
dispersion of frequencies is su�ciently reduced, the system
abruptly crosses a phase transition and sync breaks out
spontaneously. The twist in all this—the part that no theorist ever
imagined—is that the synchrony comes with a psychological
price. Although the collective clap is thunderous, it occurs only
half as often as the faster, more raucous kind of applause, with
the inevitable consequence that the total amount of noise
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summed over time is less than it would have been during
disorganized clapping. Somehow, the audience feels that the
cumulative level of noise does not adequately convey their
excitement, so they make more noise the only way they can—by
speeding up. But now their frequency distribution broadens as
well (since faster clapping is inherently sloppier, as the
measurements showed). So the phase transition is crossed in the
opposite direction, and the group crumbles back into chaos. In a
sense, the audience is frustrated by a trade-o� between optimal
synchronization and optimal noise intensity. They can’t have both
at the same time.

The authors wryly note that these swings between chaos and
synchrony never occurred during the giant Communist rallies
they had to endure in their youth. Audiences listening to the
speeches of the “great leader” would dutifully applaud in listless
synchrony, with no desire to speed up into disorder.

Even in a form of group behavior as automatic as hand
clapping, human psychology enters in subtle ways. Yet for now at
least, all the models neglect the vagaries of human volition. They
deliberately pretend that people act like robots, to see how much
can be explained on that basis alone. In Duncan Watts’s model of
fads, people �ip once their threshold is exceeded. In tra�c
models, drivers speed up or slow down as the local conditions
demand, as if enslaved to a human version of cruise control. In
models of arti�cial societies, genocidal tribesmen don’t act up
when the United Nations peacekeepers are there, but go on a
killing spree as soon as the troops are pulled out.

It’s precisely because the models are so dumbed down that
their �delity can be so unnerving. In many forms of pack
behavior, people don’t rely on their higher cognitive abilities. “In
individuals, insanity is rare,” said Nietzsche, “but in groups,
parties, nations, and epochs it is the rule.” Maybe this is part of
what we �nd so appalling about the spectacle of Nazis goose-
stepping. In the hands of totalitarian regimes, synchrony becomes
a symbol of all that is subhuman. “He who joyfully marches to
music rank and �le, has already earned my contempt,” said
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Einstein. “He has been given a large brain by mistake, since for
him the spinal cord would surely su�ce.”

The irony is that sync is just as much a part of the most
beautiful forms of human expression, in ballet, in music, even in
the love shared by people whose hearts are in sync. The
di�erence is that these are more supple forms of sync, not
mindless, not rigid, not brutally monotonous. They embody the
qualities that we like to think of as uniquely human—
intelligence, sensitivity, and the togetherness that comes only
through the highest kind of sympathy.

Along with synchronization to each other, we sometimes feel
like we’re in sync with the world around us. The clearest example
is our entrainment to the spin of the Earth, to the daily cycle of
light and darkness. But aside from circadian rhythms, there aren’t
many well-documented cases of human sync to the environment.

For example, spooky e�ects have been ascribed to the phases of
the moon. According to folklore, more crimes occur when the
moon is full (also more suicides, psychiatric admissions, drug
overdoses, and dog bites). There are even some scienti�c papers
purporting to give statistical evidence for the “lunar e�ect.” But
when the statistics are redone properly, the correlation with lunar
phase always evaporates. To give just one example of the shoddy
studies in this area, some authors have claimed that more car
accidents occur during a full moon, but forgot to control for
weekly or seasonal variations in their incidence. Accidents are
more frequent on Friday and Saturday nights, on New Year’s Eve
and other holidays, and during the summer (all for obvious
reasons), so if any of those occur disproportionately during the
time period studied, the statistics will be skewed accordingly.
Statisticians who have adjusted for such calendar e�ects have
found that the full moon makes no signi�cant di�erence. Across
the board, whether for fertility or homicide rates, assassinations
or natural disasters, one careful study after another has
demonstrated that the full moon has no measurable e�ect on
human a�airs. Yet many sensible people—including police
o�cers and emergency room sta�—continue to believe
otherwise.
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The lunar myth exempli�es the gullible side of our desire to
�nd order in the universe, and particularly to connect the
rhythms of our own lives to those of the cosmos. The same
impulse drives quack notions about astrology and “biorhythms,” a
now-forgotten pseudoscience fashionable in the 1970s. (Back then
you could buy a Casio watch equipped with a nifty biorhythm
calculator, so you would know if you were about to have a bad
day.) The theory claimed that our bodies are bu�eted by
predictable tides of physical ability, emotional condition, and
intellectual performance, waxing and waning with periods of
exactly 23, 28, and 33 days, supposedly the same for everyone
regardless of age, sex, health, or genetic variability. In dozens of
rigorous, independent studies by the military and airline industry
in the 1970s, no evidence was found for any such biorhythms.
Nor has any ever been found for Carl Jung’s idea of
“synchronicity,” the claim that meaningful coincidences in our
lives occur more often than one could explain by chance alone.
Still, it’s fun to believe in such things. In my own life, I’ve often
wondered what made me wander into He�er’s bookstore that
rainy day in England, and see a book with the peculiar title The
Geometry of Biological Time, when just a year earlier I’d written a
senior thesis whose subtitle was uncannily similar: “An Essay in
Geometric Biology.” Without that chance encounter with Art
Winfree’s book, and the �uky choice of the same words, I might
never have met him, never gotten interested in sync, and never
written the book you hold before you.

The problem with arguments like this is that all human beings
—professional mathematicians included—are easily muddled
when it comes to estimating the probabilities of rare events. Even
�guring out the right question to ask can be confusing. In an
article on coincidences, statisticians Persi Diaconis and Frederick
Mosteller discuss the seemingly amazing case of a woman who
won the New Jersey Lottery twice. A front-page story in the New
York Times described that coincidence as a 1 in 17 trillion long
shot, but that’s calculating the right answer to the wrong
question. This number assumes that the woman bought one ticket
for exactly two lotteries, both of which were winners; in fact, she
played the lottery frequently, and usually bought several tickets.
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The more relevant question is, What are the odds that with all the
millions of people playing the lottery every day, year after year,
that someone would hit it twice in a lifetime? When the question
is framed that way, an event that once seemed astronomically
unlikely is now exposed as a virtual certainty: The odds are better
than 50–50 that over a period of just seven years, someone
somewhere in the United States will win the lottery twice. To be
fair, the New Jersey woman’s luck was even better than that: She
hit the jackpot twice in a four-month span. Even so, the odds of
that happening to someone somewhere are better than 1 in 30:
improbable, but not impossible.

The best case that can be made for human sync to the
environment (outside of circadian entrainment) has to do with
the possibility that electrical rhythms in our brains can be
in�uenced by external signals. For instance, Norbert Wiener
described an outrageous experiment conducted in Germany in the
1950s, in which the unnamed scientists attempted to synchronize
a human subject’s brain waves by beaming high-power
electromagnetic radiation at him. As Wiener tells it, a sheet of tin
was suspended from the ceiling and connected to one terminal of
a 400-volt generator running at 10 cycles a second, the same
frequency as the brain’s alpha rhythm. He writes that this
apparatus “can produce electrostatic induction in anything in the
room” and that “it can actually drive the brain, causing a
decidedly unpleasant sensation.”

That sensation may have been something like what accidentally
happened to hundreds of Japanese children watching an episode
of Pokémon (pocket monsters) on the night of December 16, 1997.
The hyperkinetic cartoon—the highest-rated television show in its
6:30 time slot—featured a scene in which a character destroyed a
computer virus by detonating a “vaccine bomb.” Viewers were
subjected to a bright-white explosion followed by brilliant red,
white, and blue lights that �ashed like a strobe, 12 times a
second, for �ve seconds. Kids around the country immediately
began feeling sick. Some vomited. Others had seizures. A few
stopped breathing momentarily. Their horri�ed parents lit up the
phone banks of emergency services around the country, and more
than 600 children were rushed by ambulance to emergency
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rooms. The attacks may have been exacerbated by the viewing
conditions in Japanese homes, many of which are small and have
large-screen televisions: Watching television in a Japanese
apartment is like sitting in the front row of a movie theater. One
fourteen-year-old boy who was sitting less than three feet from
his big-screen TV fell unconscious for more than a half hour. Even
more people were stricken later that night when Japanese news
programs irresponsibly replayed excerpts from the sickening
scenes.

The intense optical stimulation caused by the pulsing,
kaleidoscopic bursts of light apparently triggered attacks of
photosensitive epilepsy, a rare disorder that has become much
more common as television and video games have proliferated.
The precise cause of photosensitive epilepsy is unknown, but it’s
thought to be a synchronization disorder in which brain waves
are entrained by �ickering light, causing neurons in the brain to
mis�re in lockstep and produce a seizure. That hypothesis is
consistent with the clinical observation that the most dangerous
frequencies are between 15 and 20 cycles a second, just a bit
faster than the brain’s alpha rhythm. Here, then, is a case where a
fast, periodic signal coming from the external environment has a
pronounced e�ect on human biology.

A more �eeting kind of sync appears to be implicated in one of
the greatest unsolved problems in human psychology: the
mystery of how the brain gives rise to the mind. Although
scientists are still struggling to understand the neural basis of
human thoughts and feelings, it has recently become possible to
eavesdrop on the mind as it recognizes a face, remembers a word,
or snaps to attention. Neurobiologists have discovered that such
acts of cognition are linked to a brief surge of neural synchrony,
in which millions of far-�ung brain cells suddenly switch on and
o� in precise lockstep at about 40 times a second, and then just
as rapidly unravel to allow the next thought or perception to
occur. If this view is right, a �ash of insight is literally a burst of
electrical synchrony, an instant when separate parts of the brain
begin to harmonize.
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This line of research can be traced to the early 1980s, when
Christoph von der Malsburg of the University of Southern
California proposed that neural sync might provide a mechanism
for solving the “binding problem,” a long-standing puzzle in brain
science. To illustrate the problem, imagine that you are sitting in
a crowded, smoky café, sipping co�ee and listening to rock
music, as people squeeze past your table and shout hellos to each
other. With no e�ort at all, you instantly perceive that you are
holding a cup of co�ee in your hand. But how, exactly, do you
manage that? Simple as it seems, that perception is associated
with a plethora of sensations. As you glance down at the co�ee
cup, light scatters o� its surface and strikes your retinas,
revealing its round shape, smooth texture, and white color. Each
of those visual attributes is then sent to separate parts of your
brain for further processing and interpretation. At the same time,
vaporized co�ee molecules bind to receptors in your nose, and
trigger rhythmic bursts of neural activity in your olfactory centers
(plus an additional burst of pleasure in your limbic system,
associated with the sumptuous aroma of freshly ground beans).
Meanwhile, other less desirable sensations—the smell of cigarette
smoke, the jostling of people bumping your table as they slide
past—are impinging on your senses as well, and exciting their
own sets of neurons. The question is, How does your brain make
sense of all this neural commotion? In particular, what physical
process “binds” the right features together to form a uni�ed
perception of a cup, as distinct from the sound of the rock music,
the shaking of the table, and all the other confusing sensations
that are occurring simultaneously but are unrelated to it?

