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Propagators 
      Dave Peterson,  11/8/23-12/26/23, Revised 1/31/24. 

      Subject: Particle Interaction Math for Quantum Field Theory. 

In Feynman diagrams, and usually pictured near the middle of them, momentum space “propagators” 

represent the virtual particle inner-lines participating in an evolution from one input state to another {see 

picture example in Figure A below}. They are presented as mathematical expressions that enable propagation 
calculations of probability amplitudes from particle scattering initial states to final states across space-time as 
Kernels in integrations -- thus acting like “Green’s functions.”  Feynman “internal line” propagators are “free field” 
terms with the ideal absence of forces or current sources, J, from space-time location “x” to y :  D(x-y) = Zo≡ Z[J=0].   

{For a visual picture of a free field propagator function, see Figure K(x,t) below}. Propagators facilitate momentum 
transfer between sources in Feynman diagrams and can be key to mathematical generation of higher order Green’s 
functions for calculating perturbation terms for particle interactions. They are essentially “S-matrix” elements of 
unitary evolution operators U(t, to) for advancing wave-functions or fields. 

 A Feynman “path integral” is an expression for a propagator over all possible paths in configuration space 

and constitutes an alternate formulation to Schrodinger theory and quantum field theory but one based on 

Lagrangians rather than Hamiltonians.  “The path integral has racked up so many successes that many physicists 

believe it to be a direct window into the heart of reality.”   “It’s how the world really is [Wikipedia]” But, it “is also 

more of a philosophy than a rigorous recipe,” and applying it can require ingenuity.  
 
The discussions here are still on the topic of “what quantum field theory is about” {continuing [dpQFT]}  rather than focusing on 

detailed mathematical techniques for doing calculations. However, since the subject is mathematical, some math forms still have to be 

mentioned and inter-related.  The primary arena is quantum mechanical “amplitudes” prior to forming real particle scattering probabilities; and 

these amplitudes live in complex or even hypercomplex spaces.  That means that ordinary intuitive and pictorial understandings might not 

suffice. 

 

Utilizing Quantum Field Theory: 
  

A major goal of quantum field theory is the calculation of relativistic scattering amplitudes and 

experimental probabilities often stated as interaction area “cross sections” σ and “differential cross 

sections” dσ/dΩ for particle scattering experiments. Total σ = ∫ o4π (dσ/dΩ)dΩ where Ω is external solid 

angle at observations.   Going back one level in depth, dσ/dΩ = |ℳ|2/64π2E2
cm where ℳ is a commonly 

used “invariant amplitude” or “scattering amplitude” in complex space.  Particle decay rates also have 

“width” Γ ∝ |ℳ|2. A related concept is the historically important “scattering matrix” S and the 

“transition matrix” T with operators Ŝ = 1+iT̂ ; and these can be expressed in terms of ℳ. The transition 

matrix element is from an initial to a final state ψ is  T fi = -i ∫d4x ψ†
f (x)V(x) ψi(x). 

 

The S-matrix is an operator mapping free particle in-states to free particle out-states, and 

Feynman diagrams are useful in guiding the calculation of S-matrix perturbation terms. As an alternative 

to “Canonical quantum field theory,” Feynman’s “path integral formalism” of quantum field theory 

“represents transition amplitudes as a weighted sum of all possible histories or pathways of the system from 

the initial to the final state in terms of either particles or fields. It was Dyson who in 1948 realized that “the 

Feynman theory is essentially nothing more than a method of calculating the S-matrix.” The transition 

amplitudes are effectively elements of the S-matrix, and the Feynman method uses a set of now well-known 

“Feynman rules" for the calculation of the S-matrix. Dyson was able to derive the Feynman method from the 

canonical quantum field theory {e.g., Schwinger-Tomonaga formalism of the 1940’s} thus proving their equivalence.  
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 The Feynman path integral formalism provides one way to calculate transition propagators such 

as K(x, t; x0, t0) = 〈 x|U(t, t0)|x0〉 telling how states evolve between initial space-time states at “0” to a 

future time t and position x using a unitary evolution operator U (and reading symbols from right to left). 

The symbol “K” stands for an integration-kernel propagator “amplitude” {behaving as a “Green’s 

function” …discussed below}.  

Propagators aren’t just for use in QFT but may also be applied to ordinary quantum mechanics 
[e.g., Liboff p 161] . A simplest case may be for a Bell shaped {or “Gaussian”} wave packet evolving and 
spreading out freely with constant group-velocity {momentum po = ℏko and hence constant kinetic 
energy KE = po

2/2m; and “freely” means without forces and no varying potential energy over space and 
time}.  [See discussion in the Appendix at end below]. 

