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Gravitational Lensing: 
 

Addenda Notes for Chapter Seven 
Dave,  1/20/20 – 2/8/20 

 
  

  
Figure 1: Solar Eclipse Data: “A Century of Light-Bending 

Measurements,”  “https://arxiv.org/pdf/2002.01179.pdf 
 

In this chapter, the topics of  bending of starlight, gravitational lensing, and the 
time delay of radar (Shapiro delay) are discussed as approximations for weak 
gravitational fields, GM/c2r ≪ 1. The weak field metric (Eqn. 7.33) can be derived from 
just “The Principle of Equivalence” and Special Relativity not really needing General 
Relativity , e.g., see Schiff (Am. J. Phys. 1960) : 
 http://eotvos.dm.unipi.it/documents/SchiffDickeEtAlPapers/Schiff1960AJPSchiff-2.pdf 

{A separate outline of this is in my Book 2 in the essay “Learning Quantum Mechanics and 
Relativity,” pages 47-50,   http://www.sackett.net/DP_Stroll2.pdf  } 
 

Light bending angle (Δθ = 4GM/bc2) and Shapiro delay depend on gravitational 
space-time curvature with equal contributions of “curvature of time” and the “curvature of 
space.”  Gravitational redshift and ordinary Usual Newtonian gravitational effects are 
only due to time curvature (dt/dτ {dee-tee-dee-tau}) which can only give half of the 
correct answer for light deflection. Very rapidly moving particles above Newtonian 
speeds increasingly see space curvature as well. The standard pictures of space being 
distorted by a heavy ball on a rubber sheet and causing Newtonian planets to orbit – that 
should really represent time curvature as a function of radial distance from the ball.  
 
HISTORY:  

Einstein’s calculation of gravitational lensing by stars predicted very slight 
bending that was hard to measure (see Fig. 1 above). But assemblies of billions of stars 
(galaxies) and trillions of stars (clusters) cause a lot of bending and are much more 
interesting.  

Remember that the discovery that our universe has more than just one galaxy 
and later on a great many galaxies didn’t happen that long ago. In the “Great Debate” at 
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the Smithsonian in 1920, Harlow Shapley argued that the Universe was composed of 
only one big Galaxy; and in his model, our Sun was far from the center of this great 
island Universe.  This view died after 1929 due to Hubble; and Andromeda was called a 
galaxy rather than a nebula after 1924.  Fritz Zwicky became aware of the incredible 
mass of the Coma cluster in 1933 and wrote a paper “Nebulae as Gravitational lenses” 
in 1937.  The first identified gravitationally lensed object was observed as two images of 
a single quasar– the famous “Twin Quasar ” [QSO SBS 0957+561 A/B, 1979, 6 arcsecond 
separation, mentioned on page 231 and shown on page 249 ].  Our old favorite text 
[Gravitation, MTW] came out before that in 1973 and barely mentions gravitational 
lensing.  

NOTE: The word “lens” is usually misleading in the sense that unlike optical 
lenses, general case gravitational lenses lack a focal length (e.g., see top of page 309). 
Instead of a faithful image of a source, we can get arcs and rings.  

 
Angular Momentum (page 218) is defined as L = r × p where momentum p = mv. 

Momentum (in the absence of external force) and angular momentum (in the absence of 
applied torque) are conserved. For a trajectory or orbit of a particle, mass doesn’t vary – 
so lets ignore it.  Angular velocity is  ω = v/r = dθ/dt; so lets rewrite r ×v as r2 (v/r) = r2ω = 
r2dθ/dt = a constant. The constant r×v = b×c or just bc, where the “impact parameter” b 
is the closest distance from the “undeflected path” to the bending mass M  (Figure 7.6), 
e.g., the center of a galaxy or cluster of galaxies. 

 
The famous Hyperluminous galaxy IRAS FSC 10214+4724 is mentioned on 

pages 217 and 219 and 206 {“InfraRed Astronomy Satellite” – “Faint Source Catalog”}. It 
has a redshift of z = 2.286 {and wavelengths scale as (z+1), so its Ly	α peak in figure 5.8 
pg 167 occurs at 121.6 nm x(2.286+1) = 400 nm}. It is a QSO that is gravitationally 
lensed and magnified by a factor of ten in infra-red. 
We are also familiar with a 400 nm “Balmer Break” (recall hydrogen orbital transition 
n=7à2 gives 397 nm [and almost a continuum for higher n’s], and high n  ∞ à 2 is at 
364 nm). This break was emphasized previously in figure 4.6 (pg 130). Figure 7.5 
shows a spectrum for this lensed galaxy with a break near 760 nm {which is 400 nm x 
(0.9+1=z+1) }.  The spectrum is depressed below the break due to the presence of 
metals from old cold stars.  
 

