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Abstract-Classical dynamics can be formulated in terms of trajectories or in terms of statistical 
ensembles whose time evolution is described by the Liouville equation. It is shown that for the class 
of large non-integrable Poincare systems (LPS) the two descriptions are not equivalent. Practically all 
dynamical systems studied in statistical mechanics belong to the class of LPS. The basic step is the 
extension of the Liouville operator LH outside the Hilbert space to functions singular in their 
Fourier transforms. This generalized function space plays an important role in statistical mechanics as 
functions of the Hamiltonian, and therefore equilibrium distribution functions belong to this class. 
Physically, these functions correspond to situations characterized by ‘persistent interactions’ as 
realized in macroscopic physics. Persistent interactions are introduced in contrast to ‘transient 
interactions’ studied in quantum mechanics by the S-matrix approach (asymptotically free in and out 
states). 

The eigenvalue problem for the Liouville operator L H is solved in this generalized function space 
for LPS. We obtain a complex, irreducible spectral representation. Complex means that the 
eigenvalues are complex numbers, whose imaginary part refers to the various irreversible procssscs 
such as relaxation times, diffusion etc. Irreducible means that these representations cannot be 
implemented by trajectory theory. As a result, the dynamical group of evolution splits into two 
semi-groups. Moreover, the laws of classical dynamics take a new form as they have to be 
formulated on the statistical level. They express ‘possibilities’ and no more ‘certitudes’. 

The reason for the new features is the appearance of new, non-Newtonian effects due to Poincare 
resonances. The resonances couple dynamical events and lead to ‘collision operators’ (such as the 
Fokker-Planck operator) well-known from various phenomenological approaches to non-equilibrium 
physics. These ‘collision operators’ represent diffusive processes and mark the breakdown of the 
deterministic description which was always associated with classical mechanics. ‘Subdynamics’ as 
discussed in previous publications, is derived from the spectral representation. 

The eigenfunctions of the Liouville operator have remarkable properties as they lead to long- 
range correlations due to resonances even if the interactions as included in the Hamiltonian are 
short-range (only equilibrium correlations remain short-range). This is in agreement with the results 
of non-equilibrium thermodynamics as the appearance of dissipative structures is connected to 
long-range correlations. 

In agreement with previous results, it is shown that there exists an intertwining relation between 
LH and the collision operator 0 as defined in the text. Both have the same eigenvalues and arc 
connected by a non-unitary similitude ALHA-] = 0. The various forms of A and their symmetry 
properties are discussed. A consequence of the intertwining relation are ‘non-linear Lippmann- 
Schwinger’ equations which reduce to the classical linear Lippmann-Schwinger equations when the 
dissipative effects due to the Poincart resonances can be neglected. 

Using the transformation operator A. we can define new distribution functions and new 
observables whose evolution equations take a specially simple form (they are ‘bloc diagonalized’). 
Dynamics is transformed in an infinite set of kinetic equations. Starting with these equations, we can 
derive x-functions which present a monotonous time behavior and reach their minimum at 
equilibrium. This requires no extra-dynamical assumptions (such as coarse graining, environment 
effects .), Moreover, our formulation is valid for strong coupling (beyond the so-called Van 
Hove’s Rt limit). 
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We then study the conditions under which our new non-Newtonian effects are observable. For a 
finite number N of particles and transient interactions (such as realized in the usual scattering 
experiments) we recover traditional trajectory theory. To observe our new effects we need persistent 
interactions associated to singular distribution functions. We have studied in detail two examples, 
both analytically and by computer simulations. These examples are persistent scattering in which test 
particles are continuously interacting with a scattering center, and the Lorentz model in which a 
‘light’ particle is scattered by a large number of ‘heavy’ particles. The agreement between our 
theoretical predictions and the numerical simulations is excellent. The new results are also essential 
in the thermodynamic limit as introduced in statistical mechanics. We recover also, the results of 
non-equilibrium statistical mechanics obtained by various phenomenological approximations. 

Of special interest is the domain of validity of the trajectory description as a trajectory is 
traditionally considered as a primitive, irreducible concept. In the Liouville description the natural 
variables are wave vectors k which are constants in free motion and modified by interactions and 
resonances. A trajectory can be considered as a coherent superposition of plane waves corresponding 
to wave vectors k. Resonances correspond to non-local processes in space-time. They threaten 
therefore the persistence of trajectories. In fact, we show that whenever the thermodynamic limit 
exists, trajectories are destroyed and transformed into singular distribution functions. We have a 
‘collapse’ of trajectories, to borrow the terminology from quantum mechanics. The trajectory 
becomes a stochastic object as in Brownian motion theory. 

In conclusion, we obtain a unified formulation of dynamics and of thermodynamics. This involves 
the introduction of LPS which leads to dissipation together with the consideration of delocalized 
situations. From this point of view, there is a strong analogy with phase transitions which are also 
defined in the thermodynamic limit. Irreversibility is, in this sense, an ‘emergent’ property which 
could not be included in classical dynamics as long as its study was limited to local, transient 
situations. 

1. INTRODUCTION 

In the past it has been repeatedly asked if quantum mechanics is ‘complete’. The reason to 
ask this question is the difficulty to incorporate measurement and more generally 
dissipative processes in the frame of the conventional formulation of quantum theory. 
Similar questions can also be asked in the frame of classical mechanics. In previous papers 
[l-14] we have already indicated that these questions can be answered by formulating 
classical or quantum mechanics on the statistical level for classes of unstable dynamical 
systems (deterministic chaos, large Poincare systems (LPS) which are non-integrable and 
for which the frequencies are continuous functions of wave length). Here we shall present 
an overview of our extension of classical mechanics for LPS. 

In classical mechanics trajectories occupy a privileged position (somewhat as pure states 
in quantum theory) as equations of motion correspond to point transformations. In 
addition, there exists the ensemble description introduced by Gibbs and Einstein. The 
statistical description has been considered to be only a question of practical convenience or 
approximation. It was always admitted that the ‘individual’ description in terms of 
trajectories and the statistical description in terms of ensembles were equivalent. It is this 
equivalence which is destroyed for the classes of unstable systems we consider. There 
appear new solutions on the statistical level which cannot be implemented by trajectory 
dynamics. As a result the laws of dynamics take a new form for LPS. They now express 
‘possibilities’ and not ‘certitudes’. Moreover, they incorporate time-symmetry breaking as 
they lead to a semi-group description. We can in this way construct X-functions on a purely 
dynamical basis and unify dynamics and thermodynamics. 

We consider Hamiltonians which are of the form 

N P2 
ff(q, p) = ffO(P) + Av(q) = gtk + n$Jv(l% - Sjl), 

I i>l 
(1) 
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where A is the coupling constant, and q and p are N-component vectors, i.e., q = (ql, . . ,. 
qN) with three-dimensional vectors qi, and so on. The system is put into a large box with 
volume L3. These are the systems studied in equilibrium and non-equilibrium statistical 
mechanics. It is well known that these systems are in general non-integrable in the sense of 
Poincare. In the large limit L3 + CC we obtain LPS. The number of particles N may be 
finite or infinite. We shall be especially interested in the ‘thermodynamic limit’, 

N-+ 03, and L3 += a~ with c = N/L3 = finite. (2) 

The statistical description in classical dynamics is expressed by the Liouville equation for 
the distribution function [17-191, 

i$PW = LFfp(t). 
Here L,P = i{ H, p} is the Poisson bracket of p with the Hamiltonian H. 