Von der Malsburg hypothesized that the separate banks of
neurons processing the various features of the cup would all
oscillate in sync for a fraction of a second. Their temporal
coincidence would be the brain’s way of binding them together,
of signifying that they all refer to the same object. But he
despaired of ever testing the idea. Even if the neural clusters did
�re in concert, he supposed they would be drowned out by the
incessant chatter of the brain’s other electrical activity. “There
would be no way to pick them out,” he once said. “The mind
would be invisible.”
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That pessimism turned out to be unwarranted. By 1989,
glimpses of synchrony started to appear in experiments on
animals. A team of neuroscientists led by Charles Gray and Wolf
Singer showed an anesthetized cat an image of a moving bar, and
found that the neurons responding to the bar began to �re
rhythmic discharges at 30 to 60 cycles per second. The fusillade
was short-lived, lasting about one-third of a second, but highly
synchronized, with neurons hitting a series of corresponding
electrical peaks and valleys along the way. Perhaps most
surprisingly, even cells that were separated by anatomically huge
distances, halfway across the cat’s visual cortex, managed to
oscillate in nearly perfect unison. To test whether the coordinated
�ring meant the cat was perceiving the bar as a uni�ed whole,
Gray and Singer deleted the middle of the bar and moved both
ends, giving it the appearance of two independent objects. The
same brain cells continued to discharge but now fell out of step,
just as Von der Malsburg would have predicted.

At the time, these �ndings provoked a storm of controversy.
The air was �lled with the usual arguments that always confront
spectacular claims of synchrony. The most dubious skeptics
denied the existence of the phenomenon, claiming the statistical
analyses were erroneous, or that the transient correlation
between distant neurons could have been produced by chance.
Others fretted about the lack of any known mechanism that
would allow neurons so far apart to synchronize as precisely as
Gray and Singer were reporting. (It was hard to understand how
cells could �re within a thousandth of a second of each other,
despite being so widely separated that no neural impulse could
travel between them in that time.) Over the next several years,
however, these and other objections were cleared up, leaving
only the concern that the sync might be real but meaningless, a
useless by-product of the electrical activity in the cat’s brain, no
more revealing of its innermost workings than the 60-cycle
electrical hum of a desktop computer.

Throughout the 1990s, the evidence linking synchrony to
cognition became more persuasive. In experiments on animals
ranging from locusts to monkeys, researchers found that
synchronized neural activity is consistently associated with
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primitive forms of cognition, memory, and perception (for
example, the ability to discriminate between two odors, or to
detect a change in the orientation of a shape). But since it’s
impossible to know exactly what an animal is perceiving, the
skeptics remained unconvinced. They wanted to see proof that
synchrony was essential to cognition and not merely associated
with it. In Gray and Singer’s experiment, for example, there was
no proof that the cats were perceiving a single bar in one case
and two bars in the other, even though a person would see it that
way. The only way to settle the issue was to perform experiments
on human subjects.

One such study, reported in 2001 by Jürgen Fell and his
colleagues at the University of Bonn in Germany, uncovered a
tantalizing connection between neural synchrony and short-term
memory. They asked volunteers to memorize lists of words, and
after brie�y distracting them with another task, tested their
recall. Meanwhile, during the memorization phase of the
experiment, the scientists measured the �ring patterns of neurons
in the subject’s hippocampus and rhinal cortex, adjacent brain
areas known to be involved in memory. (This experiment was
remarkable in a technical sense, in that neural activity was
measured directly, not inferred from brain waves. These subjects
were epileptics who already had electrodes implanted in their
brains in preparation for upcoming neurosurgical procedures,
which a�orded an unusual opportunity to record directly from
human brain cells during the act of memorization.)

Naturally, each subject remembered some words and forgot
others, but what was fascinating is that their neurons behaved
di�erently in the two cases, at the moment the words were �rst
viewed. A quarter of a second after viewing words that they’d
later remember, their brains showed a rush of synchrony between
the hippocampus and rhinal cortex, but there was no synchrony
when they �rst viewed words that they’d later forget. To
exaggerate a bit, this means that by watching the electrical
pattern in someone’s brain when he or she tries to memorize a
word, you can predict whether he or she will succeed. You can
see if the brain is dropping the ball.
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It’s unclear what to make of this surge of synchrony. It might
be nothing more than the echo of a memory being formed by
other, more important processes waiting to be discovered—just as
thunder is an aftershock of lightning and not its cause. On the
other hand, perhaps the synchrony is crucial to the memory
process itself, as it would be if the chemical and electrical events
associated with it somehow primed the hippocampus to store a
new item or rendered that item more easily retrievable. That
possibility is plausible on biological grounds; it is known that the
connections between neurons are strengthened when they �re
simultaneously, a principle often summarized as “neurons that
�re together, wire together.” By sparking tighter connections
between neurons in critical brain areas, synchrony might pave the
way for short-term memories to be laid down. Another
possibility, and one that is always implicit when sync occurs, is
that by �ring in unison, the neurons stand out above the
background chatter, just as people singing in unison would be
audible above the din at a cocktail party. By coordinating their
electrical activity, the synchronous neurons would amplify their
message, making it more salient to the neurons downstream.

An even more intriguing experiment recently shed light on the
puzzle of perception: how we pull the world together in our
minds, and e�ortlessly integrate diverse sensations into coherent
wholes. Some neurological patients are unable to do this,
resulting in bizarre pathologies like the one famously described
by Oliver Sacks in the title case of his book The Man Who Mistook
His Wife for a Hat. The man was able to recognize her eyes, nose,
mouth, and other parts of her face, but he couldn’t put them
together to see a whole face. For him, recognizing a face was an
almost impossible task, and one which required the full force of
conscious e�ort, whereas most of us do it instantly and
unconsciously. The question is, What is going on in our brains
when a face is recognized as a face, and not as a collection of
unrelated parts?

In a 1999 study, a team of neuroscientists led by Francisco
Varela asked volunteers to look at “Mooney faces,” ambiguous
black-and-white images that look like faces when they are viewed
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upright, but become meaningless blobs when viewed upside
down.

The experimenters displayed one of these images on a
computer screen and asked the subject to press one of two
buttons as quickly as possible, depending on whether he or she
perceived a face. Meanwhile the subject’s brain waves were
monitored through an array of 30 electrodes attached to his or
her scalp.

About a quarter of a second after scrutinizing a picture, the
subject’s brain waves displayed a �urry of “gamma oscillations”
caused by millions of neurons �ring rhythmically at around 40
cycles a second in various regions of the cortex known to be
associated with visual processing. These collective oscillations
occurred in both cases, whether the image was a face or a blob.
They apparently mark the moment of perception, the unconscious
Aha! moment when the mind

�gures out what it is seeing. But although the rates of �ring were
similar in both conditions, the degree of synchrony was radically
di�erent. Only when a face was viewed did the electrical
discharges align themselves in far-�ung parts of the brain.

The distinction here is the same as that between a cacophony
and a chorus. When perceiving a blob, the neurons in the various
visual centers all sang in the same key of 40 cycles per second,
but their timing was hopelessly o� and the result was a
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meaningless racket, consistent with the brain’s inability to make
sense of the shape. On the other hand, when perceiving a face the
neurons not only sang in the same key, but also in perfect time,
suggesting that disparate features were being pulled together into
an integrated perception of a face.

The subsequent events in the brain were equally fascinating.
Even before the subject had a chance to react consciously and
press a button, the surge of sync dissolved. The electrical
coherence between neurons actively unraveled itself, like soldiers
deliberately breaking step before marching across a bridge.
Varela and his colleagues speculate that this active
desynchronization may be the brain’s way of wiping the slate
clean, to allow another neuronal choir to form as the basis for the
next thought or action. In this experiment, the subject’s next
action was to generate a motor response, to press a button on the
computer. And, sure enough, about three-quarters of a second
after an image was presented, corresponding closely to a typical
subject’s reaction time, the brain showed a second burst of sync,
now between regions involved in the motor response. Not
surprisingly, this second round of sync occurred whether a face
was perceived or not, since a button was about to be pressed in
either case.

These studies paint a disconcerting picture of human existence.
As we go about our daily business, feeling in charge of our lives,
we may be more robotic than we realize, clanking along from one
neural state to another, feeling hungry, recognizing a friend’s
face, remembering to pick up milk on the way home, all
depending on which banks of neurons happen to synchronize at
any one moment. Some scientists have speculated that
consciousness may be the subjective experience of these states of
synchrony passing by in our brains. Others have gone even
further, and suggested that sync may underlie consciousness
itself. In a recent article titled “The Zombie Within,” Caltech
neuroscientist Christof Koch and his collaborator Francis Crick
(the codiscoverer of the DNA double helix, and now a brain
researcher at the Salk Institute) speculated that “consciousness
involves synchronized �ring of neurons at the millisecond level,
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whereas uncorrelated �ring can in�uence behavior without
generating that special buzz in the head.”

At its strangest, that special buzz can trigger an indescribably
odd sensation. If you have not felt it yourself, it will sound
ridiculous, but if you have, you’ll know exactly what I mean, and
it’s a chilling feeling. It happens to me maybe once or twice a
year, and it comes without warning. I’ll be standing in front of
the mirror, brushing my teeth, and I look at myself and suddenly
think: Who’s in there? Or, Who’s that?

I’m groping here for the words to express how odd it is to think
about your own consciousness, your own self-awareness. In those
weird moments in front of the mirror, I feel how strange it is to
be conscious. Here is a pile of atoms, it looks like me, but I know
it is a lot of water molecules, proteins, lipids, and all the rest,
assembled in a particular way, and the damn thing is aware of
itself and staring back at me. How does chemistry account for
that, for me, for my feeling of identity? In other words, What is
the physical foundation of consciousness?

No one knows yet, but it would be poetic justice if Koch and
Crick turned out to be right. For if consciousness is the by-
product of some sort of neural sync, then just thinking about sync
—as you have been doing for a few hundred pages now—involves
a stupendous act of sync itself.
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EPILOGUE

I HOPE I’VE GIVEN YOU A SENSE of how thrilling it is to be a scientist
right now. It feels like the dawn of a new era. After centuries of
studying nature by teasing it into smaller and smaller pieces,
we’re starting to ask how to put the pieces back together again.