 

Figure K(x,t):    Picture example of a Free Particle Propagator Waveform  in space x and evolving with 

time t ≥ 0.  Ref: [Berkeley].  Rapid variation of K for x away to the right or left from xo=0 effectively produces 

destructive interference.  

 

A conventional way to write K is the “path-integral form:” K(b,a) = ∫b
a 𝒟x(t)  eiS/ℏ  where 

“prefactor” 𝒟  or “integration measure” includes a “normalizer” factor times a product of all the dx’s 

needed for integrations over all possible paths. Normalization means that ∫K(x-y, T)dy = 1 where T is 

“proper time” from space-time location a to b.  The “S” term here is called “action” and may sometimes 

be considered as total quantum phase accumulated along a path. The name “propagator” derives from 

formulas such as ψ(b)=∫K(b,a)ψ(a)d3x , where the Green’s kernel K enables the transformation from one 

quantum state at “a”  to a later state at “b.”  We could require that time of events tb > ta for propagation 

towards the future, so K = K+. But propagation backwards in time is also allowed for the “Feynman 

propagator” in quantum electrodynamics {“QED,”  ΔF(x,y) = Δ+ (tx>ty)+ Δ- (tx< ty) }.  
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From amplitudes, one can calculate probabilities of transition from a state at “a” to a state b: 

P(b,a) = |K(b,a)|2 which can also be expressed via the S-Matrix as complex “squaring,” P= Sba* Sba .  For 

two-particle scattering like that in Figure A {below} with incoming Feynman diagram “external lines” 

particles #1&2→ 3&4 outgoing asymptotic lines might use a kernel labeled “K(3,4:1,2).” There is also the 

case of one particle in and the same single particle out (such as radiative corrections for anomalous 

magnetic moment of the electron or the Lamb shift). The path integral is an expression for the 

propagator in terms of integration over an infinite dimensional space of paths in configuration space 

either based on position or momentum (which is a more frequent choice).     

 

Feynman path integrals are based on Lagrangians, ℒ, which are Lorentz scalars and have the 

great virtue of ensuring Lorentz invariance, while the alternative “Hamiltonian formulation” must select 

a particular time parameter and hence lack an obvious invariance. “Action” S= ∫ L dt or ∫ℒd4x , and the 

path integral is Δ = ∫ Dx e iS/ℏ where action acts somewhat like a complex phase and “D” is a weighing 

factor over possible paths.  Label “L” is used for classical KE-PE = T -V type energies, and label “ℒ” for 

densities over space-time.  Note that Lagrangian terms may be added together. In quantum-

electrodynamics (QED) we can have: 

ℒqed = ℒEM(A)+ ℒ Dirac (ψ)+ ℒ interaction(jA).  And then actions will add too: Sqed = Sem+SDir+ S int .  The 

“Standard Model” begins with a long list of Lagrangians all added together to give ℒ SM.   

 

If an interaction source, usually labeled “J,” is present, then the path integral is labeled   

Δ[J]=N∫Dφ ⋅ eiS[φ,J]/ℏ {label ϕ for “field”}.  The author Zee [“NUT”] calls this path integral “Z[J]” along with another 

useful “generating functional” W[J]. The symbol “Z” comes from an analogy to the “partition function” {the first topic on page 

one of Feynman’s book on Statistical Mechanics}. But, Z and W are mainly used for multiple fields for higher order “Green’s 

functions” for Feynman graphs – not too useful for the simpler introductory discussions here for only a “handful” of particles. See 

Notes at end}.   Zo = Z[J=0] as a propagator is for free motion without potentials or current sources. 
 

The details of path integrals or “sum over histories” will not be discussed here but are given in 

many textbooks. They often depend on convenient “Gaussian integrals” for Lagrangians having 

“quadratic forms,” e.g., like “Klein-Gordon” ℒKG {mentioned below}. “ax2+bx+c” is a quadratic form; and 

recall from statistics that the whole area under a Bell curve is a simple       ∫ exp[-ax2/2]dx = (2π/a) ½.     
 

One of the first tasks of Path Integrals was successfully deriving the Schrodinger equation in a 

manner similar to that of propagating Huygen’s wavelets.  Unfortunately, “Feynman's time-sliced 

approximation does not exist for the most important quantum-mechanical path integrals of atoms, due 

to the singularity of the Coulomb potential at the origin.” This problem was eventually solved by Hagen Kleinert 

using a clever trick {I knew him in college – a dynamic marvel at CU who then thrived in Berlin}.  
 