In this paper we show that we can extend the Liouville operator (or Liouvillian in short) 
for LPS to a class of functions outside the Hilbert space. This class of functions has a very 
simple physical meaning as it includes equilibrium distributions which are functions of the 
Hamiltonian. These functions are characterized by well-defined singularities in their 
Fourier transforms. It will be useful to distinguish between ensembles localized in space 
and non-local ensembles. A special case of localized ensembles are single trajectories,* 

P(4, P? 0) = +~~e’kjiq~eq~)c5(p, - pq) -+ ~~(qj - q~)S(pj - py) for L-+ 00. 
I=1 

(4) 

Associated to a finite number of particles, localized distributions p describe transient 
interactions (free in and out states) as studied in quantum S-matrix theory. In contrast 
non-local ensembles describe persistent interactions as studied in statistical mechanics. 
They are, as just mentioned, characterized by singularities in their Fourier transforms (see 
Section 3). 

Our extended spectral representation for LH is presented in Sections 4 and 5. It has 
quite remarkable features as it exhibits ‘non-Newtonian’ features. There appear indeed 
diffusive effects associated to collision operators of the Fokker-Planck type, familiar from 
phenomenological theories. The appearance of these contributions is due to the coupling of 
dynamical ‘events’ through Poincare resonances. The eigenvalues of L, in this extended 
functional space are complex. 

The non-Newtonian effects lead to the construction of non-unitary transformation 
operators A which intertwine LH and the collision operators, which are dissipative 
operators. This generalizes the unitary transformation which leads for integrable systems 
from LH to L,, the Liouvillian corresponding to H,, (Section 6). The complex spectral 
representation also leads to subdynamics which corresponds to an extension of the kinetic 
theory to all correlation spaces [14, 20-311. In the previous work subdynamics has been 
constructed by using an ansatz for the analytic continuation (the so-called ie rule) (see for 
example [31]). We now may derive subdynamics from the complex spectral representation. 
Using our non-unitary transformation theory we can transform the Liouville equation for p 
into an infinite set of ‘kinetic equations’ (see Section 6). We also obtain a new formulation 
of the Heisenberg type of equation for the evolution of observables which makes explicit 

*In the box normalization formalism which we shall consider in this paper, the delta function in space is 
replaced by a periodic delta function with period L, the size of the box. This replacement does not introduce any 
‘width’ for the delta function, so that this ensemble corresponds still to a single point of phase space. 
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the role of dissipative processes. As the result of the breaking of time-symmetry we can 
easily construct Lyapounov functions which are dynamical analogies of the ‘X-functions’ 
derived usually through phenomenological assumptions (Sections 7 and 8). Our non-unitary 
transformation theory allows us to reformulate the second law of thermodynamics as a 
selection principle’ for the class of initial conditions which are realized in nature. 

The intertwining relations between L, and the collision operator 0 lead to a non-linear 
extension of the Lippmann-Schwinger type equations, well known from quantum scattering 
theory (see Section 9). When dissipative effects can be neglected, the non-linear terms 
vanish and we come back to the classical version of the Lippmann-Schwinger equation. 

However, our equations differ from the Lippmann-Schwinger equation by our analytic 
continuation. There appears a degeneracy for LPS. The existence of Poincare resonances+ 
even in the non-dissipative limit lead to a new spectral decomposition of the Liouvillian in 
addition to the usual spectral representations in terms of advanced or retarded solutions. It 
is this alternative spectral representation which we have extended in Sections 4 and 5 to 
include dissipation. 

In Sections lo-13 we discuss the conditions under which the non-Newtonian effects 
which appear in our spectral representation of L, can be observed. This depends 
essentially on the type of distribution functions (associated to regular or singular Fourier 
transforms) and on the number of particles (N finite, or N 3 ~0 as in the thermodynamic 
limit). 

For N finite and localized, regular distribution functions, all dissipative effects disappear. 
These systems while presenting Poincare resonances are integrable. The situation changes 
dramatically when we consider persistent interactions associated to distribution functions 
which are singular in their Fourier transforms (Sections 11 and 12). Of special importance 
is the thermodynamic limit. When we apply our spectral representation to this class of 
distribution functions we recover all results derived in non-equilibrium statistical mechanics 
[17] (such as Fokker-Planck equations, Boltzmann equations, generalized master equations 
etc.). This shows that dissipative processes are part of the exact dynamical description 
when we consider LPS and extend the functional space to include functions which are 
singular in their Fourier representation. 

It is very interesting that the functional form of these distribution functions (see (45)) is 
invariant in respect to time. This form even acts as an attractor (see (143)). This brings us 
to the question: are trajectories also preserved? As mentioned, for N finite all dissipative 
effects disappear. A trajectory remains a trajectory for all times. But what happens in the 
thermodynamic limit? 

This question may sound surprising. Trajectories have always been considered as 
‘primitive’, undecomposable objects. Still the delta function S(g - qO) when written as a 
Fourier integral can be considered as the coherent superposition of plane waves cor- 
responding to wave vectors k. 

Now in the statistical description the natural variables are precisely the wave vectors (see 
Section 2). The trajectory becomes a construct. Resonances correspond to non-local 
processes in space-time. They are responsible for the appearance of diffusive processes. 
Such processes may destroy the coherence of the wave packet in Fourier space and 
therefore also the trajectory. We then have a ‘collapse’ of trajectories to borrow the 
terminology from quantum mechanics (see Section 13). 

‘Here, we have in mind the Poincare resonances expressed by the frequency (or ‘energy’) conservation between 
the initial and final states such as 6(w, - c~f) in the usual S-matrix theory. The Poincart resonances appear already 
for repulsive interactions. These resonances are not related to ‘resonance poles’ associated to the so-called 
resonance scattering. 
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We first ask: under which conditions does (4) in the limits L + ~0 and N --+ 00 lead to a 
well defined ‘thermodynamic limit’ ? A necessary condition is that all reduced quantities 
tend to a finite limit independent of N. This implies strict conditions for LPS as Poincare 
resonances lead to long-range correlations between the particles (see Sections 8, 13, and 
Appendix J). 

The results described here can easily be extended to quantum theory. There is also the 
equivalence between the individual description (in terms of wave functions) and the 
statistical description (in terms of density matrices) is broken. This will be reported in a 
separate paper (see [32]). 

Our predictions have been verified analytically and by computer simulations in simple 
situations such as the Lorentz model (see Appendices F, G and Refs [l, 2, 161). 

2. THE LIOUVILLIAN FORMALISM 

The evolution of the system is governed by the Liouville equation (3) for the distribution 
function p(q, p, t) in phase space. We assume that the distribution function vanishes 
quickly enough for large values of momentum, 

lim p(q, PI + O. 
lk--tm (5) 

However, we shall not generally impose a similar condition for the coordinate dependence, 
because we are interested not only in single trajectories, but also in non-local ensembles in 
phase space as considered in typical situations in statistical mechanics. 

The formal solution of the Liouville equation is 

with 

Q(t) is the evolution operator. 
For integrable systems, the Liouville equation does not introduce any new features. If we 

can integrate Hamilton’s equations of motion, we can solve the Liouville equation and vice 
versa. Usually, one equips the phase space with a Hilbert space structure. In this space the 
scalar product of the phase functions f and g are defined by (with jdq = /dq, . . 1 dq,v 
and so on) 

(tfls)) = /d+dflq, p))h pig)) = /dqlW*(q. pk(q, ~1, (8) 

and their Hilbert norms by 

We have introduced Dirac’s ‘bra’ and ‘ket’ notations, i.e. ((fl and Ig)), analogous to 
quantum mechanics. This permits us to use various representations. The Liouvillian LH is 
a hermitian operator and “u(t) unitary. That means as long as we remain in Hilbert space 
the eigenvalues 1 of LH are real, and the eigenvalues exp (-ilt) of “u(t) are of modulo one. 
In short, the distribution function oscillates in time and there is no place for irreversible 
processes. To obtain irreversible processes associated to complex eigenvalues of L,, we 
need to go out of the Hilbert space (this is a necessary condition). 