Old-timers will chuckle and say they’ve heard this line before.
Every decade or so, a grandiose theory comes along, bearing
similar aspirations and often brandishing an ominous-sounding C-
name. In the 1960s it was cybernetics. In the ’70s it was
catastrophe theory. Then came chaos theory in the ’80s and
complexity theory in the ’90s. In each case, the skeptics at the
time grumbled that these theories were being oversold and that
the results were either wrong or obvious. Then everyone had a
good laugh and went back to the lab bench for more grinding,
reductionistic science, walled o� from their colleagues in
adjoining disciplines, who were themselves grinding away on
their own tiny corners of the universe.

What’s di�erent now is a feeling in the air. Even the most hard-
boiled, mainstream scientists are beginning to acknowledge that
reductionism may not be powerful enough to solve all the great
mysteries we’re facing: cancer, consciousness, the origin of life,
the resilience of the ecosystem, AIDS, global warming, the
functioning of a cell, the ebb and �ow of the economy. It’s a sign
of the times, for example, that at every major research university,
institutes are springing up with names such as functional
genomics and integrative biology, where biologists are teaming
up with computer scientists and mathematicians to try to make
sense of the dance of life at the molecular level. Sequencing the
human genome gave us an enormous list of parts: 30,000
individual genes and the proteins they encode. But we still have
almost no clue how the interlocking activities of those genes and
proteins are choreographed in the living cell.

What makes all these unsolved problems so vexing is their
decentralized, dynamic character, in which enormous numbers of
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components keep changing their state from moment to moment,
looping back on one another in ways that can’t be studied by
examining any one part in isolation. In such cases, the whole is
surely not equal to the sum of the parts. These phenomena, like
most others in the universe, are fundamentally nonlinear.

That’s why nonlinear dynamics is central to the future of
science. Chaos theory revealed that simple nonlinear systems
could behave in extremely complicated ways, and showed us how
to understand them with pictures instead of equations.
Complexity theory taught us that many simple units interacting
according to simple rules could generate unexpected order. But
where complexity theory has largely failed is in explaining where
the order comes from, in a deep mathematical sense, and in tying
the theory to real phenomena in a convincing way. For these
reasons, it has had little impact on the thinking of most
mathematicians and scientists.

Here, it seems to me, is where sync has been uniquely
successful. As one of the oldest and most elementary parts of
nonlinear science (dealing, as it does, with purely rhythmic
units), sync has o�ered penetrating insights into everything from
cardiac arrhythmias to superconductivity, from sleep cycles to the
stability of the power grid. It is grounded in rigorous
mathematical ideas; it has passed the test of experiment; and it
describes and uni�es a remarkably wide range of cooperative
behavior in living and nonliving matter, at every scale of length
from the subatomic to the cosmic. Aside from its importance and
intrinsic fascination, I believe that sync also provides a crucial
�rst step for what’s coming next in the study of complex
nonlinear systems, where the oscillators are eventually going to
be replaced by genes and cells, companies and people.

On the other hand, I don’t want to leave you with a false
impression. Sync is just a small part of a much larger body of
thought. It is by no means the only approach to the study of
complex systems. The chemist Ilya Prigogine and his colleagues
feel that the key to unlocking the mysteries of self-organization
lies in a deeper understanding of thermodynamics. They see the
emergence of order as a victorious uphill battle against entropy,
as a complex system feeds itself on energy �owing in from the
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environment. The community of physicists interested in pattern
formation sees �uid mechanics as its paradigm, where the roiling
of a turbulent �uid intermittently gives birth to coherent
structures like helices and plumes, rather than degenerating into
a bland, uniform smear. The physicist Hermann Haken and his
colleagues view the world as a laser, with randomness and
positive feedback conspiring to produce the organized forms that
occur all around us. Researchers at the Santa Fe Institute are
struck by the ubiquity of evolution through natural selection, not
only in biological populations, but in immune systems,
economies, and stock markets. Others conceive the universe to be
a giant computer, running a cryptic program whose discovery
would constitute the end of science.

But for now, these are mostly pipe dreams. We’re still waiting
for a major breakthrough in understanding, and it could be a long
time in coming. I think we may be missing the conceptual
equivalent of calculus, a way of seeing the consequences of the
myriad interactions that de�ne a complex system. It could even
be that this ultracalculus, if it were handed to us, would be
forever beyond human comprehension. We just don’t know.

In the meantime, the science of synchrony is inching forward,
one small step at a time. Charlie Peskin has started exploring the
mechanics of �apping �ight in insects. He’s also re�ning his
computer models of blood �ow in the heart with his colleague
David McQueen. Their simulations have already helped doctors
design better arti�cial valves.

Yoshiki Kuramoto is close to retirement, but he is still blazing
new trails. He has been working hard on the mathematics of
oscillators coupled in an intermediate way, not globally as in his
classic model, but also not purely locally.

Chuck Czeisler is always in the news with important results
about human sleep and circadian rhythms. He and his colleagues
recently refuted an earlier and much ballyhooed study purporting
to show that bright light applied to the back of the knee could
reset the human circadian pacemaker. A year or two before that,
NASA asked him to study John Glenn’s circadian rhythms during
his nostalgic �ight on the space shuttle, to provide information
about how aging a�ects the sleep-wake cycle.
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Brian Josephson is still standing apart from the physics
establishment, and busily updating his Web site with the latest
news about homeopathy and paranormal phenomena. His former
teacher Philip Anderson, now retired but active as ever, has spent
more than a decade trying to crack the riddle of high-temperature
superconductivity.

Kurt Wiesenfeld and his colleagues made a splash by redoing
Huygens’s pendulum clock experiment with modern equipment,
and by using nonlinear dynamics to explain why the pendulums
always end up swinging in perfect opposition.

Ed Lorenz was honored at a big international conference on
complex systems in the spring of 2002, and, as usual, he said
nothing in his lecture about his seminal work of 1963. “That little
model” again took a backseat to what he is working on now, in
his ninth decade of life.

Lou Pecora has been looking at synchronization in arrays of
chaotic systems. He recently joined forces with one of my former
students, Mauricio Barahona, to show that small-world networks
are extraordinarily e�ective at synchronizing chaos,
outperforming virtually all other kinds of architectures.

Duncan Watts is conducting an E-mail version of Milgram’s
small-world experiment, and László Barabási is pursuing the
biological implications of scale-free networks.

Tragically, Art Winfree died on November 5, 2002, at age 60,
seven months after being diagnosed with brain cancer. He helped
me with this book at every stage, even when he was conscious
only for a few hours a day. Though he did not live to see it
published, he knew that it would be dedicated to him.

For many reasons, I’m not sure what I’m going to do next.
There are so many problems to choose from. My students and I
will certainly be studying some sort of group behavior in a
complex nonlinear system, perhaps in connection with the gene
networks that regulate the growth and division of cells, and
which go haywire in cancer. The time seems ripe, given the
explosive advances in our knowledge of biochemical networks,
new technologies for tracking which genes are active at a given
time, ever-increasing computer power, and the recent
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developments in network theory. It’s too early to tell whether my
favorite tools (idealized mathematical models and their
qualitative analysis) will be too crude to shed any light on this
agonizingly complicated and important set of questions.
Experience has shown, however, that insisting on simplicity can
help a lot, especially on problems where more realistic
approaches can become tangled in a thicket of data. It’s even
possible that ideas from sync could be useful here, since cells act
somewhat like oscillators, growing and dividing on a fairly
regular cycle.

In any case, I’m sure that throughout my career, I’ll keep
returning to sync in one form or another. I �nd it beautiful and
strange and profoundly moving, in a way that can only be
described as religious. And I know I’m not alone in that reaction.
When I read the old accounts written by sixteenth-century
voyagers to Malaysia and Thailand, the �rst Westerners to
witness the astonishing spectacle of �re�ies �ashing in unison for
miles along the riverbanks, I hear in them that same sense of
rapture. They all describe the displays with the same voice,
stricken with such awe that later scientists found their reports
easy to dismiss as unreliable and overly emotional.

For reasons I wish I understood, the spectacle of sync strikes a
chord in us, somewhere deep in our souls. It’s a wonderful and
terrifying thing. Unlike many other phenomena, the witnessing of
it touches people at a primal level. Maybe we instinctively realize
that if we ever �nd the source of spontaneous order, we will have
discovered the secret of the universe.
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NOTES

CHAPTER 1 FIREFLIES AND THE INEVITABILITY OF SYNC

11 SO WROTE PHILIP LAURENT Philip Laurent, “The supposed
synchronal �ashing of �re�ies,” Science 45 (1917), p.44.

11 FOR 300 YEARS An early account appears in the logs of Sir
Francis Drake’s 1577 expedition: “Our General… sayled to a
certain little Island to the Southwards of Celebes… thoroughly
growen with wood of a large and high growth…. Among these
trees night by night, through the whole land, did shew
themselves an in�nite swarme of �ery wormes �ying in the
ayre, whose bodies beeing no bigger than our common English
�ies, make such a shew of light, as if every twigge or tree had
been a burning candle” [R. Hakluyt, 1589. A Selection of the
Principal Voyages, Tra�ques and Discoveries of the English Nation.
Edited by Laurence Irving (New York: Knopf, 1926), p. 151].
The synchronous aspect of the �ashing was described much
more explicitly in 1680 by the Dutch physician Engelbert
Kaempfer, after a voyage down the Meinam River from
Bangkok to the sea: “The Glowworms… represent another
shew, which settle on some Trees, like a �ery cloud, with this
surprising circumstance, that a whole swarm of these insects,
having taken possession of one Tree, and spread themselves
over its branches, sometimes hide their Light all at once, and a
moment after make it appear again with the utmost regularity
and exactness, as if they were in perpetual Systole and
Diastole.” [Engelbert Kaempfer, 1727. The History of Japan
(With a Description of the Kingdom of Siam). Translated by J. G.
Scheuchzer. London: Hans Sloane. Two volumes in one. See
volume 1, p. 45, or pp. 78–79 of volume 1 of 1906 reprint by J.
McLehose and Sons, Glasgow.]

11 20 OTHER ARTICLES Many are cited in John B. Buck,
“Synchronous rhythmic �ashing of �re�ies,” Quarterly Review
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of Biology 13 (1938), pp. 301–314. This article is the best guide
to the early literature on the subject.