 Again, calculations of particle scatterings may be facilitated as products of piecewise “Feynman 

rules.”  For the special portion of particle-interaction-vertices, these can be read off from the details of 

interaction Lagrangians by removing “external factors.”  So an electromagnetic interaction  

ℒ int= ieψ̅ γ μψAμ results in an “ie γμ ”  {gamma-matrix times charge} being attached as a rule to every 

QED vertex in the Feynman diagram (as in Figure A). The rules for virtual internal lines are the various 

types of propagators whose calculations might be “non-trivial” and dependent on choice of gauge. But 

gauge selections have no effect on the final S-matrix elements.    
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Figure A:  Sample Feynman diagram for an “annihilation” e-e+ → γ → μ-μ+  with time evolution here 

from left to right {→ t}.  The photon, “γ”, is labeled by its propagator Green’s function G(k) ∝ -i/k2
total 

{where k or p or q is momentum transfered}. The exterior “legs” come in and go out to asymptotic infinity 

and hence must obey conservation laws for energy/momentum p’s and particle spins, σ’s.  “Spinor” legs 

labeled “v”  are for anti-matter particles versus spinor-u for ordinary fermions. The diagram “appears” to 

be in space-time; but particle labels are in terms of momenta; and the whole diagram serves as a guide 

to perturbation calculations.       [Figure source: Quora]    
 {Note that this picture is an over-simplification. Even though it shows a “vertex” and a single photon exchange, the Coulomb force is 

felt along a broad path with continual virtual photon exchange. So, “the diagram for exchange of a single photon actually stands for all possible 

cases of exchange of a single photon.  That is, early exchange, middle exchange, and late exchange” and all possible ways of doing it.  “ Feynman 

diagrams are actually in momentum space.  So, a single diagram is for all possible momenta for the photon” [Mike Jones].  QED calculations 

make all that work out}. 

 

In addition to classical field theory and QED, quantum field theory Lagrangians also apply to the 
Higgs field, Yang-Mills theory [e.g., Veltman], standard model (SM), spontaneous symmetry breakings, 
gauge theory, electroweak theory (EW), and quantum chromodynamics (or “QCD).  We might also add:  
supersymmetry, string theory, topological field theory and perturbative quantum gravity--  if these 
theories turn out to be “real.”  With Lagrangians, one also has Actions, S, that can be used in path-
integrals; and then relevant propagators may be derived.   Path integrals are also useful in non-
perturbative “Lattice-QCD” calculations [Lee].  Path integrals allow us “to understand phenomena that 
cannot be described in the usual perturbative canonical approach [L&B].” 
 

Propagators:   
 
Propagators propagate wave functions {often labeled ψ or ϕ } through time and could be 

viewed as position-space matrix elements of the unitary time evolution operator U(t,to) – that is: K(x, t; 

x0, t0) =  〈 x|U(t, t0)|x0〉 -- and often for time t > to.   Convenient lists of Feynman propagators are shown 
in tables of “Feynman rules” for amplitude transitions. These rules for time-dependent perturbation 

theory can be calculated in either position space or momentum space and either from canonical 
Hamiltonian QFT or Lagrangian QFT or by “Path Integrals.”  Momentum space Feynman rules have the 
advantage that one can write out invariant amplitudes from pictures (Feynman graphs).  Propagators 
also apply to usual nonrelativistic quantum mechanics scattering and to relativistic QM too. Going back 
and forth between space-time and momentum space is accomplished using Fourier transforms {“FT”, as 
in G(x,y)=FT of G(p) or vice versa}. 
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    Recall that 3-dimensional FT: F[f(x)]≡ f(k) = ∫∞
-∞  f(x)exp[± ik⋅x] d3x   {with convention choices for normalizer 

and  ±  signs} 
 
Moving into quantum field theory (QFT), we care about how fields evolve:   one expression is for 

probability amplitude =  〈φ(x̅ ), t| φ0(x̅ ),t0〉 =∫𝒟ϕ e iS/ℏ  where 𝒟ϕ is a path integral measure or weight.   

Propagators describing evolution in “momentum-space” emphasize energy/momentum, p= pμ = (E/c, p⃗) 
= (po, pi). {Note that since p=ℏk  for “wavenumber” and often choosing c ≡1 and ℏ ≡1 “natural” units, we have 4-

vectors  “p”= “k” = pμ = kμ = (ω/c, k⃗ ) = (ko, ki). Label “q” is also often used for momentum transfer.  All of these 
equivalent names are used below}. 

A common propagator found in tables is the momentum space Green function of the 

appropriate free particle wave equation [Ait p 161, without interactions]. The Green’s function game for a 

given differential equation is to solve it by first looking for an impulse solution δ or “spike.”   If differential 

operator L ̂y = f, find an inverse operator so that y = L-1 f  by first solving the simpler equation L ̂G(x|t)= 

δ(x-t). Then y(x) = ∫ G(x|t’)× f(t’)dt’. The Green’s function G(x,t’) is referred to as the kernel of the integral operator L-1 . 