446 T. PETROSKY and I. PRIGOGINE 

In the statistical description a single trajectory Ip(0))) = lq”, p”)) is represented by 
Dirac’s delta function, 

P(4, P, 0) = ((4, PIPW) = @q - 4O)&P - PO)> 

where S(P) = rj%6(pr) with &P) = ~(P~)~(P,)~(P,). 
To each observable M(q, p) we can associate a bra-state” 

(10) 

((31 = /dqldpWq, p)t(q, ~1. (11) 

When acting on a trajectory [q, p)), this leads back to a phase function as 

M(q, P) = ~bQl4~ P)). (12) 

The evolution of the observables is given by 

(mm = oww (13) 

They satisfy the classical ‘Heisenberg equations’ of motion, 

i-p(t))) = -LHJfi(t))). (14) 

The Hamiltonian equations of motion correspond to a special case of the Heisenberg 
equations for the set of observables (qj, Bj) associated to trajectories. Similarly, the 
Liouville equation (3) corresponds to the classical ‘Schrodinger picture of the equation of 
motion. 

The expectation value of M is given by 

(M), = Qmw4~))) = ((~(~>lP~W). (15) 
Let us consider a system described by the Hamiltonian (1). For simplicity, we assume 

short-range repulsive interactions. Corresponding to the decomposition of the Hamiltonian 
(l), we have also (with L,, = LHo) 

LH = L, + AL,. (16) 

The unperturbed Liouvillian is the derivative operator Lo = -iu * iS/Elq, where vi 5 pj/fnj is 
the velocity of the particle i. Then the eigenstate of Lo is given by 

Lolk P>> = W~)lk PD. (17) 

Here,k*u=k,-v,+...+k,*v,,and 

((4, p’lk, p)) = L-3Nizeik.qS(p’ - p), (18) 

where kj is a real vector. For periodic boundary conditions and using the box normaliza- 
tion we have (with integer vectors nj, and with Ak = 237/L where L3 corresponds to the 
volume of the box) 

kj = njAk. (19) 

In the limit of large volumes Q = (L/271.)3 + ~0, 

CX1c + 
k I 

dk, 6,(k) = Q26k’(k) + 6(k). (20) 

where skr(k) = Sk,O is Kronecker’s delta. 

*Following the tradition for non-equilibrium statistical mechanics [19], we use the convention that the 
distribution functions are associated to ket-states, while the observables are associated to bra-states. See also the 
comment below [50]. 
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Note that the eigenfunctions (18) of the unperturbed Liouvillian LO are plane waves 
corresponding to ‘wave vectors’ k as the Fourier indices. They satisfy the orthogonality and 
completeness relations, 

((k, plk', P'>> = ak'(k - k'P(p - ~'1, xjddk d)((k ~1 = 1. (21) 
k 

As a result, the solution p(q, p, t) for the unperturbed system can also be written as a 
superposition of plane waves, 

P(4, P7 t) = - ’ ~eik’(q-“‘)((k, pip(O))}. 
~3~12 k 

(22) 

For a trajectory we have (see (4)) 

((k ~b(o))) = -$&k.9oQ - PO>. (23) 

This leads with (22) to 

dq, P, f) = b(q - q” - Uf)S(P - PO). (24) 

Hence, the delta function remains a delta function. The delta function corresponds to a 
coherent superposition of plane waves. As we shall see in the thermodynamic limit, 
Poincare resonances may destroy this coherent superposition and therefore also the 
trajectory (see Section 11). 

In the Fourier representation, the evolution generated by the unperturbed Liouvillian is 
diagonal, while the part corresponding to the perturbation AL, is off-diagonal and leads to 
transitions from one set of wave vectors to another. Let us consider the matrix elements 
(L,),,,,,;,,, defined as 

(Lv)k',p':k.p E (<k', p'iblk, P>> = &jdqjdq’e-“.‘9((q, p’lLvlq’, p)) e’k’9’. (25) 

In this example, the only non-vanishing matrix elements are [17] 

((k;, k:, {k}“-‘, p’lL,Ikj, kn, {kjN-*, P>> 

= -$F6k’(kj - k,’ + 1)6k’(k, - kl, - l)V,[l ‘d,6(p - P’)], 

where 

= iFd”(kj - kj + l)ak’(k, - k; - l)V,[l*dj,6(p’ - p)], 

(26) 

(27) 

and {k}“-2 is a set of wave vectors excluding the particles i and n. The function VI is the 
Fourier coefficients of the potential 
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We assume V, = 0, i.e.,§ 

I dqV(lq/) = 0. (29) 

All indices k in (26) keep their values, except the two indices kj, k,; moreover, we have 
the conservation law of wave vectors, 

kl, + kl = k, + kj. (30) 

All these results are direct consequences of the assumption of binary interactions and of 
invariance in respect to translation. 

3. SINGULAR FOURIER EXPANSION AND PROJECTION OPERATORS 

The statistical description of dynamics in terms of the Liouville equation deals with a 
wide class of ensembles; this includes ensembles localized in space, as well as non-local 
ensembles. Let us first consider local ensembles. We consider the Fourier expansion of the 
distribution function 

’ P(tl> P, f) = - ~eik’qpk(p, f>, 
L3N k 

where (see the volume factor in (18)) 

Pk(P, t> = L3”“*((k> P/P@))). (32) 

For local ensembles, the coefficients Pk(p) do not depend of the volume in the limit 
C2 + cc. As we shall see later, this is not the case for non-local ensembles where 
p(q, p) # 0 in the limit lqjl--, ~0. In order to emphasize this fact and to distinguish (31) 
from the Fourier coefficients pk(p) for non-local ensembles, we put the bar on the 
coefficients Pk. The distribution function (31) is normalizable as 

~dq~dpdq, P) = j-dp&(p) = 1. 

A single trajectory belongs to this class (see (4)). The characteristic feature of this class of 
ensembles is that all Fourier components of the distribution function have the same volume 
dependence LeJN regardless of the number of non-vanishing elements kj in the wave 
vector k = (k,, . . ., kN). 

The Hilbert space norm of this class of distributions is given by (for L -+ cc) 

MP)) = -j&dPh(P)l* -+ -/dk/dph(p)i’ 
(257)3N 

Hence, there exists a Hilbert norm for square integrable functions and for N finite.* 
On the other hand, statistical mechanics (equilibrium and non-equilibrium) deals mainly 

with non-local distributions, such as canonical distribution function. As in equilibrium 
problems it is useful to introduce reduced distribution functions fS referring to s paticles. 
From the normalized distribution function p we may deduce the probability pS(ql . . . qS, 
Pl . . . P,~) of finding, at a given time t, a set of s specific particles 1, 2, . . ., s with 

“If this is not the case, we redefine the unperturbed Hamiltonian by incorporating the element V, into Ho. 
*Trajectories are a special case of this class of distributions. They satisfy (33) but have no Hilbert space norm 
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momenta pl, . . ., ps and coordinates ql, . . ., q, 

ps(q1 . . - q,, PI 1 . . P,) = 
I 

W”-S W-%(q, P, f>. (35) 

Distribution functions that refer to specified particles are called specific distribution 
functions [17]. We shall in general be more interested in the probability of finding s 
arbitrary particles at positions ql, . . . , q,, pl, . . ., ps. This probability, which we shall call 
fs is found by multiplying pS by the factor N!/(N - s)! This is the number of possible ways 
in which a sequence of s particles can be chosen out of N. Therefore 

fdq1 * . . Qs, PI * . . Ps) = (N “! s), Ps(91 * . . %Y Pl . ’ . P,) 

N! 