11 THERE MUST BE A MAESTRO George H. Hudson, “Concerted
�ashing of �re�ies,” Science 48 (1918), pp. 573–575.

12 “EXPLANATIONS ARE MORE REMARKABLE THAN THE PHENOMENON
ITSELF” Hugh M. Smith, “Synchronous �ashing of �re�ies,”
Science 82 (1935), pp. 151–152. In this brief but authoritative
note, Smith also gave one of the most detailed descriptions of
the phenomenon: “Imagine a tree thirty-�ve to forty feet high,
thickly covered with small ovate leaves, apparently with a
�re�y on every leaf and all the leaves �ashing in perfect unison
at the rate of about three times in two seconds, the tree being
in complete darkness between the �ashes…. Imagine a tenth of
a mile of river front with an unbroken line of Sonneratia
[mangrove] trees with �re�ies on every leaf �ashing in
synchronism, the insects on the trees at the end of the line
acting in perfect unison with those between. Then, if one’s
imagination is su�ciently vivid, he may form some conception
of this amazing spectacle.”

12 AFRICAN VERSION Joy Adamson, Living Free (London: Collins and
Harvill, 1961). Quote from p. 29.

12 ELECTRICAL RHYTHM THAT TRAVELS DOWNSTREAM TO THE FIREFLY’S
LANTERN For more on the biochemistry underlying the �ash
rhythm, see Barry A. Trimmer et al., “Nitric oxide and the
control of �re�y �ashing,” Science 292 (2001), pp. 2486–2488.

13 DARKENED HOTEL ROOM John Buck and Elisabeth Buck,
“Mechanism of rhythmic synchronous �ashing of �re�ies,”
Science 159 (1968), pp. 1319–1327.

13 BUCK AND HIS COLLEAGUES Frank E. Hanson, James F. Case,
Elisabeth Buck, and John Buck, “Synchrony and �ash
entrainment in a New Guinea �re�y,” Science 174 (1971), pp.
161–164. A popular exposition of this and related work is given
in John Buck and Elisabeth Buck, “Synchronous �re�ies,”
Scienti�c American 234 (May 1976), pp. 74–85.

13 RESETTABLE OSCILLATOR The resettable oscillator idea is
discussed at length in John Buck, “Synchronous rhythmic
�ashing of �re�ies. II,” Quarterly Review of Biology 63 (1988),
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pp. 265–289, which appeared in the same journal, with the
same title, exactly 50 years after his �rst review of the
literature. This second review is still the de�nitive summary of
what is known about �re�y synchronization.

14 ONE OF THE MOST PERVASIVE DRIVES IN THE UNIVERSE For an
excellent, up-to-date review of the scienti�c and mathematical
literature on synchronization, see Arkady Pikovsky, Michael
Rosenblum, and Jurgen Kurths, Synchronization: A Universal
Concept in Nonlinear Science (Cambridge, England: Cambridge
University Press, 2002).

14 SPERM SWIMMING An early report of synchronized swimming of
sperm appears in James Gray, Ciliary Movement (New York:
Macmillan, 1928), especially Figure 78 on p. 119. See also G.I.
Taylor, “Analysis of the swimming of microscopic organisms,”
Proceedings of the Royal Society of London, Series A 209 (1951),
pp. 447–461. For the latest work explaining how the synchrony
arises through mechanical forces conveyed by the �uid, see S.
Gueron and K. Levit-Gurevich, “Computation of the internal
forces in cilia: Application to ciliary motion, the e�ects of
viscosity, and cilia interactions,” Biophysical Journal 74 (1998),
pp. 1658–1676.

15 PESKIN PROPOSED A SCHEMATIC MODEL Charles S. Peskin,
Mathematical Aspects of Heart Physiology (New York: Courant
Institute of Mathematical Sciences Publication, 1975), pp. 268–
278. Cardiologists now take a di�erent view of how the
pacemaker cells synchronize themselves. Peskin’s model was
predicated on the guess that synapses provide chemical
coupling between pacemaker cells, whereas it is now thought
that they are coupled electrically through gap junctions, which
act like resistors. As such, the cells of the pacemaker are in
constant electrical communication and interact throughout
their cycle of activity, not only at the moment of �ring, as
Peskin assumed. For a more recent model, see D. C. Michaels,
E. P. Matyas, and J. Jalife, “Mechanisms of sinoatrial
pacemaker synchronization: A new hypothesis,” Circulation
Research 61 (1987), pp. 704–714.
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19 FLIPPING THROUGH A BOOK Arthur T. Winfree, The Geometry of
Biological Time (New York: Springer-Verlag, 1980). The quote
about Peskin’s work is on p. 119. Winfree has recently updated
his masterpiece (the second edition appeared in 2001), using a
format that only he could think of, designed to highlight the
twists and turns of scienti�c progress. Instead of taking
advantage of 20 years of hindsight to repair the errors in the
original, or to delete his own wrong guesses and predictions, he
has chosen to leave the original intact, and to sequester new
material in gray boxes around it, explicitly correcting or
amplifying the old ideas (and in many cases, demonstrating
how farsighted he actually was). Though disorienting at times,
this unsanitized approach reveals science as the complicated,
living, growing thing it truly is. (The e�ect is reminiscent of the
marvelous “7 Up” series of documentaries by Michael Apted, in
which people are interviewed every seven years throughout
their lives, starting at age seven, and you get to see them at
every stage as their lives unfold.)

23 WE WERE ABLE TO PROVE Renato E. Mirollo and Steven H.
Strogatz, “Synchronization of pulse-coupled biological
oscillators,” SIAM (Society for Industrial and Applied
Mathematics) Journal on Applied Mathematics 50 (1990), pp.
1645–1662.

30 FIREFLIES THAT ARE MOST ADEPT AT SYNCHRONIZING For
experimental documentation of the various resetting strategies
used by �re�ies, see Frank E. Hanson, “Comparative studies of
�re�y pacemakers,” Federation Proceedings 37 (1978), 2158–
2164. Our mathematical model was never intended to be
realistic in this regard; we merely wanted to prove Peskin’s
conjecture, and cited �re�ies as a vivid example of the abstract
concept of pulse-coupled oscillators. A much more biologically
faithful model of �re�y synchrony is given in G. Bard
Ermentrout, “An adaptive model for synchrony in the �re�y
Pteroptyx malaccae,” Journal of Mathematical Biology 29 (1991),
pp. 571–585.

30 IN NEUROBIOLOGY An early paper along these lines was L. F.
Abbott and C. van Vreeswijk, “Asynchronous states in neural
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networks of pulse-coupled oscillators,” Physical Review E 48
(1993), pp. 1483–1490.

30 HOPFIELD POINTED OUT A CONNECTION John J. Hop�eld,
“Neurons, dynamics, and computation,” Physics Today 47
(1994), pp. 40–46; A.V.M. Herz and J.J. Hop�eld, “Earthquake
cycles and neural reverberations: Collective oscillations in
systems with pulse-coupled threshold elements,” Physical
Review Letters 75 (1995), pp. 1222–1225.

31 SELF-ORGANIZED CRITICALITY For accessible accounts of self-
organized criticality, see Per Bak, How Nature Works: The
Science of Self-Organized Criticality (New York: Copernicus
Books, 1999) and Mark Buchanan, Ubiquity: The Science of
History… or Why the World Is Simpler Than We Think (New
York: Crown, 2001).

31 DOZENS OF PAPERS For a review of the literature that links self-
organized criticality to synchronization, see C. J. Pérez, A.
Corral, A. Diáz-Guilera, K. Christensen, and A. Arenas, “On self-
organized criticality and synchronization in lattice models of
coupled dynamical systems,” International Journal of Modern
Physics B 10 (1996), pp. 1111–1151.

31 MEDIA ATTENTION See, for example: Ivars Peterson, “Step in
time,” Science News 140 (August 31, 1991), pp. 136–137; Ian
Stewart, “All together now,” Nature 350 (1991), p. 557; Walter
Sullivan, “A mystery of nature: Mangroves full of �re�ies
blinking in unison,” New York Times (August 13, 1991), p. C4.

33 WHAT WAS SO FAMILIAR TO THE FAUSTS The tale of Lynn Faust’s
discovery is told in Carl Zimmer, “Fire�ies in lockstep,”
Discover 15 (June 1994), pp. 30–31, and in Susan Milius, “U.S.
�re�ies �ashing in unison,” Science News 155 (March 13,
1999), pp. 168–170. A charming �rsthand account appeared in
Lynn Faust, Andrew Moise�, and Jonathan Copeland, “The
night lights of Elkmont,” The Tennessee Conservationist
(May/June 1998), pp. 12–15. For the scienti�c documentation,
see Andrew Moise� and Jonathan Copeland, “Mechanisms of
synchrony in the North American �re�y Photinus carolinus
(Coleoptera: Lampyridae),” Journal of Insect Behavior 8 (1995), p.
395.
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33 NOT EVERYONE IS SO APPRECIATIVE Dick Milne, “Govt. blows your
tax $$ to study �re�ies in Borneo: Not a bright idea!” National
Enquirer (May 18, 1993), p. 23.

33 INTERNET ENGINEERS Sally Floyd and Van Jacobson, “The
synchronization of periodic routing messages,” IEEE-ACM
Transactions on Networking 2 (1994), pp. 122–136.

34 RESISTANT STRAINS OF TUBERCULOSIS Anonymous, “Lighting the
way: Tuberculosis su�erers are getting glowing help from the
�re�y,” Time (May 17, 1993), p. 25. This article is based on the
study by W. R. Jacobs et al., “Rapid assessment of drug
susceptibilities of mycobacterium-tuberculosis by means of
luciferase reporter phages,” Science 260 (1993), pp. 819–822.

35 10 PLAUSIBLE EXPLANATIONS The various hypotheses about the
adaptive signi�cance of �re�y synchrony are summarized in
John Buck, “Synchronous rhythmic �ashing of �re�ies. II,”
Quarterly Review of Biology 63 (1988), pp. 265–289.

35 LATEST THEORY M. D. Green�eld and I. Roizen, “Katydid
synchronous chorusing is an evolutionarily stable outcome of
female choice,” Nature 364 (1993), pp. 618–620. The idea that
synchrony re�ects competition was proposed here for katydids,
but it might apply to �re�ies, �ddler crabs, and other creatures
as well.

35 PERIODICAL CICADAS Susan Milius, “Cicada subtleties: What part
of 10,000 cicadas screeching don’t you understand?” Science
News 157 (June 24, 2000), pp. 408–410. There has been a lot
of intriguing speculation about why the reproductive cycles of
cicadas are often 13 or 17 years, but never 12, 14, 15, 16, or 18
years. The explanation may have something to do with number
theory. Both 13 and 17 are prime numbers (divisible only by
themselves and 1), while the others are not. If potential
predators have 2- to 5-year life cycles, as many of them
probably do, this numerology helps the cicadas to avoid
emerging in sync with the predators. See the chapter titled “Of
bamboos, cicadas, and the economy of Adam Smith” in Stephen
Jay Gould, Ever Since Darwin: Re�ections in Natural History
(Penguin Books, 1977). For an alternative theory, and a review
of the recent literature on the cicada problem, see Eric Goles,
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Oliver Schulz, and Mario Markus, “Prime number selection of
cycles in a predator-prey model,” Complexity 6 (2001), pp. 33–
38.