 
A simplest example is Newton’s law F = ma where L ̂x = ẍ = a = F/m.  We find Green’s kernel so that d2G(t|t’)/dt2 = δ(t-

t’) with t’ an arbitrary starting time.  The solution is G = (F/m)(t-t’) so that x(t) =∫t
o G(t|t’)dt’ = ∫t

o(t-t’)dt’F(t’)/m. If acceleration 

“a” = a constant, then the solution is x(t) = at2/2  (and this approach skips an intermediate velocity step).  

The Feynman game requires finding such an inverse L-1 for quantum amplitude solutions with a 

preference of transferring this to momentum space first {i.e., express δ by its Fourier transform in k-

space and then solve for G}. That is, Feynman in 1949 showed that propagators based on “action” over 

space-time are simplified if they switch to Fourier transformed momentum space instead. Then 

integration of Kernels over d3xdt become d4k or d4p = dE⋅d3p.  

 A relevant example is a Klein-Gordon scalar boson equation (∂2/∂(ct)2-∇2 + (mc/ℏ)2)ϕ =0 with 

applications to spin-zero particles such as the pion, kaon, and pure Higgs boson.  If sources are appended 

on the right side, the equation may be shortened to the symbolic form:  (□ +m2)ϕ = -Vϕ = -j  which 

“inverts” to ϕ = j/(p2-m2) leading to a Feynman propagator rule contribution of factor  

K(p) =   i/(p2-m2).  Zee [nut] shows that exchanges of KG particles between two sources leads to 

a net attraction [such as nuclear binding]. The Lagrangian for KG fields is ℒ KG(ϕ) = ( ½ )[(∂ϕ)2-m2ϕ2] 

which goes into action S= ∫ℒ d4x → (∫ by parts)→ functional integral form – ( ½ ) ∫ ϕ(∂2+m2)ϕ. 
 {As a caution, the signs on these equations depend on the signs of the space-time metric, gμν  – a 50-50% choice. 

Here we have goo=ηoo = +1, but many (like Weinberg) choose -1.   [Steven Weinberg, The Quantum Theory of Fields, Vol. 1, 1995, 

Cambridge, p 259: “The Feynman Rules”].  ηoo= -1, so □ = ∇2 - ∂t 2;  momentum   q2 = -E2+ p2. KG: ∂2+m2 → -∂2+m2 → k2+m2 in 

propagator denominator. His momentum space internal line Feynman rule is ∝ 1/(q2+m2-iϵ ) }.     

 

{To understand this “inverting process,”  first solve (∂2+m2)K(x-y) = -δ (4) (x-y) ≡  ∫ -[d4k/(2π)4]e ik(x-y)   

[in terms of momentum, k, [A. Zee, NUT p 23]] }. For plane-wave propagation,  ϕp(x)*ϕp(y) = e -ikx e+iky = e-ik⋅(x-y) .  

 This expression for δ might be more familiar for the case of FTs in one-dimension where δ(x) = 

(1/2π) ∫ e ikx dk (and, as every electrical engineer knows, a “spike” impulse function can be viewed as the superposition of an 

infinite number of plane waves). In QFT, progress along a path uses plane waves along the path, e ik⋅ x or e i(kx-ωt).  

The KG operator on this is (∂2+m2)e ikx = (-k2 + m2) e ikx and it is this that gets inverted for G (or “D” or “K” 

or Δ or Π  – symbols for propagators vary in QFT literature).     A shorthand symbolic phrase is: the FT of L ̂G(KG) 

=δ is (-p2+m2)G = 1,  so flip for G.     We then have to integrate using the Feynman kernel, and it has a 
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pole in the complex plane (or real energy axis) that requires special thought.  For the simpler case of 

massless photons, m=0), d’Alembertian □e ikx = -k2 e ikx; so the propagator ∝ 1/k2 (as in Figure A) . 

 

Fermion problems are a bit different:   For an internal electron propagator, using the 

electromagnetic momentum shift, the operator ∂/∂xμ ≡ ∂μ → ∂μ -ieAμ , the free Dirac equation is   

(i∂μ-m)ψ = -eAψ (where single 4-vectors ∂ and A, p or q are all now in Feynman “ / slash” notation to include multiplication 

by γμ  [Aitkinson, p. 197] where gammas are 4× 4 square matrices and  ψ (or u or v) are now the special row or column matrices 

called  “spinors.” Their rest-frame elements of 1’s or 0’s for spin-up or down get “boosted” by relevant Lorentz speed 

transformations to now include momenta and energy weighings (e.g., a weight p/(E+m) ).  Performing calculations 

requires multiplying row, column and square matrices together followed by summations and “Trace” 

theorems (it gets very complex).   The propagator here is similar to an inverse of the Dirac operator  ∼ 

1/(q – m) and is written in the form Δ(q) = (q+m)/(q2-m2) {with numerator q overlayed with a forward-slash / } .  Also 

note that electrons are excitations of a Fermi field but are not quantized by representing it as a set of 

harmonic oscillators as for BOSE fields due to different statistics and “Grassman numbers”  [Hibbs].  