(N - s)! I 
dq N-SdpN-sp(q, p>. (36) 

We shall also use distribution function qS in momentum space and )z, in coordinate space 
defined by 

%(Pl . * * PA = ‘N;, ‘I! I dp”f,, 
(37) 

ns(q1 * . . s,> = I Wfs. 

The reduced distribution functions fs, qS and IZ, are called generic distribution functions to 
distinguish them from the specific distribution functions. In the following discussion we 
shall use the specific distribution functions whenever it is necessary to specify coordinate 
and the momentum of each particle, such as the case for a single trajectory, otherwise we 
shall mainly use the generic distribution functions. 

In general statistical mechanics deals with situations where there are no asymptotic free 
in and out states. The interactions are persistent. As mentioned, this requires the use of 
non-local distributions. For this case distribution functions have ‘delta function singularities’ 
in their Fourier representation [17]. For example, let us consider the reduced number 
density in space given by nl(q) = c + h(q), where c is a constant and h is an absolutely 
integrable function. In the Fourier representation we have (see (20)) 

nl(q) = iT(c&(k) + hk)eik.q. 

In the limit of large volume, the uniform part has a delta function singularity at k = 0. 
We note that the Hamiltonian (1) is also a non-local phase function, which has again a 

delta function singularity in its Fourier representation, 

Let us now show that this leads to delta function singularities for equilibrium distributions 
which are functions of the Hamiltonian, 

f(& + nv> 
peq(q’ ‘) = jdqdpf(H, + dV) ’ 

We assume the normalization 

(40) 

I dpf(Hd = 1. (41) 



450 T. PETROSKY and I. PRIGOGINE 

Then, using (29) we have the power series expansion in the coupling constant j, for the 
Hamiltonian (1)) 

(42) 

where we have written explicitly the particle indices, such as i and j. Different particle 
indices i, j denote different particles. Let us consider the canonical distribution function 
(for systems with the same mass m, = m of particles) 

3N/2 
e-PcHo+"", (43) 

We then obtain (with (39)) 

kf4(4? PI = LJ&~N’2em@HO[(l + A2 . . .) 

+ &cc eik.‘q’-q’)( -A&, + ~2~2~~v,k~,I/krLk, + A3 . .) (44) 
. r,]k 

+ r(k+k’).ql-k.qi-k’.qn(j12P2V,k,I//k’, + A3 . . .) + I . . , 1 
Here, the first term in the bracket does not depend on the coordinates, so that this term is 
associated to a Fourier coefficient which has only vanishing wave vectors. The second term 
corresponds to contributions which have non-vanishing wave vectors kj = k and k, = -k 
for only two particles, i and j, and so on. As the Hamiltonian is translational invariant, the 
equilibrium distribution is ‘homogeneous’ in space (it is invariant when q, + qj + a for all 
j, then the total wave vector vanishes kj + kj + . . . = 0). 

The remarkable feature of the equilibrium distribution is that peq can be decomposed 
into the ‘vacuum of correlations’ (i.e. the first term in the bracket of (44)), binary 
correlations (the second term), ternary correlations (the third term) etc. Moreover, we see 
the appearence of delta function singularities as in (38). The existence of this expansion 
ensures the existence of reduced variables (i.e. ‘intensive variables’) depending on a finite 
number of particles, as well as of the ‘cluster expansion’ of the distribution function p in 
terms of correlation functions which have a finite range of correlations in the thermo- 
dynamics limit [17, 181. 

In our previous work in non-equilibrium statistical mechanics we used the class of 
ensembles which corespond to the natural generalization of the canonical distribution: 
[17, 181 

N 

+ 5 c Pki,k,,k,(Pt, Pj, Pnll’N-3)~,+k,+k,.0d~~(k) + . . . 
n>j>l 

N-1)61’(k) + ~~pl,k,(pi; pjlpN-2)6,:‘(k) f . .]. 
I>1 

(45) 
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Here, @‘(k) is a product of N Kronecker’s delta, 6?(k) a product of N - 1 Kronecker’s 
delta which excludes the particle i, and @(k) a product of N - 2 Kronecker’s delta which 
excludes the particles i and j, and so on. We have decomposed the Fourier components 
according to the number of non-vanishing elements k, in the wave vector k. In the 
expression Pk,,ki,...(Pi, Pj2 . . . ]pNMr), the momentum arguments on the left side of bar 
denote the particle i with a non-vanishing wave vector ki, the particle i with kj, . . . while 
the arguments on the right side of the bar denote the remaining particles which have zero 
wave vectors and are therefore uniformly distributed. We assume that P~,,~,,,,, and P;,,+ 
does not depend on the volume Q, and that their dependence on the wave vectors is 
smooth. 

In order to emphasize the difference in the volume dependence from the one for local 
ensembles such as (31), we have introduced the new notations A,,+ and o;,,k,,,,, instead of 
&,k,,,,, for the Fourier COeffiCientS in (45). Here, the COeffiCientS &,k,,,,, are associated 
to the homogenous components of the distribution function in space (i.e., the compo- 
nent with the total wave vector vanishes ki + kj + . . . = 0), while the coefficients ~i,,~,,,,, 
are associated to the ‘inhomogeneous’ components (with k, + kj + . . . # 0). This form of 
expansion leads to an extension of the cluster expansion in terms of the correlation 
functions in non-equilibrium statistical mechanics: i.e., the coefficients p&), P~,,~ (p), 
Pk,,k,.k,bh ’ ’ ’ are just the Fourier components of the momentum distribution func- 
tions (which correspond to the ‘vacuum of correlation’), of the binary correlations, of the 
ternary correlations, and so on [17, 181. As we have seen, interactions leads to transitions 
from one set of wave vectors to another. This corresponds to a ‘dynamics of correlations’ 

[171. 
A characteristic feature of the distributions (45) is that all reduced quantities are well 

defined. For example, the expectation value of q1 - q2 is given by (in the thermodynamic 
limit) 

Idq]dph - q&J(C?, P> = -i 
[ 
$-&‘L’w&‘~~ Phf-*) 1 (46) 

k=O 

Assuming a finite range of correlation, this quantity is finite. 
An important aspect of this class of distribution functions is its stability during the time 

evolution. Indeed, dynamics of correlation leaves the form (45) invariant. For example, let 
us assume that the system is initially in the vacuum of correlation. Because of the volume 
dependence in (18), we first note the relation between the Fourier coefficients p&) and 
the (k, p)-components ((k, p/p)) of the distribution function, 

((02 PIP)) = &Po(lPL 

((ki, - kt, {O}N-2, PIP))S,:‘(k) = & $Pk,.-k,(Pi, pjlpNe2), 

(47) 

Also 

((kj, k,, {O>N-2* PIALvIP)) = JdP’((kj, kn, lo>“-*, PI”vIO, P’>> ((0, P’IP>> 
(48) 

1 = -- ‘hV,k,ikj ’ djnPdIP)h,+kn.o~ 
~3~12 Q 

This gives the same volume dependence as in the second expression in (47). One can 
extend this result to all orders of /l and to all Fourier components (see [17, 181 for more 
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detail). This is quite remarkable. Indeed, as we shall see later, this is the only class of 
distribution functions which is stable in this sense in the thermodynamic limit (see Sections 
6 and 11, as well as Appendix F). 