35 FIDDLER CRABS P.R.Y. Backwell, M.D. Jennions, N.I. Passmore,
and J.H. Christy, “Synchronous waving in a �ddler crab,”
Nature 391 (1998), pp. 31–32. A popular account appeared in
Malcolm W. Browne, “Flirting male crabs found to wave claws
in unison,” New York Times (January 6, 1998), p. C4.

36 MENSTRUAL SYNCHRONY The landmark paper is Martha K.
McClintock, “Menstrual synchrony and suppression,” Nature
229 (1971), pp. 244–245.

36 SOMETHING TO DO WITH PHEROMONES Anonymous, “Olfactory
synchrony of menstrual cycles,” Science News 112 (July 2,
1977), p. 5. The original report was published three years later
in M.J. Russell, G.M. Switz, and K. Thompson, “Olfactory
in�uences on the human menstrual cycle,” Pharmacology
Biochemistry and Behavior 13 (1980), pp. 737–738.

37 CHEMICAL COMMUNICATION BETWEEN WOMEN Kathleen Stern and
Martha K. McClintock, “Regulation of ovulation by human
pheromones,” Nature 392 (1998), pp. 177–179. McClintock’s
work on menstrual synchrony and human pheromones remains
controversial. She gives a spirited defense of her work in
Martha K. McClintock, “Whither menstrual synchrony?” Annual
Review of Sexual Research 9 (1998), pp. 77–95. See also the
entertaining and illuminating popular account given in Natalie
Angier, Woman: An Intimate Geography (New York: Houghton
Mi�in, 1999), pp. 170–175. She describes McClintock as “a
woman of verve, rigor, and high, loopy enthusiasm who wears
bright scarves over cashmere sweaters and unexpected
accessories, like dove-gray socks patterned with black �shes.”

CHAPTER 2 BRAIN WAVES AND THE CONDITIONS FOR SYNC

40 A UNIFIED FRAMEWORK Norbert Wiener, Cybernetics, 2nd edition
(Cambridge, Massachusetts: MIT Press, 1961).

40 WIENER WILL NEVER BE FORGOTTEN For a survey of Wiener’s work,
and a small sample of the many hilarious anecdotes about him,
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see Pesi R. Masani, Norbert Wiener 1894–1964 (Vita
Mathematica, vol. 5), (New York: Springer-Verlag, 1990).

42 ALPHA RHYTHM The �nal chapter of Cybernetics summarizes
Wiener’s ideas about the alpha rhythm of brain waves, and
includes speculations about self-organization in other systems
of coupled oscillators. (He thought it might have something to
do with viruses, genes, and cancer.) For an earlier and more
technical exposition, see Norbert Wiener, Nonlinear Problems in
Random Theory (Cambridge, Massachusetts: MIT Press, 1958).

45 HE DREW A CARTOON VERSION The double-dip spectrum is
redrawn from a diagram on page 69 of Norbert Wiener,
Nonlinear Problems in Random Theory (Cambridge,
Massachusetts: MIT Press, 1958).

45 “WITHOUT DARING TO PRONOUNCE” Cybernetics, page 201.
46 WHEN WINFREE THOUGHT ABOUT THE PROBLEM His earliest work on

group sync, in 1965, was based on an experiment involving an
array of 71 �ickering neon lamps coupled electrically to one
another. Winfree called this gadget “the �re�y machine,” and
wrote that his aim was “just to look and see what would
happen”—see Chapter 11, The Geometry of Biological Time. He
soon realized that computer simulation would provide much
greater �exibility, control, and ease of interpretation. The
results of those investigations are described in Arthur T.
Winfree, “Biological rhythms and the behavior of populations
of coupled oscillators,” Journal of Theoretical Biology 16 (1967),
pp. 15–42, on which the rest of this section is based.

46 COMPLICATIONS THAT WOULD HAVE REPULSED NEARLY ANYONE ELSE
For readers with training in mathematics or physics: You may
be wondering what was so novel about the problem that
Winfree set for himself, and in particular, how it di�ered from
what we are all taught about coupled oscillators. What you
need to remember is that the textbook problems always assume
that the oscillators are linear (that is, they are simple harmonic
oscillators) coupled by linear interactions (e.g., by using springs
that obey Hooke’s law). In this simple case, the dynamics are
explicitly solvable by the technique of normal modes. But
Winfree realized that this would be irrelevant to the biological
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problem, because biological oscillators are not linear. Unlike
their linear cousins, which can cycle at any amplitude, most
biological oscillators stubbornly regulate their amplitude;
hence, they are best modeled as nonlinear, self-sustained
oscillators with stable limit cycles. In the mid-1960s, the
available mathematical theory of such beasts ended at systems
of two or three coupled limit-cycle oscillators. No one knew
anything about populations of them, especially if their
frequencies were randomly distributed across the population.
Also, please realize that such oscillators should not be confused
with conservative nonlinear oscillators (like the anharmonic
oscillators used in molecular dynamics). These conserve energy
and can have any amplitude—again, an inappropriate
assumption for modeling biological, self-sustained oscillators.

49 CUT TO THE SIMPLEST PROBLEM In the language of statistical
physics, Winfree was making a “mean-�eld” approximation.

51 NONLINEAR For an introduction to nonlinear di�erential
equations, see Steven H. Strogatz, Nonlinear Dynamics and
Chaos: With Applications to Physics, Biology, Chemistry, and
Engineering (Cambridge, Massachusetts: Perseus Books, 1994).

55 KURAMOTO’S MODEL The original paper—an almost
impenetrably brief note—is Y. Kuramoto, “Self-entrainment of
a population of coupled nonlinear oscillators,” in International
Symposium on Mathematical Problems in Theoretical Physics,
edited by H. Araki (Springer-Verlag: Lecture Notes in Physics,
vol. 39, 1975), pp. 420–422. A much clearer treatment is given
in Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence
(Berlin: Springer-Verlag, 1984). For a pedagogical review of the
model and its mathematical analysis, see Steven H. Strogatz,
“From Kuramoto to Crawford: Exploring the onset of
synchronization in populations of coupled oscillators,” Physica
D 143 (2000), pp. 1–20.

59 NANCY KOPELL For an introduction to her work on coupled
oscillators applied to neurobiology, see Nancy Kopell, “Toward
a theory of modelling central pattern generators,” in Neural
Control of Rhythmic Movement in Vertebrates, edited by A. H.
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Cohen, S. Rossignol, and S. Grillner (New York: John Wiley,
1988), pp. 369–413.

61 “OSCILLATOR FLUID” Steven H. Strogatz and Renato E. Mirollo,
“Stability of incoherence in a population of coupled
oscillators,” Journal of Statistical Physics 63 (1991), pp. 613–
635.

64 STRANGE RESULTS Steven H. Strogatz, Renato E. Mirollo, and
Paul C. Matthews, “Coupled nonlinear oscillators below the
synchronization threshold: Relaxation by generalized Landau
damping,” Physical Review Letters 68 (1992), pp. 2730–2733.

64 LANDAU DAMPING Lev Landau, “On the vibrations of the
electronic plasma,” journal of Physics USSR 10 (1946), pp. 25–
34. For an elementary introduction, see David Sagan, “On the
physics of Landau damping,” American Journal of Physics 62
(1994), pp. 450–462.

64 CAR ACCIDENT Isaac Asimov, Asimov’s Biographical Encyclopedia
of Science and Technology (Garden City, New York: Doubleday,
1972), p.723.

65 SOLVE A LONG-STANDING PROBLEM John David Crawford was a
gracious and brilliant applied mathematician who died at a
tragically young age after a battle with cancer. For a glimpse of
his formidable work on coupled oscillators and plasmas, see
John David Crawford, “Amplitude expansions for instabilities
in populations of globally-coupled oscillators,” Journal of
Statistical Physics 74 (1994), pp. 1047–1084, and “Amplitude
equations for electrostatic waves: Universal singular behavior
in the limit of weak instability,” Physics of Plasmas 2 (1995),
pp. 97–128.

65 DO THEY PREDICT The �rst experimental test of the Kuramoto
model was reported recently in a system of coupled chemical
oscillators; see Istvan Z. Kiss, Yumei Zhai, and John L. Hudson,
“Emerging coherence in a population of chemical oscillators,”
Science 296 (2002), pp. 1676–1678. Hudson and his colleagues
veri�ed the phase transition that Winfree and Kuramoto had
predicted: Synchronization broke out abruptly once the
coupling between the oscillators exceeded a certain threshold.
They also found that the order parameter (the measure of how
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synchronized the oscillators are) grew as the coupling strength
was increased, with the precise mathematical dependence
between order and coupling that Kuramoto anticipated. But no
comparably precise test has yet been reported for biological
oscillators.

68 HE DESCRIBES THE SPECTRUM Cybernetics, pp. 190–191.
69 THE BRAIN DOES CONTAIN A POPULATION OF OSCILLATORS In all

mammals, the master circadian clock is localized in a tiny pair
of neural clusters situated just above the optic chiasm, the site
where the optic nerves crisscross en route to the brain. The
twin clusters, known as the suprachiasmatic nuclei, together
contain thousands of specialized neurons that collectively
generate an electrical signal which waxes and wanes on a 24-
hour cycle, orchestrating the tissues and organs in the animal’s
body and coordinating their daily functions. Welsh and
Reppert’s new �nding was that the individual cells are capable
of spontaneous oscillation; even when they were removed from
a rat’s brain and isolated from one another, they continued to
�re electrical discharges for weeks. At some times of day they
were silent; at other times they buzzed furiously. The
disembodied cells continued to behave like responsible little
alarm clocks, steadfastly ringing the wake-up call for an animal
that no longer needed it. Furthermore, di�erent cells had
di�erent natural periods, ranging from 20 to 25 hours. The
distribution of periods was roughly bell-shaped, though its
precise contour is not known yet. See D. K. Welsh, D.E.
Logothetis, M. Mesiter, and S.M. Reppert, “Individual neurons
dissociated from rat suprachiasmatic nucleus express
independently phased circadian �ring rhythms,” Neuron 14
(1995), pp. 697–706.

Furthermore, Reppert and his colleagues showed in 1997
that mutant hamsters with fast clock cells, say with an average
period of 20 hours, had correspondingly fast activity rhythms—
they would jump onto the running wheels in their cages every
20 hours instead of every 24. To put it plainly, if your clock
cells run fast, you’ll run fast. Similar experiments on mice
showed that the periods of an animal’s clock cells are more
broadly distributed than those of its behavioral rhythms. In
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other words, sloppy clocks conspire to make a more precise
organism. That observation is consistent with Wiener’s idea
that the ensemble takes an average over the widely dispersed
periods of its constituents, and therefore will be a more
accurate clock than any one of them; see Chen Liu, David R.
Weaver, Steven H. Strogatz, and Steven M. Reppert, “Cellular
construction of a circadian clock: Period determination in the
suprachiasmatic nuclei,” Cell 91 (1997), pp. 855–860, and the
related report by Erik D. Herzog, Joseph S. Takahashi, and
Gene D. Block, “Clock controls circadian period in isolated
suprachiasmatic nucleus neurons,” Nature Neuroscience 1
(1998), pp. 708–713.