 

As a real example of this, the Compton effect: γ(k)+e-(p) →e*→ γ(k’)+e-(p’). As in Figure A, there 

are incoming and outgoing “legs” of a Feynman diagram; but, we include an intermediate single excited 

electron line, e*, with 4-momentum q= p+k.  The Feynman rule term for this now includes the term 

Δ(q)= (p± k+m)/[(p± k)2 – m2].  

As mentioned earlier, the Feynman rules apply to parts of the scattering process Feynman 

diagram, and all parts are multiplied together. As an example of its use, for the total invariant amplitude, 

ℳ for the Compton process, we look at a product like:     

        {Equation “ℳ” and “JDJ” form}: 

 ℳ ∝ (out-going e-leg wavefunction)× (γ-polarization)× (photon vertex term)×(interior propagator, D) ×  

(other photon vertex term)× (incoming photon polarization)× incoming electron wavefunction u(p) 

  with momentum p [e.g., Halzen p 142] .  And then, forming the actual transition amplitude Ti→j =Tij 

requires insisting that energy/momentum be physically conserved as expressed in a delta-function 

δ(4)(over all in or out momenta/energy along with possible normalization factors, N).  In the interaction region, 

we didn’t much care about conservation laws yet.  That is, the interactions may be “off-shell,” but 

detectors far away experience “on-shell” conservation. Green’s functions are unphysical.  They describe 

virtual (off-shell) particles where pμpμ ≠ m2 (and we integrate over all p and E).   p2=m2 is “on-shell” {i.e., 

E2- (pc)2=(mc2)2 }.     The ingredients of the delta function vary with different observer frames of 

reference.  Weinberg refers to ℳ as a “delta-function free” transition amplitude.    

 Notice that in Equation “ℳ,” the incoming particle legs carry momentum, p⃗ = γmv⃗ , and the 

vertices carries charge (the coupling constant ∼ e) with the “propagator” sandwiched in the middle. This 

is like (ev)DF(ev) ~ J DF J like the currents in eqn. W[J] in notes at end.  We will frequently encounter this 

important “JDJ form.”  For Moller Scattering with a photon internal line, Halzen labels this as Transition 

amplitude Tfi
(2)

 = -i∫ jμ (1)(x)(-1/q2)jμ (2)(x)d4x  (JDJ form) and says that when we have two interaction 

vertices (as in Eqn ℳ), the result must be the 2nd order term in the perturbation series, T fi
(2)  . That is,  

Tfi = -i∫ jμ Aμ d4x where Aμ = -jμ
(2)/q2 as solution of □ Aμ = jμ

(2) .  
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Another common form of propagator is “the Wightman function” or “vacuum expectation value 
of fields in a time fixed order = D(x-y) = 〈0|ϕ̂(x)ϕ(y)|0〉 = ∫ d3p/[(2π)3⋅ 2ωp]× e-ip(x-y) =∫[d4p/(2π)4]K(p) e-ip(x-y) .  
(where ωp = Ep = √(p⃗ 2+m2), “on-shell”).   D(x-y) = FT of K(p) and “provides an amplitude associated with 

a disturbance in the field ϕ traveling from spacetime location x  to y.”   By definition, this function is also 

a correlation function or “correlator” used as building blocks of other propagators.   

Recall that in statistics, correlation is defined as the degree to which a pair of variables are linearly 

related:        ρx,y = corr(X,Y) = covariance(X,Y)/σxσy = E[(X-X̅)(Y-Y̅)] /σxσy         where E[ ] means expectation 

value or 〈 _ _ 〉  and bar means mean or average value.  

 In its momentum form, K(p) = The relativistic free particle “propagator for internal lines” =GF(p) 

=Δ(p)= i/[p2-m2+iϵ ] = FT of G(x,y) .  The d4p = dp0dp3 = dωdp3, and the iϵ offset in the complex plane 

avoids a pole blowup in the integral at ω=ωp [“on-shell,”  see Evans].   “iϵ” is a “regulator of the path 

integral and also defines the ‘flow of time.’  For unstable particles, the “iϵ” → imΓ  with decay width 

Gamma. The Feynman propagator  two-point or two-leg function DF(x-y)= G2(x1,x2) = 〈 0|Tϕ(x1)ϕ(x2)|0〉 

describes the vacuum expectation values (VEVs) of two time ordered field-operator products.    