We note the distribution function p (45) satisfies (33). In contrast, the Hilbert space 
norm of (45) vanishes as in the thermodynamic limit 

Hence, distribution functions of this class do not belong to the Hilbert space. 
Also observables M which depend on a reduced number r(<N) of coordinates have a 

delta function singularity in their Fourier expansion as (for s c N) 

Mtq,, . . ., q,, PI, . . .> P,) = -$~ei”‘qiMx(pl. . . ., psbMkr+J . . . &tk,v). (50) 

Hence, these observables also do not belong to the Hilbert space. 
To investigate the time evolution of this class of phase functions it is convenient to 

introduce projection operator Pr’ which extracts single eigenmodes of the unperturbed 
Liouvillian in the Fourier expansion of the phase functions. 

p(O) = jdplk, J’))((k Plak’(k), f$b”-k’) = jdplk, p))((k &,+,,,,&(b, . . . 

Pfk,) = dplk, p))((k, p/6:‘(k), I Z’;!llk,) = dplk, p})((k, pl$(k), . . 
(51) 

I I 

The index a in Pr’ denotes the particles associated to non-vanishing wave vectors, while 
the index Y denotes the value of their wave vectors. The projection operators in the first 
line in (51) extract the homogenous components in the Fourier expansion of the phase 
functions, while the projection operators in the second line in (51) extract the inhomo- 
geneous components of the phase functions. 

Note that the momentum @, as defined in (11) lies in the vacuum of correlation subspace 
p(O) 

((fi,l = J-dqldp]dp’zPj(fq, PIN, ~‘))((k, P’I = L3N’2/d~~,(f0, PIP(O). (‘2) 
k 

The projection operators Pr’ commute with the unperturbed Liouvillian, 

L”PC’ = (k - u)Pp’ = Pb”‘L”. 

Moreover 

(53) 

pc”)pt) = p(“,(y 
a a 

6 
v,p ah, CL . 

PC”) = 1 (54) 
Y a 

To shorten the notation we have not written the delta functions for the momenta (c.f. 
(21)). We also introduce the projection operators Qc’, 

Q’“’ = 1 _ PC”’ 
c1 a > (55) 

which are orthogonal to Pp’, i.e. 
p:‘Qp) = Qh”pr) = 0. (56) 
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We note that 

p”‘L,pr’ = 0. a 

In the following discussion we shall often use the notation, 

PC”) = lb>> ((VI 3 

(57) 

(58) 
as well as I,, for the eigenvalue of Lo. Then, the spectral decomposition of the Lo is 

We now come to the main problem: the study of the spectral representation of L, in the 
extended function space. 

4. COMPLEX SPECTRAL REPRESENTATION OF THE LIOUVILLIAN-THE RIGHT 
EIGENSTATES 

For non-integrable systems, the spectral decomposition of the Liouvillian corresponding 
to Hamiltonian (1) in Hilbert space is generally not known. In contrast we shall give the 
solution of the eigenvalue problem for the Liouvillian for the class of functions with 
singularities in their Fourier transforms. As these functions have no Hilbert space norm 
(49), we have to extend the eigenvalue problem outside the Hilbert space. This has already 
been done in the case of deterministic chaos [9-141. Our extension introduced here is quite 
natural, as the class of functions we consider includes the equilibrium distribution. As we 
shall see, in this extended function space, the Liouvillian has ‘complex’ eigenvalues. That 
means that time-symmetry is broken. We may therefore expect that this complex spectral 
representation allows us to describe irreversible processes such as the approach to 
equilibrium. Our spectral representation makes explicit the role of Poincare resonances 
which lead to collision operators of the Fokker-Planck type. As a special case with no 
singular Fourier components, we recover the spectral representation in the Hilbert space. 

We consider the eigenvalue problem [l] 

L&?(A))) = 2qF(,"'(il))), (60) 

with the boundary condition 

IF(")(A))) + P(")pqO))) N D( for ?t -3 0. (61) 

The indices CY (together with V) are the parameters characterizing the eigenfunctions. 
As we shall show, the eivenvalues Z’,’ are generally complex numbers. The time 

evolution of LPS splits into two semi-groups. For the semi-grou corresponding to t > 0, 
the ei enstates 

? 
P are associated to the eigenvalues with Im Zt s 0 (including the case 

Im Zr < 0) and equilibrium is reached in our future for t + + ~0 (see Appendix A), 
while for the other eigenvalues are the complex conjugate of Zc’ and equilibrium is 
reached in our past. Experience shows that all irreversible processes have the same time 
orientation. To be self-consistent we have to choose the semi-group oriented towards our 
future. 

For complex eigenvalues, the left eigenstates of L, are not the hermitian conjugate of 
the right eigenstates. Let us denote the left eigenstates corresponding to the same 
eigenvalue Z$‘) by (( F”,“‘I, i.e. 

((pI& = ((plz’“’ a a lx 7 (62) 
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again with the boundary condition 

(( Ff$(h)I -+ (( Fky)(O)(P(‘) for k -+ 0. 

We assume the bi-orthogonality and bi-completeness relations 

(( F:‘,“‘py)) = 6v,p6a,B, ~~IF’,“))(( F”,“‘l = 1. 
v a 

(63) 

(64) 

We assume also that the eigenstates of the Liouvillian are not degenerate for the different 
indices of Y and CY. The bi-orthogonality relation is the direct consequence of the 
assumption of the non-degeneracy. This assumption, as well as bi-completeness of the 
eigenstates, should be verified for each specific Hamiltonian.” 

Moreover we assume that the Liouvillian is diagonalizable 

L” = CCIF(,))) z’,“(( F’,“‘l. (65) 
” a 

In this paper we shall not consider more general situations which would lead to Jordan 
blocks (see [14, 281). 

Let us first consider the eigenvalue problem (60) for the right eigenstates. As mentioned, 
we consider eigenfunctions which have the structure (45). We limit ourselves to homo- 
geneous situations where the eigenfunctions are translationally invariant. We shall there- 
fore study the eigenvalue problem for functions characterized by the singular Fourier 
expansions: 

N (66) 

+ 5 c ~~:,,k.(P: 44i+k,+k,,0~r:xk) + . . . . 
n>j>i 1 

We assume that the Fourier coefficients F”” 
of the large volumes D + CC. Fp’ 

,++ do not depend on the volume in the limit 
correspond to the vacuum of correlation, F&, to binary 

correlations, . . . as p in (45). 
Note that the eigenstates IF$‘)) for h # 0 contains components in the range of all 

projection operators PC”). We call PC”1 F’,“‘)) the ‘privileged’ component of / F$“)). 
We formulate the eigenvalue problem for an arbitrary number N of particles, including 

IV --+ a. For this case, special care is necessary, as the perturbed Liouvillian Lv in (26) 
contains N2 terms involving all pairs of particles j and IE. We therefore take the inner 
product of the eigenvalue equation (60) with observables (50) which depend on an arbitrary 
but finite number of particles: 

((fiILHpy)) = Z’,Y’((fiIF&ll))). (67) 
This operation reduces the number of pairs and leads to a finite contribution in the 
thermodynamic limit (2). In our discussion of the eigenvalue problem, we shall always 
understand our formulae as in (67). We shall come back this problem later in Sections 8 
and 10 (see also [17]). 