CHAPTER 3 SLEEP AND THE DAILY STRUGGLE FOR SYNC

71 INTERNAL BODY CLOCKS Good general references about human
sleep and circadian rhythms include Martin C. Moore-Ede,
Frank M. Sulzman, and Charles A. Fuller, The Clocks That Time
Us: Physiology of the Human Circadian Timing System
(Cambridge, Massachusetts: Harvard University Press, 1982);
Richard M. Coleman, Wide Awake at 3:00 A.M.: By Choice or By
Chance? (New York: W. H. Freeman, 1986); Arthur T. Winfree,
The Timing of Biological Clocks (New York: Scienti�c American
Press, 1987).

71 “BEING BLIND IS OKAY” Quoted in Lynne Lamberg, “Blind people
often sleep poorly: Research shines light on therapy,” Journal of
the American Medical Association 280 (October 7, 1998), p.
1123.

72 ONE OF THE HOTTEST FIELDS After 40 years of frustration,
circadian biologists are �nally beginning to �gure out how
circadian rhythms are generated at the molecular level. For an
unabashedly joyous review of these breakthroughs, see Steven
M. Reppert, “A clockwork explosion!” Neuron 21 (1998), pp. 1–
4. A more recent summary is Steven M. Reppert and David R.
Weaver, “Molecular analysis of mammalian circadian rhythms,”
Annual Review of Physiology 63 (2001), pp. 647–676.

72 SUITES OF GENES Kai-Florian Storch et al., “Extensive and
divergent circadian gene expression in liver and heart,” Nature
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417 (2002), pp. 78–83.
72 SYNCHRONY OCCURS BETWEEN THE VARIOUS ORGANS Shin Yamazaki

et al., “Resetting central and peripheral circadian oscillators in
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301–305.

150 PREOCCUPIED WITH PARANORMAL PHENOMENA For an interview in
which Joseph-son discusses his interests outside of mainstream
physics, see John Gliedman, “The Josephson junction,” Omni 4
(July 1982), pp. 86–&. The spoon bending quote is on p. 116.
For more recent snapshots, see John Horgan, “Josephson’s
inner junction,” Scienti�c American 272 (May 1995), pp. 40–41,
and http://www.tcm.phy.cam.ac.uk/-
bdj10/mm/articles/PWpro�le.html. For balance, you should

http://www.tcm.phy.cam.ac.uk/-bdj10/mm/articles/PWprofile.html


315

also read Joseph-son in his own words. His Web page contains
a great deal of information about his current views; see
http://www.tcm.phy.cam.ac.uk/-bdj10/.

150 HOMEOPATHY Homeopathy is a system of alternative medicine
in which diseases are treated with highly diluted substances
that would, if applied in larger doses, cause the same symptoms
as the disease itself. Its proponents believe that the remedy
becomes more e�ective the more diluted it is. Taken to an
absurd extreme, a super-dilute solution might not even contain
a single molecule of the supposedly active substance—it could
be pure water—and yet the homeopathic believers maintain
that the potion can still be e�ective, thanks to a “memory” that
the substance imparts on the water molecules. Josephson has
supported a scientist named Jacques Benveniste, who claims
that this memory of water might have an electromagnetic
signature, and that this signature could could be captured
electronically, digitized, and then transmitted by E-mail, to
convert a faraway jar of ordinary water into a homeopathic
solution with the desired medicinal properties. Josephson
proposed an experiment to test the idea, much to the delight of
the physicist Robert Park, a longtime skeptic who had made
fun of Benveniste, and who promptly accepted the challenge;
see Leon Jaro�, “Homeopathic e-mail,” Time (May 17, 1999),
p. 77. But as of this writing, the experiment still hasn’t taken
place. I’m not sure why not. The most generous interpretation
is that the two sides haven’t been able to agree on the protocol.
James Randi, a.k.a. “The Amazing Randi,” the noted magician,
skeptic, and debunker, takes a dimmer view. He accuses
Josephson and his homeopathic associates of stalling and
�nally backing out of the experiment. See Randi’s Web page
http://www.randi.org/jr/01–26-2001.html, and search his Web
site for “Josephson.”

151 A SPECIAL SET OF STAMPS Erica Klarreich, “Stamp booklet has
physicists licked,” Nature 413 (2001), p. 339; Robin McKie,
“Royal Mail’s Nobel guru in telepathy row,” The Observer
(September 30, 2001). For a spirited and funny counterattack
on Josephson’s critics by a �ne physicist and science writer, see

http://www.tcm.phy.cam.ac.uk/-bdj10/mm/articles/PWprofile.html
http://www.tcm.phy.cam.ac.uk/-bdj10/
http://www.randi.org/jr/01%E2%80%9326-2001.html
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Robert Matthews, “Time travel,” Sunday Telegraph (London)
(November 4, 2001).

CHAPTER 6 BRIDGES

153 RIDING HIS UNICYCLE This wacky image of Wiener comes from
Murray Gell-Mann’s recollections of his days as a student at
MIT. See George Johnson, Strange Beauty: Murray Gell-Mann
and the Revolution in Twentieth-Century Physics (New York:
Vintage Books, 2000), p. 69.

153 THE FIRST BRIDGE. E. McCumber, “E�ect of ac impedance on dc
voltage-current characteristics of superconductor weak-link
junctions,” Journal of Applied Physics 39 (1968), pp. 3113–
3118; W. C. Stewart, “Current-voltage characteristics of
Josephson junctions,” Applied Physics Letters 12 (1968), pp.
277–280.

155 EQUATIONS FOR THE PENDULUM ARE NONLINEAR The mechanical
analog of a Josephson junction is a damped pendulum driven
by a constant torque. For a derivation of this analogy, and an
analysis of the nonlinear dynamics of both systems, see
Sections 4.6 and 8.5 in Steven H. Strogatz, Nonlinear Dynamics
and Chaos: With Applications to Physics, Biology, Chemistry, and
Engineering (Cambridge, Massachusetts: Perseus Books, 1994).

157 A PARADIGM OF CHAOS B. A. Huberman and J. P. Crutch�eld,
“Chaotic states of anharmonic systems in periodic �elds,”
Physical Review Letters 43 (1979), pp. 1743–1747; D.
D’Humieres, M. R. Beasley, B.A. Huberman, and A. Lib-chaber,
“Chaotic states and routes to chaos in the forced pendulum,”
Physical Review A 26 (1982), pp. 3483–3496; N. F. Pedersen
and A. Davidson, “Chaos and noise rise in Josephson
junctions,” Applied Physics Letters 39 (1981), pp. 830–832; R. L.
Kautz and R. Monaco, “Survey of chaos in the RF-biased
Josephson junction,” Journal of Applied Physics 57 (1985), pp.
875–889.

158 JOSEPHSON ARRAYS For recent reviews, see R. S. Newrock et
al., “The two-dimensional physics of Josephson junction
arrays,” Solid State Physics: Advances in Research and
Applications 54 (2000), pp. 263–512; C. A. Hamilton, C. J.
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Burroughs, and S. P. Benz, “Josephson voltage standard: A
review,” IEEE Transactions on Applied Superconductivity 7
(1997), pp. 3756–3761.

159 “SELF-ORGANIZED CRITICALITY” The original paper was Per Bak,
Chao Tang, and Kurt Wiesenfeld, “Self-organized criticality: An
explanation of 1/f noise,” Physical Review Letters 59 (1987), pp.
381–384.

159 “SELF-AGGRANDIZING TRIVIALITY” I don’t know who came up
with this phrase, but I heard it in a lecture given by the
physicist Predrag Cvitanovic.

160 STABILITY CHARACTERISTICS OF THE SYNCHRONIZED STATE Peter
Hadley, Malcolm R. Beasley, and Kurt Wiesenfeld, “Phase
locking of Josephson-junction series arrays,” Physical Review B
38 (1988), pp. 8712–8719.

161 THE NUMBER GROWS EXTREMELY RAPIDLY Kurt Wiesenfeld and
Peter Hadley, “Attractor crowding in oscillator arrays,” Physical
Review Letters 62 (1989), pp. 1335–1338.

163 IT COMES STRAIGHT FROM THE CIRCUIT EQUATIONS The circuit
equations are derived and analyzed in K. Y. Tsang, R. E.
Mirollo, S. H. Strogatz, and K. Wiesenfeld, “Dynamics of a
globally coupled oscillator array,” Physica D 48 (1991), pp.
102–112. On the last page of the paper, we describe our
observations of the unexpected “Russian doll” structure
(technically known as a foliation of phase space by nested two-
dimensional tori).

168 KURT AND HIS STUDENT S. Nichols and K. Wiesenfeld,
“Ubiquitous neutral stability of splay-phase states,” Physical
Review A 45 (1992), pp. 8430–8435.

168 JIM SWIFT J. W. Swift, S. H. Strogatz, and K. Wiesenfeld,
“Averaging of globally coupled oscillators,” Physica D 55
(1992), pp. 239–250.

168 SHINYA WATANABE S. Watanabe and S. H. Strogatz,
“Integrability of a globally coupled oscillator array,” Physical
Review Letters 70 (1993), pp. 2391–2394; “Constants of motions
for superconducting Josephson arrays,” Physica D 74 (1994),
pp. 197–253.
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169 THERE, STARING US IN THE FACE Kurt Wiesenfeld, Pere Colet, and
Steven H. Strogatz, “Synchronization transitions in a disordered
Josephson series array,” Physical Review Letters 76 (1996), pp.
404–407; “Frequency locking in Josephson arrays: Connection
with the Kuramoto model,” Physical Review E 57 (1998), pp.
1563–1569. For a popular account of this work, see Ivars
Peterson, “Keeping the beat,” Science News 149 (April 13,
1996), pp. 236–237.

170 COUPLED LASERS G. Kozyre�, A. G. Vladimirov, and P. Mandel,
“Global coupling with time delay in an array of semiconductor
lasers,” Physical Review Letters 85 (2000), pp. 3809–3812.

170 NEUTRINOS J. Pantaleone, “Stability of incoherence in an
isotropic gas of oscillating neutrinos,” Physical Review D 58
(1998), article number 073002.