{Note:  The po = ω = E  energy part of integration is done using the Cauchy integral theorem:  ∫c f(z)dz = 2πi∑ Ri  where an 

integrand is put into the form f(z)  = Ri/(z-zi).   And near the zi pole, “residue”  Ri = lim z→zi (z-zi)f(z). (So Feynman’s integral 

will pick up a factor of 2πi)}. 

Beyond QED Propagators: 
 

Rather than the propagator iDμν = igμν /k2, a more general photon propagator can include a 

choice of electromagnetic gauge, ξ, as given by [Zee, p 141]:      iDμν = (i/k2)[(1-ξ )kμkν /k2 – gμν ] .       Eqn. γ  

The usual “choice of ξ = 1 is known as the ‘Feynman gauge,’ and the choice of ξ = 0 is known as 

the Landau gauge.”  As usual, the end result must not depend on the choice of gauge. 

 For Gluons, we also use this Eqn. gamma formula (since they are also massless,  see list of 

Feynman rules for “tree graphs” in [Aitkinson, p 544] .  

 For massive spin-one vector bosons (like the weak W boson or W± and Zo  and the heavy Proca 

photon possibility), we have a boson propagator D =  (i/[k2-μ2])(kμ kν /μ2 – gμν ) where μ is effective mass 

of the particle. This goes along with the addition of an interactive Lagrangian term – ½ μ2Aμ Aν to the 

usual Dirac Field [Zee p 128][Ait p 341]. In “Fermi Theory” we would say that “the matrix element has the 

form” ℳ = Jμ weak D Jν 
weak  (the JDJ form).  

For comparison, recall that the propagator for massive spin-0 fields was given by a simpler  

D(k) = 1/(k2-m2).  

 Propagators are also shown in textbooks for spin 2 gravitons but have tensor terms that are not 

very intuitive.  Zee [nut p 34, 426] shows that their W[J] expressions do lead to attractions. 

 

 

Appendix:  

 
Coordinate and Momentum Representations: 
 

 In the coordinate or “x -representation,” operator p̂ = -iℏ ∂/∂x, while “ x̂ operating on a state has 

the effect of multiplying the state by the scalar x” [Liboff, p851].  So, x̂ on an eigenstate of x̂ gives x̂ |x’〉= 
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x’|x’〉. Similarly, p̂ on an eigenstate of p̂  gives p̂|p’〉 = p’|p’〉.    Ket x’ and bra x are orthonormal so that 

〈x’|x〉 = δ(x-x’).  Dirac delta functions are usually used under integrals such that ∫ δ(x-x’)dx = 1 or  

∫f(x)δ(x-x’)dx = f(x’). Technically, δ(x) is a limit of a distribution (such as Gaussian, Sinc, or Lorentzian shape).  So, 

δ(x) = Lim n→ ∞ n⋅exp(-n2x2)/√π .  As a spike function, it has a Fourier transform form δ(x) = (1/
2π )∫e ikx dk in 

momentum or wavenumber space. To inter-relate x and p for the important “transfer matrix” 〈x|p〉 , we 

need a few tricks. One is the “spectral resolution of unity” for continuous x or p: Î = ∫|x〉〈x|dx or                

Î = ∫ |p〉〈p|dp ; and this also introduces ∫ that can be used on δ .  

 So, now, look at p〈x|p〉 = 〈x|p̂|p〉 = ∫ 〈 x|p̂|x’〉〈 x’|p〉dx’ = -iℏ∫ ∂/
∂x δ (x-x’)〈x’|p〉 dx’ = -iℏ ∂/

∂x 〈x|p〉.  

Then, recalling that dy/y = dℓn(y), we see ℓn〈x|p〉 =ipx/ℏ, or 〈x|p〉 = eipx/ℏ = eikx {and we could multiply by a 

normalizer of 1/√h}.     These concepts are frequently applied in Fourier transforms and path integrations. 

  Zee says, “Do you remember that 〈q|p〉 = e ipq ?  Sure you do.  This just says that the momentum 

eigenstate is a plane wave in the coordinate representation” [Zee NUT p 10] . 

 
Propagator for ordinary quantum mechanics  [e.g., evolution from a Bell shaped curve]:  

 

Consider a Gaussian wave packet at time = 0 and variance σ2 {meaning a Normal probability 

distribution, f(x) = (1/[σ √2π]) exp[- ½ (x-μ)2/σ2]}. But, amplitude is square-root of probability so ψ(x,0) = 

√f(x) with √ root of the coefficient and half the exponent. The FT of a Gaussian is also a Gaussian, so the 

initial shape can be given either in coordinate space or momentum space, k.  The standard deviation of 

the Bell curve in momentum space is σk = 1/2σx; or σxσp = ℏ/2 – and that is the uncertainty principle for 

these shapes (but ≥ ½  ℏ for other distribution profiles).   