Applying the projection operators PC”) and Q(“) in (55) to (60), we derive the set of 
equations: 

P(“L,(P(“)IF’,“‘)) + Q’v’IF(,“‘))) = Zp’“‘IF~,“‘)), 

Q’“L,(P@‘IF$‘))) + Q”‘lF’,“‘))) = Z’,“Q’v’~F~‘)). 

(684 

(68b) 

*The proof of the bi-orthogonality and bi-completeness for the complex spectral representation for the quantum 
Friedrichs model as well as potential scattering can be found in [l, 5, 71. 
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Equation (68b) leads to 

(2:) - Q’“‘L,Q’“)Q’“l~‘,“‘)) = Q’“‘&f”“‘I@)). 

Hence we obtain for Q(“lF(“‘(z))) n 

Q”“IF:)(z))) = ~e’v~(z)~cv~~F~‘(z))), 

where 

(e(“)(z) = 
-1 

Q(“)L,Q’“’ - z 

Q%L”P(? 

If this geometrical series converges, we have 

n 

(e(~)(~) = --?-Q(“)JL,p”“. 

Lo - z 

(69) 

(70) 

(71) 

(72) 

This expansion for SC”) corresponds to a sequence of ‘irreducible transitions’, as the 
intermediate states are orthogonal to the initial state in the space PC”) [17]. The operator 
(eCvJ is called the ‘creation-of-correlation’ operator, or ‘creation operator’ in short. The 
creation operator describes off-diagonal transitions from PC”) to orthogonal states in Q(“) 
subspace: 

(e(“)(z) = Q’“k@“)(z)fd”) (73) 

The substitution of z by Zby’ leads to a solution of (69). However, we have to be careful 
with the analytic continuation of (z, - Lo)-’ in (72) to avoid divergences associated to the 
Poincare resonances [S]. This is achieved using the so-called ‘ie-rule’ for the analytic 
continuation [14, 26, 311. For two-body scattering (or potential scattering) considered in 
our previous article [l] we have proved that the ie-rule follows the bi-orthogonality 
condition of the eigenstates of the Liouvillian. Let us recall the ie-rule for the two-body 
scattering [l] (see also [31]). In order to specify the analytic continuation in accordance 
with the ie-rule, we define the index d, of the ‘degree of correlation’ of the unperturbed 
state IV)) as the integer which is the minimum number of interactions lzLv required to raise 
the state IV)) from the state (0, p)), the ‘vacuum of correlation’. The degree of the 
correlation for 10, p)) is do = 0. The second term of the Fourier component in (66) 
corresponds to d, = 1, and the third term to d, = 2, and so on. 

For the two-body scattering the maximum order of correlation is d, = 1. Then the 
orthogonality condition for the eigenstates of L H uniquely determine the analytic continu- 
ation of the propagators for t > 0 as [l] 

Here. Ed,, is defined by 

-iE, for d, > d,, 

+ie, for d, < d,, 

(74) 

(75) 

and E is a positive infinitesimal E+ O+. This limit should be taken after the limit to the 
continuous spectrum D + CO (see Appendix B). Hereafter, we shall always understand the 
limit in this sense. 

We can generalize this result for the complex eigenvalues Z’,“’ with finite imaginary parts 
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(instead of -in) in terms of geometrical series. Corresponding to (74) we introduce the 
notation, 

p(r) -1 E p(d -1 
(1 P - z’,“), [Zp - z]&’ 

for d, B d,, (764 
P 

p(r) -1 

(I - Z’,“‘), 
- pm -l 
= P 0” 1, - zp ’ 

for d, < d,. (76b) 

Here, 

and 

I f(w) 
Rdw ,w - z];!;’ 

= &y+ c 1 dw (-W” f(W)? (77) 
n=o R (w - w’ - itz)n+l 

I 
dw f(w) = lim c dw (--W 

(78) 
R w _ z’,) I c*o+n=o R (w - w’ + ie)n+lf(w)’ 

where Z$‘) = w’ - iy with w’ and y 3 0 real, and the integrations are performed with a 
suitable test functions f(w) on the real axis R. We can perform the summation of the 
geometrical series (77) by introducing the ‘complex distribution’ defined by [4] 

(79) 

Here, z 4 Z$” means that we first evaluate the integration in the upper-half plane of z 
(i.e. Imz > 0), then take the limit z + Zr’ in the lower-half plane. We can perform the 
integration by changing the contour as shown in Fig. 1. 

The relation of (79) to the complex ‘&function’ is presented in Appendix C. Moreover, 
in Appendix D we present the proof that the analytic continuations (76) (and (102) for the 
left eigenstates in the next section) lead indeed to a bi-orthonormal set of the eigenstates of 
L, for N-body systems. We shall present the proof of the uniqueness of the analytic 
continuation elsewhere. 

There is another branch of the analytic continuation in (72), which corresponds to the 
complex conjugate of (76). But we shall not consider this branch, as this leads to the 
eigenstates belonging to other semi-groups oriented towards our past. 

Then, with (76) we have the solution of (69) 

Q’“Ip)) = (e(V)(Z(“))P’“‘IF’“‘)) CY 1y a 3 W’) 

Imw 

Fig. 1. Contour r for the complex distribution in (79). 
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where 

pcw’,qp)( z’“‘)pc”’ = p(r) -1 
Ly 

&I - z O)c,,. 

@( z ‘,“‘) pw (81) 

Here we have introduced the ‘5-matrix’ which is defined as the solution of the equation 

3$“(z) = AQ(“)L, + ~AQ’v’L,P(~’ -’ 
(4 - 4C,,” 

$‘(z). 032) 
P 

Substituting (80) into (68), we obtain the non-linear equation [28] 

?p(Zkv))I*~~)) = Z(n)Ju~~)), 033) 

where 

Iu(n))) = W/F’,“‘)). (84) 

Equation (84) implies 

L,lu(,“))) = E&4’,“‘)). (85) 

Here, I$“’ is the generalization of the ‘collision operator’ familiar from non-equilibrium 
statistical mechanics [17]. This operator is associated to diagonal transitions between two 
states corresponding to the same projection operator P (“). The collision operator is defined 
through 

?p(Z’,“‘) = Lop(“) + Ap(“‘L,~c”)(Z’,“‘)p(“). (86) 

Assuming completeness in the space PC’), 
{((u”‘,“‘i} bi-orthogonal to {]u$“))}, i.e. 

we may always construct a set of states 

m3@>> = &L4& =j)Q)) ((iiiyv)/ = Fy)* (87) 
a 

We have 

(( ii’,“‘1 Lo = (( a’,“‘p,. (W 

We note that the states (( u”(,“] are generally not the left eigenstates of #“)( Z ‘,“‘) [27]. 
Let us then introduce the ‘global’ collision operator by 

as well as the ‘global’ creation operator, 

C’“’ = pP)(z’,))lu~‘)) ((S’,v’l. (90) 
n 

We shall call also 0:) the collision operator and C (“) the creation operator for simplicity, as 
far as no confusion is possible. Then we have [21] 

($) = Lop’“’ + ~p(“‘L,(ypw, (91) 

and 

e(cy)Iulyv))) = Z’,v’lubv’)), ,” ((2’ ‘I@ = ((fj’ ‘IZ’“’ ,” a . (92) 

Therefore, lu’,v’)) and ((ii’,v’] are right and left eigenstates of the global collision operator, 
respectively. 
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With the creation operator we have also 

Q”‘IF(,“))) = Q(“Cb’)P(“)(F’,“)). (93) 

Formula (84) shows that the privileged components Pcv)lF’,“‘)) are eigenstates of the 
collision operator, which has the same eigenvalues 2:) as the Liouvillian. The solution of 
the eigenvalue problem of the Liouvillian for our class of singular functions (66) has unique 
features. The privileged components satisfy closed equations and the Q(“) components are 
‘driven’ by the privileged components (see (93)). In the previous work on subdynamic 
theory (for non-equilibrium statistical mechanics as well as for deterministic chaos) this 
property has been presented as an ‘ansatz’ [14, 311. Here we derive this property through 
the complex spectrual representation of L H for the singular class of eigenstates (66). 