171 MILLENNIUM BRIDGE. Sample, “Bad vibrations: How could the
designers of a revolutionary bridge miss something so
obvious?” New Scientist 167 (July 8, 2000), p. 14; Deyan Sudjic,
“At last: a bridge you can cross. After a shaky start, the
Millennium Bridge is undergoing major surgery. Here, its
creators reveal what went wrong and why the blade of light
won’t wobble when it reopens,” The Observer (March 11, 2001).

171 “A BLADE OF LIGHT” Lord Foster is quoted in Matthew Jones,
“Survey: The South Bank reborn: Brave vision of blade of
light,” Financial Times (London) (May 9, 2000), p.2.

172 ARUP, THE ENGINEERING FIRM Arup’s explanation of what caused
the bridge to wobble is given at
http://www.arup.com/MillenniumBridge/. A simulation of the
bridge’s motion is available on-line at
http://www2.eng.cam.ac.uk/-gm249/MillenniumBridge/.

175 LETTER TO THE EDITOR Brian Josephson, “Out of step on the
bridge,” The Guardian (London) (June 14, 2000), Guardian
Leader Pages, p.23.

CHAPTER 7 SYNCHRONIZED CHAOS

179 “THAT LITTLE MODEL” E.N. Lorenz, “Deterministic nonperiodic
�ow,” Journal of the Atmospheric Sciences 20 (1963), pp. 130–

http://www.arup.com/MillenniumBridge/
http://www2.eng.cam.ac.uk/-gm249/MillenniumBridge/
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141.
179 THE MODERN FIELD OF CHAOS THEORY The best introduction to

chaos theory is still James Gleick’s captivating classic, Chaos:
Making a New Science (New York: Viking, 1987). It’s full of
wonderful inside stories about scientists at work, and Gleick’s
explanations are both accessible and accurate. Lorenz’s own
view of the subject is given in Edward N. Lorenz, The Essence of
Chaos (Seattle: University of Washington Press, 1993). For
those seeking an elementary introduction to the mathematics
and science of chaos, see Steven H. Strogatz, Nonlinear
Dynamics and Chaos: With Applications to Physics, Biology,
Chemistry, and Engineering (Cambridge, Massachusetts: Perseus
Books, 1994). The Lorenz equations are discussed in Chapter 9.

180 HYPERION J. Wisdom, S.J. Peale, and F. Mignard, “The chaotic
rotation of Hyperion,” Icarus 58 (1984), pp. 137–152.

183 BUTTERFLY EFFECT E. N. Lorenz, “Predictability: Does the �ap
of a butter�y’s wings in Brazil set o� a tornado in Texas?”
Address at the annual meeting of the American Association for
the Advancement of Science in Washington, December 29,
1979.

184 CHAOS PROMISED TO BE USEFUL W. L. Ditto and L. M. Pecora,
“Mastering chaos,” Scienti�c American 269 (August 1993), pp.
78–84.

185 DESKTOP WATERWHEEL Strogatz (1994), Section 9.1.
188 “FOR WANT OF A NAIL” Cited in this context by Gleick (1987),

p. 23, who in turn cites an article by Norbert Wiener.
190 THE LYAPUNOV TIME The conceptual importance of the

Lyapunov time is discussed in J. Lighthill, “The recently
recognized failure of predictability in Newtonian dynamics,”
Proceedings of the Royal Society of London, Series A:
Mathematical, Physical, and Engineering Sciences 407 (1986), pp.
35–50.

190 SOLAR SYSTEM Its Lyapunov time is estimated in G. Sussman
and J. Wisdom, “Chaotic evolution of the solar system,” Science
257 (1992), pp. 56–62.
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191 “STRANGE ATTRACTOR” For a clear introduction to strange
attractors, see J. P. Crutch�eld, J. D. Farmer, N. H. Packard,
and R. S. Shaw, “Chaos,” Scienti�c American 255 (December
1986), pp.46–&.

194 WHEN LOU PECORA BEGAN TO DAYDREAM Pecora told me the
colorful story of his work on synchronized chaos (with Tom
Carroll) during two phone interviews conducted on January 27
and February 1, 2002.

197 HIS SCHEME The seminal paper on synchronized chaos is L. M.
Pecora and T. L. Carroll, “Synchronization in chaotic systems,”
Physical Review Letters 64 (1990), pp. 821–824. For a review of
more recent work, see L. M. Pecora et al., “Fundamentals of
synchronization in chaotic systems: Concepts and applications,”
Chaos 7 (1997), pp. 520–543. As with many signi�cant
discoveries, we now know that Pecora and Carroll were not
actually the �rst to notice the possibility of synchronized chaos.
See, for example, H. Fujisaka and T. Yamada, “Stability theory
of synchronized motion in coupled-oscillator systems,” Progress
of Theoretical Physics 69 (1983), pp. 32–47, and V.S.
Afraimovich, N. N. Verichev, and M. I. Rabinovich, “General
synchronization,” Radiophysics and Quantum Electronics 29
(1986), pp. 795–803. But those contributions went largely
unnoticed, perhaps because they did not emphasize the novelty
of the phenomenon or its potential importance for
communications.

201 CUOMO AND OPPENHEIM’S PAPER Kevin M. Cuomo and Alan V.
Oppenheim, “Circuit implementation of synchronized chaos
with applications to communications,” Physical Review Letters
71 (1993), pp. 65–68; K. M. Cuomo, A. V. Oppenheim, and S.
H. Strogatz, “Synchronization of Lorenz-based chaotic circuits
with applications to communications,” IEEE Transactions on
Circuits and Systems II: Analog and Digital Signal Processing 40
(1993), pp. 626–633. A popular account of the use of chaos for
private communications appeared in J.C.G. Lesurf, “Electronics:
Chaos in harness,” Nature 365 (1993), pp. 604–605.

203 FOR PEOPLE USING CELLULAR PHONES Steve Boggan, “Bugging:
Can you hear me? Yes, darling, and so can an awful lot of other
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people,” The Independent (London) (January 17, 1993); Susan
Levine, “Eavesdropping on cellular calls is illegal but easy,” The
Washington Post (January 11, 1997), p. A01; Juliet Eilperin,
“Hill tape dispute allowed to continue,” The Washington Post
(January 9, 2002), p. A17.

204 KEVIN SHORT Kevin M. Short, “Steps toward unmasking secure
communications,” International Journal of Bifurcation and Chaos
4 (1994), pp. 959–977; J. B. Geddes, K. M. Short, and K. Black,
“Extraction of signals from chaotic laser data,” Physical Review
Letters 83 (1999), pp. 5389–5392.

204 CHAOTIC COMMUNICATIONS USING LASERS G. D. VanWiggeren and
R. Roy, “Communication with chaotic lasers,” Science 279
(1998), pp. 1198–1200. For a commentary on this article, see
D. J. Gauthier, “Chaos has come again,” Science 279 (1998), pp.
1156–1157.

CHAPTER 8 SYNC IN THREE DIMENSIONS

206 THE GEOMETRY OF BIOLOGICAL TIME Arthur T. Winfree, The
Geometry of Biological Time (New York: Springer-Verlag, 1980).

207 DATA FROM HIS OWN MOTHER Shown on p.453 of Winfree
(1980), in a section titled “Statistics (‘Am I Overdue?!’).”
Winfree once told me that his mother Dorothy kept accurate
records of all her menstrual periods because she was a
practicing Catholic who used the rhythm method of birth
control.

207 “NIXON CHOSE THAT WEEK TO INVADE CAMBODIA” Winfree (1980),
p.291.

210 THE INTESTINE Winfree (1980), pp. 325–329, contains a
discussion of neuromuscular wave propagation in the small
intestine, regarded as a one-dimensional continuum of
oscillators.

210 THE STOMACH The literature supporting the view that the
stomach is a two-dimensional bag of oscillators is discussed on
pp. 329–330 of Winfree (1980).

210 THE HEART For Winfree’s views on three-dimensional waves in
the heart, see A. T. Winfree, When Time Breaks Down: The
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Three-Dimensional Dynamics of Electrochemical Waves and
Cardiac Arrhythmias (Princeton, New Jersey: Princeton
University Press, 1987).

210 CARDIOLOGISTS HAD KNOWN FOR DECADES G. R. Mines, “On
circulating excitations on heart muscles and their possible
relation to tachycardia and �brillation,” Transactions of the
Royal Society of Canada 4 (1914), pp. 43–53; W. E. Garrey,
“Nature of �brillary contraction in the heart,” American Journal
of Physiology 33 (1914), pp. 397–414.

210 “CIRCUS MOVEMENTS” M. A. Allessie, F. I. M. Bonke, and F.J.
Schopman, “Circus movement in rabbit atrial muscle as a
mechanism of tachycardia,” Circulation Research 33 (1973), pp.
54–62.

211 DIE SUDDENLY A. T. Winfree, “Sudden cardiac death: A
problem in topology,” Scienti�c American 248 (May 1983), pp.
144–&; M. S. Eisenberg, L. Bergner, A. P. Hallstrom, and R. O.
Cummins, “Sudden cardiac death,” Scienti�c American 254
(May 1986), pp. 37–&.

212 ZHABOTINSKY SOUP A. N. Zaikin and A. M. Zhabotinsky,
“Concentration wave propagation in two-dimensional liquid-
phase self-oscillating systems,” Nature 225 (1970), pp. 535–
537.

214 A TALE OF DOGMA, DISAPPOINTMENT, AND ULTIMATE VINDICATION A.
T. Winfree, “The prehistory of the Belousov-Zhabotinsky
oscillator,” Journal of Chemical Education 61 (1984), pp. 661–
663.

216 SPIRAL WAVES A. T. Winfree, “Spiral waves of chemical
activity,” Science 175 (1972), pp. 634–&; “Rotating chemical
reactions,” Scienti�c American 230 (June 1974), pp.82–&.

217 JELLYFISH A. G. Mayer, “Rhythmical pulsation in
scyphomedusae,” Papers of the Tortugas Laboratory of the
Carnegie Institution of Washington 1 (1908), pp. 115–131.

219 A NEW KIND OF SPIRAL WAVE K. I. Agladze and V. I. Krinsky,
“Multi-armed vortices in an active chemical medium,” Nature
296 (1982), pp. 424–426.
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219 SCROLL WAVE A. T. Winfree, “Scroll-shaped waves of chemical
activity in three dimensions,” Science 181 (1973), pp. 937–939.
The �rst direct visualization of a scroll ring appeared in B. J.
Welsh, J. Gomatam, and A. E. Burgess, “Three-dimensional
chemical waves in the Belousov-Zhabotinskii reaction,” Nature
304 (1983), pp. 611–614.