Propagator K = 〈 x|U|x’〉 where U(t) = exp[-iHt/ℏ], and the Hamiltonian is just H = KE = p2/2m.  So 

K = ∫dp exp[-itp2/2mℏ ]〈x|p〉〈p|x’〉 -- and then use concepts from the previous paragraph above to finally 

get: 

      𝐾(𝑥′, 𝑥|𝑡) =  √
𝜏

𝑖4𝜋𝜎2𝑡
 𝑒𝑥𝑝 [

𝑖𝜏(𝑥−𝑥′)2

4𝑡𝜎2 ] = √
𝑚

𝑖2𝜋ℏ𝑡
 𝑒𝑥𝑝 [

𝑖𝑚(𝑥−𝑥′)2

2ℏ𝑡
],  with τ=2ma2/ℏ        Eqn. Bell Kernel 

[Liboff p 162] and [Cal].  And this agrees with Feynman&Hibbs path integral result for the free 

propagator. [Hibbs,p42].  We could say that the Bell shape results from a superposition of many 

wavelengths and that the shorter and faster ones keep outpacing the mean flow. The spreading out of 

the probability distribution over time and distance, P(x,t), is provided in references such as  [Liboff] and 

[Cal]. 
 

Canonical QFT {like from Schwinger, Tomonaga, and Dyson} uses standard creation and annihilation 

operators and Hamiltonians – which have been avoided in the sketch above. For scalar bosons in the 

interaction picture , we can write a field operator as: 

 ϕ̂(x,t) = ∫ (d3k/[(2π)3 2ω]  [â (k)e -ik⋅x + â †(k)e ikx ]    creating and destroying plane wave motions 

[Ait.2nd p 112 for KG field][and Open ref].    Its Hamiltonian is Ĥ KG =   ∫ [d3k/(2π)32ω] â†(k)â(k)ω .  But, the quanta 

number counting operator is n̂(k) = â†(k)â(k), so Ĥ ∝ n̂(k) for non-interacting quantum fields, and these 

are constants of the motion. Energy is proportional to the number of identical quanta, and the 

idealization is quanta of little harmonic oscillators. Without interactions, these KG waves will pass 

through each other like light beams pass freely through each other.  For interactions, one could include a 

ϕ3 or ϕ4 or p3 higher order term in the Lagrangian—or multiple currents J1, J2,… . Then, the number of 

quanta need not be constant.  
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The essence of “Canonical quantization of fields” is perhaps best described in [L&B p 98+]. 

For electromagnetic field interactions in QED, we add an interaction Lagrangian term  

ℒ int = - eψ̅ γμψ̂ Aμ = -ĵ μ Aμ  as encouraged by local U(1) gauge invariance – j is an electromagnetic 

4-current source term, and Ĥ int = ∫ jμAμ d3x.  Since there are 3 fields, ψ̅ , ψ̂ and A, the interaction is similar 

to having ϕ3 interacting QFT.   

 

Green’s generating functionals  “Z(J) and W(J)” of Propagators: 

 The path integral formulation representation of quantum propagators as sums over 
classical paths can also be used to compute correlation functions as averages of operators in the 
“Heisenberg picture.”  The functional Z[J] is the generator of correlation functions--  the time-ordered 
Green’s functions defined by functional differentiation of Z with respect to the sources J. An important 
example is the 2-point correlator Green’s function G(2)(x1-x2)=-i〈0|T [ϕ̂ (x1)ϕ̂ (x2)]|0〉 the time ordered 
product of field operators ϕ̂ , and T is the time ordering operator (using two Heavyside step functions). 

“Z[J]” generates all types of Feynman graphs enabling a full perturbation calculation of 

interactions (often together in a “power” series).  It can be stated in several different forms and is 

coupled with another generator series labeled “W[J].”  

 

Z[J] = N∫ Dϕ exp[i∫d4x[L(x)+J(x)ϕ(x)] =N∫Dφ e iS[φ,J]/ℏ  = exp[-i/2 ∫ d4xd4y J(x)ΔF(x-y)J(y].  Eqn. Z[J]. 

 

[Kaku p277]  Z[J]=N∫Dφ e iS[φ,J]/ℏ  ∝ e iW(J)  That is, W(J) is defined by Z[J]= Z[J=0]e iW(J) .     Eqn. Def W. 

or W(J) = -iℓn(Z).  The “free energy of interacting two currents” is: 

U = W(J)= - ½ ∫∫ d4x d4y  Ja(x)D(x-y) Jb(y)                         Eqn. W[J]. 