The collision operators are dissipative operators, and they are the central objects of 
non-equilibrium statistical mechanics [17, 181. Of special interest is 19’,“’ corresponding to 
the vacuum of correlations, as it leads to well-known kinetic equations for the momentum 
distribution function in the thermodynamic limit; e.g. for weakly coupling limit f?(,“’ reduces 
lo the Fokker-Planck operator, 

which gives 

@) z A2(3$” = j&0)&Q(o) 
in 1 L Q’“‘W”o’, (94) 

0 

A2((0, ple$“‘lo, p’)) = 1’ (95) 

where 

gin = vi - v,. (96) 

Also in the low concentration limit, f3’,“’ reduces to the Boltzmann collision operator [17]. 
The Fokker-Planck operator (94) is an anti-hermitian operator and has non-vanishing 

negative imaginary eigenvalues (i.e. Im 2:’ < 0) associated to diffusive processes in 
momentum space (see the example given in the Appendix F; see also 117, 181). This 
illustrates the consistency of our construction of the eigenstates of the Liouvillian with 
Im Z’,“’ d 0. Moreover, the contribution of the Fokker-Planck operator comes from the 
integration over wave vectors satisfying Poincare’s resonances condition k * gj, = 0. This 
means that the dissipation has a dynamical origin associated with ‘non-integrability’ of LPS 
due to Poincare’s resonances. The Fokker-Planck operator leads to ‘Brownian motion’. 
Instead of separate dynamical events described by each interactions AL”, we have events 
‘coupled’ by the resonance condition 6(k * gj,). The diffusion process is ‘irreducible’ to 
trajectory dynamics. We have ‘non-Newtonian’ processes due to the Poincare resonances. 

In the correlation subspace PC”) the collision operators 0:’ leads to a natural generaliza- 
tion of kinetic theory. In general the denominators in the operators involves both directions 
of the analytic continuation (76). Nevertheless, the analytic continuations of the diagonal 
operators, such as f$‘, are uniquely determined in the thermodynamic limit by the 
complex distributions (76a). This is the result of the so-called Henin’s theorem [22]; i.e. for 
the diagonal transition between the states in P (“), the intermediates states should cor- 
respond to a higher degree of correlation than P (“). Indeed, the diagonal transition restricts 
the wave vector transfer and leads to extra volume factors R-l through the interaction (see 
(26)). The diagonal transitions give non-vanishing contributions only when the intermediate 
states involve more particles than the states in PC”), as the summation over the particles 
leads to extra factor N which then compensates the factor G-l. We then obtain for 
example to the lowest order contribution of 0g) (i.e. to A? order). 
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Combining (93) with (84), we obtain the right eigenstates (60) of the Liouvillian, 

IF’,“‘)) = j$y2(pw + q$“)(z’,“‘>)lu’,“‘))~))~u~~)) = $y2(p(“) + C’“‘)lu’,“‘)), (98) 

where N y’ is a normalization constant which we shall specify later (see (115)). 
Let us note that (83) is a ‘non-linear eigenvalue 

P 
roblem’, 

itself depends on Z’,“‘. Unknown eigenvalues Z ‘, 
as the collision operator I@(“’ 

appear in the propagator inside the 
collision operator. This corresponds to the Brillouin-Wigner formulation of the eigenvalue 
problem of the Hamiltonian H for integrable systems when the eigenvalues are real. We 
can extend this formulation to the eigenvalue problem of LH for non-integrable classical 
systems [4]. The Brillouin-Wigner theory gives a systematic approximation scheme for the 
solution of the eigenvalue problem. We present this method in Appendix E. In Section 9, 
we shall also construct a non-linear equation [14] for C (“I, through which we can determine 
the explicit form of the creation operator by a perturbation series in powers of ii (see 
(171)). 

Replacing P(‘) by the projection operators corresponding to the inhomogeneous compo- 
nents, the construction of eigenstates associated to the inhomogeneous situation is 
straightforward, and we do not repeat the calculations. We now turn to the left eigenstates 
of L,. 

5. COMPLEX SPECTRAL REPRESENTATION OF THE LIOUVILLIAN-THE LEFT 
EIGENSTATES 

Let us now consider the eigenvalue problem (62) for the left eigenstates. As for the right 
eigenstates, we obtain 

(( p:‘k”l = ((,“t)l(p(“) + C$“‘(Z’,“‘))N;)“2 = ((fj$l(p(“) + I)(“))@+“?“, (99) 

The operator %(“‘( Z t’) is called the ‘destruction-of-correlation’ operator, or ‘destruction 
operator’ in short. This operator is defined by 

p(“)G&“)( z’,“‘)pcr) = pmTp( Zgf’) 1 

<z’a”’ - &I,,, 

pm 

’ 
(100) 

where we have introduced the ‘9-matrix’ similar to (82), 

k@(z) = AL,Q”” + ITS’ ’ PwlL,Q(“), 
v (z - l,)DW” 

using the analytic continuation given by (c.f. (76)) 

1 pm G 1 

(Z!J’ - 4JL& 

p(P) 
[z - z&(,1 

, for d, < d,, 

1 pb) c 1 

<z’,) - QD”# z”’ - 1 
P(P) ) for d,, 2 d,,. 

Again %(“)(z) corresponds to the off-diagon”a1 traisitions (see (73)) 

DC”’ is the global destruction operator defined below (see (110)). We have 

(( ii’“‘1 e (( F:(“)lpW a a 

(101) 

(102a) 

(102b) 

(103) 

(104) 
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and 

((p’,“lQ”” = ((~~‘/@#‘~(Z’,“) = ((~~)I@“@(“). 

(( $“I are the left eigenstates of the collision operator @“), 

((i$‘(lp(Z’,“‘) = ((a’,V’lz$ 

where 

(105) 

(106) 

1ll(“)(Z’,“‘) = pq,, + ~pC”‘~C”)(z’,“)~,p’“‘. (107) 

We note that the analytic continuations in (102) leads to the same collision operator as 
(86) * 

We denote /u’,“‘)) the functions which are bi-orthogonal to (( E’,‘j. Again we assume 

(( ak”‘lzy)) = 8v,ySn.p, ~lLp))(( a;‘/ = P(“). 
Ly 

We have 

L&l(,))) = l”lu;))), ((ii(,“‘(Lo = ((i$“‘ll”. 