Figure 7.7 (page 220) shows two “alpha” angles and has skimpy wording.  It is 
the upper “alpha-hat” angle that equals the Einstein deflection  α^= ϕ = 4GM/bc2 = 4GM/ξ 
c2, where xi=ξ is the impact parameter.  The observed source at S1 is displaced from the 
actual source S by ΔS =S1-S to the right. All angles are small, so tan α ~α ~ ΔS/Ds and 
tan α^ (hat) ~ α^ = ΔS/DLS;  so α = DLSα^/Ds.  θ ≃ tanθ = ξ/DL, η = β Ds, and angle  
β = θ –α,  or (θ -β)Ds = Ds α = DLS α^ --  this leads directly to equations 7.12 and 7.13. 
 

Magnification µ = (θdθ)/(βdβ ) Equation 7.16 (page 224) for a circularly 
symmetric lens is presented as if it should be obvious—but is it? Maybe yes if you’re 
bright and fresh; but that wasn’t me. The idea of lens magnification here requires that the 
source (e.g., galaxy) be an extended body extending beyond some central point S in the 
plane of the source (not a point but rather a solid angle).  For a unit sphere in spherical 
polar coordinates, an element of solid angle is a little rectangle of area  
dΩ =1 dϑ (sinϑdφ ). Figure 7.7 is only two dimensional (say z up and x across and polar 
angle ϑ where ϑ = β for the source and ϑ = θ for the image. Magnification is µ x = dθ/dβ , 
and the sideways magnification in a “y-direction” is µy = sinθ dφ  /sinβdφ for the same 
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dφ. So total magnification is the ratio between the solid angles of the image and the 
source = image area/source area =µ x µ y= [sin(θ)dθ]/[sin(β)dβ ],  but for small angles θ 
and β so that sine angle is similar to just little angle in radians.   
 

Non-symmetrical lenses (top of page 221). In general, deflection angles are two-
component vectors (α1,	α2)	in	directions	1	perpendicular	to	2	—a	rectangular	angular	area. 
When lenses have axial (circular) symmetry, they can be effectively considered in terms 
of simple angles (like Fig. 7.7). However, galaxies and clusters may have complex 
density profiles or shapes resulting in an “elliptical” character (major and minor axes to a 
first approximation).  Different lens models are discussed in section 7.7. More 
elaborately, µ = determinant [∂θi /∂βj] – note that pages 225 and 234 refer to an 
“inverse magnification tensor A with µ = 1/det[A= (∂βi/∂θj) ] ).  For axial symmetry, A is 
diagonal; and det[A] = A11× A22. 
 
Between equation 7.24 and 7.25 is a term (σv /220 km s-1)2 which we saw before (e.g., 
page 195 and 202) for “M-σ “ relations. Orbiting stars near a big black hole of mass near 
108 suns have a dispersion near σ =200 km/second – it is just a convenient reference 
speed. The middle of page 239 says that 200 km/s is “typical of stars in the Galaxy.”  
Quasars are associated with super-massive black holes. 
 
 
“SIS” Singular isothermal sphere model, page 227:  The ideal gas law is pV = NRT 
= NNAkBT  or p = ρ kBT where NA is Avagadro’s number, N is number of moles of gas, kB 
is Boltzmann’s constant ~86 micro electro-volts/kelvin, and ρ = number of 
particles/volume is a number density. If m = mass of a gas particle, then ρm  = ρŊm is a 
mass density, and p = ρmkBT/m (the equation mentioned in the middle of the page).  The 
crucial assumption for the SIS model is the p∝  ρm starting point.  
 