 

{a “JDJ” form that Zee [ref: “Simply”] labels as ℱ(J1,J2) } where D(x-y) is a space-time propagator between 

y and x without interactions (and there are similarities to eqn. ℳ above).  If we wish to focus on 

energies rather than amplitudes, they are contained in the exponent of Eqn. Z[J] and can be brought 

down by taking the log of Z – i.e., ℓn(Z).  “W” is like an interaction energy times a time-duration, E⋅T, and 

is useful in demonstrating the existence of attraction or repulsion forces (e.g., [Zee NUT]). One of the most 

interesting and powerful uses is saying that energy E= -(-1)S W(J) for particle spin S so that scalar spin S=0 

implies negative energy (attraction), photon spin 1 implies positive energy (repulsion), and graviton spin 

2 implies negative energy (attraction).  {Electron half-spin is a different ball-game and requires both e- and e+ together}. 

Z and W are mainly used for having multiple quantum fields for higher order Feynman graphs – but not 

too useful for the simpler discussions here. 

 

 The symbol “Z” comes from a close analogy to the “partition function” of statistical mechanics 

{“Zustandsumme” in German}: “generating functional”  Z = ∑e -Ei/kT =∑e -βEi {where k is Boltzmann’s 

constant, kB, and β = 1/kT—and there are similarities to the Z[J]∝ e iW[J] above} . The “canonical 

probability distribution” for state “r” or “sum over states” is  Pr = exp[-Er/kT]/Z.    

For any QM-operator for a physical observable, Â, the expected value is A̅ = ∑ 〈i|A|i〉 e -Ei/kT /Z as 

a “fundamental law.”  So, mean energy is E ̅= ∑ ErPr = -[∑ ∂(e – βEr)/∂β ]/Z = (-∂Z/∂β)/Z = -∂ ℓnZ/∂β .  

“Entropy” is identified with S ≡ kB(ℓnZ + βE ̅) and mean pressure with p̅ = kT ∂ℓnZ/∂V  [Reif SM p 213 
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1965 – “all the important physical quantities can be expressed completely in terms of ℓnZ”.].     

Helmholtz free energy F ≡E ̅-TS = -kT ℓn Z.  

The mean variance of the distribution can be shown to be σ2 = -∂E ̅/∂β = ∂2ℓnZ/∂β2 .   

Wikipedia says that “Wick rotation” connects statistical mechanics to quantum mechanics by 

replacing inverse temperature” β = 1/kT with it/ℏ .  The use of “imaginary time” is like the old Minkowski 

metric in relativity versus a Euclidean form with all ones on the diagonal.  “Goodbye ict” often sees 

special uses of “hello again” imaginary time.  

 

For QFT, we could write J = J1+J2 for the case of a disturbance at 1 being absorbed by a sink at 

location 2.   The Z[J] view is useful in the Dyson-Schwinger equation of QFT.  It is meant to be a collection 

of Green’s function, a sum of 1+G1+G2+G3  for one J, 2 J’s, 3 J’s …  Zee prefers symbol G(x-y) for 

propagation of a particle between y and x in the presence of interactions.  

Two particles scattering off each other (sources 1 and 2 → sinks 3 and 4) require finding a term 

in the Z expansion containing J(x1)J(x2)J(x3)J(x4) called G(x1,x2,x3,x4) – a 4-point Greens function with 

interactions [NUT p 49] .   

Zee [NUT p 167] introduces what he calls the “Central Identity of Quantum Field Theory” 

∫ Dφ exp[- ½ φ⋅ K⋅φ -V(φ)+J⋅φ ] = e -V(δ/δJ) exp[ ½ J⋅K-1⋅ J] 

This is again a “JDJ” form like W(J). 

An entity called the “connected correlation function” of operator valued fields [L&B p 198] is 

stated as the Green’s function: 

Gij = 〈 ϕ̂i ϕ̂j〉t = [1/Z(0)] ∂2Z(J)/∂Ji∂Jj |J=0  Or, Gn = ∂n/(∂J)nZ[J]|J=0.    { both Z and Gij can be expressed in 

Feynman diagrams.} “All Green’s functions can be extracted from Z[J] through differentiation” with respect to their currents, J  

[L&B, p201]. 

 Then see  [Zee,p27][Kleiss]  {both refer to Z as a path integral – as also does Wikipedia}.  Again,  

Z[J] = Z[J=0] ∑ n=0
∞ [iW[J]n]/n!  = ∑n≥ 0 JnGn/n!  And W[J]=ℓnZ[J] = ∑JnCn/n! 
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