220 WINFREE WONDERED (1980), pp. 254–257.
221 NONSENSE PICTURE IN THE STYLE OF ESCHER For the nonsense

picture, along with accurate pictures of scroll rings, see S. H.
Strogatz, M. L. Prueitt, and A. T. Winfree, “Exotic shapes in
chemistry and biology,” IEEE Computer Graphics and
Applications 4 (1984), pp. 66–69.

223 KNOTS WERE HARD A. T. Winfree and S. H. Strogatz, “Singular
�laments organize chemical waves in three dimensions. III.
Knotted waves,” Physica D 9 (1983), pp.333–345.

225 LINKING NUMBER For a review of the mathematics needed to
understand the structure of scroll waves, see J. J. Tyson and S.
H. Strogatz, “The di�erential geometry of scroll waves,”
International Journal of Bifurcation and Chaos 1 (1991), pp. 723–
744.

226 THE EXCLUSION PRINCIPLE A. T. Winfree and S. H. Strogatz,
“Singular �laments organize chemical waves in three
dimensions. IV. Wave taxonomy.” Physica D 13 (1984), pp.
221–233; “Organizing centers for three-dimensional chemical
waves,” Nature 311 (1984), pp. 611–615. More elegant proofs
of the exclusion principle were later found; see A. T. Winfree,
E. M. Winfree, and H. Seifert, “Organizing centers in a cellular
excitable medium,” Physica D 17 (1985), pp. 109–115.

226 MEANDER The meandering of spiral waves is discussed in L.
Ge et al., “Transition from simple rotating chemical spirals to
meandering and traveling spirals,” Physical Review Letters 77
(1996), pp. 2105–2108, and in M. Woltering, R. Girnus, and M.
Markus, “Quanti�cation of turbulence in the Belousov-
Zhabotinsky reaction by monitoring wave tips,” Journal of
Physical Chemistry A 103 (1999), pp. 4034–4037. A key
theoretical contribution was made by D. Barkley, “Euclidean
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symmetry and the dynamics of rotating spiral waves,” Physical
Review Letters 72 (1994), pp. 164–167.

226 THE HOLY GRAIL REMAINS CARDIAC ARRHYTHMIAS For a sample of
recent thinking, see the Special Focus issue of Chaos, March
1998. Also, see A. T. Winfree, “Electrical turbulence in three-
dimensional heart muscle,” Science 266 (1994), pp. 1003–1006;
A. Gar�nkel et al., “Quasiperiodicity and chaos in cardiac
�brillation,” Journal of Clinical Investigation 99 (1997), pp. 305–
314; F.X. Witkowski et al., “Spatiotemporal evolution of
ventricular �brillation,” Nature 392 (1998), pp.78–82; A.
Pan�lov and A. Pertsov, “Ventricular �brillation: Evolution of
the multiple-wavelet hypothesis,” Philosophical Transactions of
the Royal Society of London, Series A: Mathematical, Physical, and
Engineering Sciences 359 (2001), pp. 1315–1325; V.N. Biktashev
et al., “Three-dimensional organisation of reentrant
propagation during experimental ventricular �brillation,”
Chaos, Solitons, and Fractals 13 (2002), pp. 1713–1733.

227 HOW LINKED AND KNOTTED SCROLL WAVES WOULD MOVE A. T.
Winfree, “Persistent tangles of vortex rings in excitable media,”
Physica D 84 (1995), pp. 126–147; J. P. Keener and J. J. Tyson,
“The dynamics of scroll waves in excitable media,” SIAM
Review 34 (1992), pp. 1–39; D. Margerit and D. Barkley,
“Selection of twisted scroll waves in three-dimensional
excitable media,” Physical Review Letters 86 (2001), pp. 175–
178. An extensive review of scroll-wave dynamics appears in
the updated version of The Geometry of Biological Time (2nd
edition, 2001).

227 THE BASIC LOCALIZED SOLUTIONS A. T. Winfree, “Stable particle-
like solutions to the nonlinear wave equations of 3-dimensional
excitable media,” SIAM Review 32 (1990), pp. 1–53. An
intriguing and closely related study from wave physics is M. V.
Berry and M. R. Dennis, “Knotted and linked phase singularities
in monochromatic waves,” Proceedings of the Royal Society of
London, Series A: Mathematical, Physical, and Engineering Sciences
457 (2001), pp. 2251–2263.

227 OPTICAL TOMOGRAPHY A.T. Winfree et al., “Quantitative optical
tomography of chemical waves and their organizing centers,”
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Chaos 6 (1996), pp. 617–626. For another promising approach,
see A. L. Cross et al., “Three dimensional imaging of the
Belousov-Zhabotinsky reaction using magnetic resonance,”
Magnetic Resonance Imaging 15 (1997), pp. 719–725.

CHAPTER 9 SMALL-WORLD NETWORKS

229 JOHN GUARE’S 1990 PLAY John Guare, Six Degrees of
Separation (New York: Vintage Books, 1990).

229 THREE INEBRIATED FRATERNITY BROTHERS Ann Oldenburg, “A
thousand links to Kevin Bacon: Game calculates actor’s
connection,” USA Today (October 18, 1996), p. 5D; Mel
Gussow, “Are actors all related? Or is it just Kevin Bacon?” New
York Times (September 19, 1996), p. C13.

230 MARLON BRANDO Anonymous, “Media: Six degrees from
Hollywood,” Newsweek (October 11, 1999), p.6.

230 “SIX DEGREES OF MONICA” David Kirby and Paul Sahre, “Six
degrees of Monica,” New York Times (February 21, 1998), p.
A11.

230 BLACKOUTS IN II STATES Western Systems Coordinating Council
(WSCC), “Disturbance report for the power system outage that
occurred on the Western Interconnection on August 10th, 1996
at 1548 PAST,” (October 1996). Available at
http://www.wscc.com.

231 FOCUS OF MOLECULAR BIOLOGY Two thoughtful papers about the
coming era of genetic and biochemical networks are L. H.
Hartwell, J.J. Hop�eld, S. Leibler, and A. W. Murray, “From
molecular to modular cell biology,” Nature 402 (1999), pp.
C47–52, and U. S. Bhalla and R. Iyengar, “Emergent properties
of networks of biological signalling pathways,” Science 283
(1999), pp.381–387. For a sense of how befuddling these
networks are going to be, see K. W. Kohn, “Molecular
interaction map of the mammalian cell cycle control and DNA
repair systems,” Molecular Biology of the Cell 10 (1999), pp.
2703–2734.

232 THE FIRST COMPARATIVE STUDY Duncan J. Watts and Steven H.
Strogatz, “Collective dynamics of ‘small-world’ networks,”

http://www.wscc.com/
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Nature 393 (1998), pp. 440–442. A fuller presentation is given
in Duncan J. Watts, Small Worlds: The Dynamics of Networks
Between Order and Randomness (Princeton, New Jersey:
Princeton University Press, 1999).

232 THE STUDY OF COMPLEX NETWORKS Three recent books survey
this emerging �eld in an entertaining and accessible fashion:
Mark Buchanan, Nexus: Small Worlds and the Groundbreaking
Science of Networks (New York: W.W. Norton & Company,
2002); Albert-László Barabási, Linked: The New Science of
Networks (Cambridge, Massachusetts: Perseus, 2002); and
Duncan J. Watts, Six Degrees: The Science of a Connected Age
(New York: W.W. Norton & Company, 2003). For an overview
aimed at a scienti�c audience, see Steven H. Strogatz,
“Exploring complex networks,” Nature 410 (2001), pp. 268–
276.

234 HOW MALE CRICKETS MANAGE TO CHIRP TOGETHER T. J. Walker,
“Acoustic synchrony: Two mechanisms in the snowy tree
cricket,” Science 166 (1969), pp. 891–894. For a detailed study
of synchronous chirping in a related species, see E. Sismondo,
“Synchronous, alternating, and phase-locked stridulation by a
tropical katydid,” Science 249 (1990), pp. 55–58. The
evolutionary signi�cance of synchronous chorusing is discussed
by M. D. Green�eld, “Synchronous and alternating choruses in
insects and anurans: Common mechanisms and diverse
functions,” American Zoologist 34 (1994), pp. 605–615.

237 IDEALIZED MODEL OF GENE NETWORKS Stuart A. Kau�man,
“Metabolic stability and epigenesis in randomly constructed
genetic nets,” Journal of Theoretical Biology 22 (1969), pp. 437–
467. For a popular exposition, see Stuart A. Kau�man, At Home
in the Universe: The Search for Laws of Self-Organization and
Complexity (Oxford, England: Oxford University Press, 1995).

243 A TINY WORM Nicholas Wade, “Dainty worm tells secrets of
human genetic code,” New York Times (June 24, 1997). This
worm even has its own Web page: http://elegans.swmed.edu/.

244 NERVOUS SYSTEM HAD BEEN COMPLETELY MAPPED J. G. White, E.
Southgate, J. N. Thomson, and S. Brenner, “The structure of the
nervous system of Caenorhabditis elegans,” Proceedings of the

http://elegans.swmed.edu/
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Royal Society of London, Series B: Biological Sciences 314 (1986),
pp. 1–340.

244 AVAILABLE ON A FLOPPY DISKETTE The diskette containing the
complete map of the worm’s nervous system comes with T. B.
Achacoso and W. S. Yamamoto, AY’s Neuro-anatomy of C.
elegans for Computation (Boca Raton, Florida: CRC Press, 1992).

245 JOHN GUARE HIMSELF Beth Saulnier, “Small world,” Cornell
Magazine 101 (July/August 1998), pp. 24–29. Guare is quoted
on p.26.

245 “SMALL-WORLD PROBLEM” A remarkably prescient formulation
was given by Ithiel de Sola Pool, a political scientist at MIT,
and Manfred Kochen, a mathematician at IBM, in their paper
“Contacts and in�uence,” Social Networks 1 (1978), pp. 1–51.
This paper was drafted in 1958, and circulated informally
among social scientists for two decades before being published.
Milgram himself was inspired by it. Pool and Kochen
understood the simple case of a completely random network,
and they tried to deal with the complications introduced by
clustering, but they couldn’t quite make their way through the
mathematical maze. For more about the social science
literature on this problem, see The Small World, edited by
Manfred Kochen (Nor-wood, New Jersey: Ablex, 1989).

245 STANLEY MILGRAM Stanley Milgram, “The small world
problem,” Psychology Today 2 (1967), pp. 60–67. Sometimes
people dismiss social science as nothing more than an academic
version of common sense, but the work of Milgram refutes that
charge. He was unafraid to ask the big questions, and the
results he obtained were anything but obvious. His most
famous experiments dealt with obedience to authority. Under
the pretense of investigating the e�ects of punishment on short-
term memory, he asked subjects (the “teachers”) to administer
what they thought were painful electrical shocks to other
people (the “learners”), increasing the voltage after each wrong
answer to a word-association problem. Of course, no shocks
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