Now kBT for one-dimensional motion is a tiny energy approximated by mσv
2  

where v is the velocity of a gas particle.  Saying that m is the mass of a star in a gas-
like volume of stars doesn’t really literally go with kT – unless k and T are strongly re-
interpreted and merely motivate a “thermal” model. But using mσv

2  does make sense for 
kinetic energy and can be used for stars. It is an observable. Instead of little energy per 
gas particle, it is BIG kinetic energy per star; and rho is stars in a volume. And most of 
the mass in a cluster of stars is in the dark matter halo—which isn’t overtly mentioned 
here but may obey similar equations with similar distributions to this model. 

The solution for density ρ(r) in equation 7.21 is a fairly big jump from the previous 
equation. It might be better to approach the problem according to Poisson’s equation for 
Newtonian gravity with potential Φ = -MG/r, ∇2Φ= 4πGρ (for radius and spherical 
symmetry) instead:  e.g., see  http://www.iucaa.in/~dipankar/ph217/isothsph.pdf   
 

The top of the page 230 says that dθ /bc = dt/r2, and this takes a little geometric 
thought. See figure 7.6 p 219 where the dashed line is r, and add a little extra dθ above 
the shown theta and a little cdt = dx to the left of the left vertex.  The quantity rdθ 
corresponds to a short line down and perpendicular to line r on the left vertex. (rdθ )/(cdt) 
= cosθ = b/r  , so it does work out.  

The equation for index n on the top of page 231 has its signs reversed. n=c/v, so 
the top sign is minus and the bottom sign is +.  
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The Hubble parameter on the bottom of page 231 is Ho~ 72 (h = 0.72) which is 
in-between Planck 67.6 and more recent 74’s. 
 
Figure 7.24.  Another more recent interesting picture is at: 
https://www.universetoday.com/142923/meet-our-neighbour-the-local-void-gaze-into-it-
puny-humans/  There is also an amazing 3-D video. 
 
Exercise 7.9 on page 233 (and text at top of page) refers to “saddle points” versus 
points of inflection – what’s the difference? “An inflection point is a point on a curve at 
which the sign of the curvature (i.e., the concavity or second derivative) changes” such 
as y=sin x at x=0. A saddle point is a point of a function or surface which is a stationary 
point (meaning derivative = 0 = locally flat) but not an extremum. The function y = x3 is 
both a saddle and an inflection point.  For several variables the function f (x, y) = y2 − x 2 
has a saddle point at (0, 0) which is actually shaped like the middle of a saddle (like on a 
horse).  The variables for time delay surfaces are θx and θy and “images form at 
stationary points.”  The author’s labeling of merging points is a tad unclear.  
Note that equation 7.46 (p 234) should read Tr[A] = a + b rather than ab.  
 
Caustics:  Wikipedia says that the term comes from Latin/Greek for burning – and 
concentrated light from the sun can cause burning. A caustic surface is a enhanced 
brightness geometrical envelope of nearly parallel optical rays. A common “cusp” shape 
is a curvy “V” shape like y= |x| ½  or Λ from (e.g.,) y = -  |x| ½  .  
 
Equation 7.57 on page 242 is obviously in error {from Tr[A] on the previous page}. It 
should be 1 – ½ (ψ11 +ψ 22).  
 
Dark Energy Equation of State, DE EOS (Figure 7.26) is mentioned without elaboration 
here (but previous discussion was on page 56 and page 84). Page 56 says that the EOS 
is p = wρc2 (so that w=0 means no pressure at all). Presently, w seems to be exactly w= 
-1 (negative pressure from Λ ).  But in case it varies with z, let w(z)= wo+w’z=0 z/(1+z)p 
and plot w’ versus w. Figure 2.18 suggests that the first derivative correction term is w’ = 
0., no contribution yet. 
 
 

A recent astrophysics article [ https://arxiv.org/pdf/2002.01479.pdf ] used many of 
the concepts mentioned in this chapter: source and image planes, cluster halo masses 
(up to 300 trillion suns), singular isothermal sphere density profiles (ρ ∝ 1/r2), surface 
mass density Σ, critical value, magnifications above µ ~ 10, and Einstein radius θE. The 
article says that gravitational waves themselves can be magnified by gravitational 
lenses !  and can impact future LIGO statistics.  

Now many multiple images of active galaxies have been seen (Einstein Cross).In 
this article, it is also mentioned that in 2015, a supernova was seen in four images 
(Kelly, ScienceMag). 
 
 
 
	