Then the ‘global’ destruction operator is defined by 

(108) 

(109) 

Similarly to C”“, the operator D(‘) satisfies a non-linear equation given later (see (171)). 
We can also introduce the ‘global’ collision operator (see (89)) 

We have 

eg~l”~‘)) = Zk”‘lU’,“‘))) ((aplop = ((a$‘lz$). (112) 

We note that 

eb”’ # op. (113) 

But, both operators share the same eigenvalues Z’,“‘. 
One can now determine the normalization constant as follows: as the result of the 

bi-orthogonal relation (64), we have 

6 a.B zz {(~~)I@))) = (~~~~k”‘)“‘((~~~l(p(“’ + D(“)C(‘))luj3”))). (114) 

This gives us the normalization constant in (98) and (99) as 

N’,“’ zz [((~‘,“l(f’(“) + D’“‘C”“)lu’d”})I-‘. (115) 

Moreover, putting 
(A”‘)-’ gjg p(V) + D(“‘C’“‘, (116) 

we obtain 

(A(“‘)-’ = ~I”ky’))(~~‘)-‘((u”~‘l, (117) 
(Y 
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and its inverse operator in PC”) subspace’ 

A’“’ = p’“‘(l + D(“)C(“))-’ = ~Iu~~))&‘i,,‘((~‘,Y’~~ (118) 
a 

Hence, we have 

((u, 10, A IuB )) = Z(,“‘N’,“‘G,,B = “(4 (“) (v) (9 ((u, IA 00 IQ >>. 
-(“) (v) (“) (“) 

(119) 

This leads to the intertwining relation of A”” with the collision operators [20] 

,$‘A’“’ = A’“‘@ (120) 

As mentioned, we have in general @’ # 0:). However, to the lowest order contribution 
(i.e. to A2 order) of 0’;;’ we obtain the same collision operator as I$” in (97), i.e. 

#gg) z=z LOP’“’ + /120p (121) 

In summary we have obtained the explicit form of the ‘complex spectral representation’ 
of LH (see (65)) and therefore of the evolution operator Q(t), 

((MIQ(tMO))) = ~~<<~I~?)) e-iZ~“((~‘k”)lp(0))). 
v n 

(122) 

This spectral decomposition involves the spectral decomposition of the dissipative collision 
operators. However, the existence of the collision operator is only a necessary condition to 
observe irreversibility. To observe dissipation, we have to discuss the class of distribution 
functions p on which our complex spectral decomposition acts. In the subsequent sections 
we shall apply our spectral representation to various situations. In simple cases (finite 
number of particles and normalizable distributions) we recover the usual results of 
trajectory dynamics without any dissipation inspite of the fact that we deal with LPS. Still 
there are many situations where our new ‘non-Newtonian’ effects can be observed (see 
Sections 9-11, and Appendices F and G). 

6. NON-UNITARY TRANSFORMATIONS AND SUBDYNAMICS 

Once we have obtained the spectral decomposition (65) of L,, we can construct 
non-unitary transformation operators which lead to similitude relations between the total 
Liouvillian LH and the collision operators [4, 141 (hereafter the index B stands for C 
or D) 

ABLH&jl = og, (123) 

where 

The non-unitary transformations A and their inverses are given by 

(125a) 

(125b) 

‘In general f(Acv)) + C,lu$)))f( N~‘)((i$“,“l. Th ere f  ore, this is not the spectral decomposition of A(“). 
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and 

Ai1 = ~~I@)) (( u”;)jN’,“‘l/* = ~c&@‘), 
” n 1’ 

where the operators 6: are defined by 

$j E p(v) + ($9, &.,” z p(“) + DC”‘. 

(125d) 

(126) 

Because L, shares the same eigenvalues with f$” we have the ‘intertwining relations’ [4] 

L&F = 6;e’,“‘, cfP& = #p Y ” . (127) 

One can easily verify these relations by operating on the eigenstates of the collision 
operators. We note that the similitude relations (123) lead to the intertwining relations 
(127), and vice versa. These relations were already obtained previously [4, 141. The 
existence of the two different transformations A, and A, suggests the possibility of 
another transformation operator A associated to a more symmetrical form of the collision 
operator. This will be shown in Appendix H. 

As well known there exist for integrable systems unitary transformations U which 
lead to* 

UL,lJ~ = Lo. (128) 

We expect that in the situation where dissipative effects are neglegible the relations (123) 
would reduce to 

ABLHAil = L,,. (129) 

We shall verify this fact later (see (183)). However, as the complex spectral representation 
uses both analytic continuation, (129) is not a non-unitary transformation even for the 
integrable case. As the result, integrable LPS are diagonalized both through a non-unitary 
transformation, as well as through a unitary one. We shall come back to this problem in 
Section 9. 

Using A, we may introduce the transformed distribution function pB and the transformed 
observables k,, 

lb&))) = Ah(t)))~ (( fi,(t>l = (( &t>lA,‘. (130) 

The new states pB obey (see (124)) 

$+3(T))) = @LhsW)). (131) 

Since 0’,’ are operators acting on PC” subspace, equation (131) actually represents ‘kinetic 
equations’ for P’“‘lps(t))) in each correlation subspace, 

2P’“‘lp8(t))) = e’,“‘P(“lp,(t))). 
at 

(132) 

*In general the diagonalization of the Liouvillian L H by unitary transformation leads to a renormalized 
Liouvillian Lh (instead of Lo) which gives frequency shifts associated to diagonal transitions. However, for the 
case where there is no bounded motion (i.e. periodic motion), the renormalization effects are negligible as for 
these interactions they lead to terms of order 9-l. 
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This represents a set of the kinetic equations of the Fokker-Planck type [17]. Each 
component P(“IoB(t))} evolves independently. 

Similarly, the new observables A,(t) obey 

$yw)l = GQBwl% 

which leads again to a set of equations 

(133) 

2(( i&(t)(P’” = (( G,(t)JP’“h?‘,“‘. 
at 

(134) 

We shall illustrate in Appendix G these equations in a simple example. 
The transformation (130) preserves the expectation value of M, 

oa = GwMN) = ULmPBif))). (135) 

Using the solution of the eigenvalue problem of the collision operator or’ for example, the 
expectation value is 

( L%I)~ = 22 (( G,(O)lu~‘)) eeizb”’ (( u”(,“)lpc(0))) . 
v a 

(136) 

We note that the non-unitary transformations A preserve the reality of the states (( 4, p/p)) 
(see Appendix I for the proof). But the transformed states ((q, pIpB)) cannot be 
considered as probability distribution functions, as A does not preserve positivity. This is a 
direct consequence of the causal evolution of dynamics combined with the analytic 
continuations (76) and (102) ( see Appendix C). However, these states play an important 
role as they lead to bloc diagonal equations and permit us to introduce ‘Lyapounov 
functions’ for dynamical systems (see the next section). 

In our earlier work, we have repeatedly introduced the concept of ‘subdynamics’ 
[20-311. To see the relation of subdynamics to the complex spectral representation, let us 
introduce projection operators lI(“) (see (118), (125) and (126)) 

This leads to the familiar form [20-311 

n(V) = r$;A’“‘@ = (p(V) + C’“‘)A(“‘(P(“) + DC”)). 

These operators satisfy the orthogonality and completeness relations, 

(138) 

~(“)n[(P) = @“‘(y “,P’ -p”) = 1. (139) 

as well as the commutation relation with LH, 

L,H(“) = rp)L H. (140) 

FIcv) is an extension of PC’) to the total Liouvillian LH. 
Because these projection operators commute with the Liouvillian, each component 

Q( t)n(” satisfies separate equations of motion, 

(( h@U(t)II(“~lp(O))) = {( ~l~~e-ie~‘tAcv)~~~p(0))) = (( rijl~~A(v)e-ie6’t~,lqlp(0))). 

(141) 

For this reason, the projection operators n(“) are associated with ‘subdynamics’. 
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As an illustration of subdynamics, let us consider the evolution of a state which is 
initially in the vacuum of correlations, 

Im >> = P”lP(O) >>. (142) 

We now show that the time evolution leads to the correlations which satisfy the volume 
dependence given in (45). From (139)-(141), we have 

I&))) = (p(o) + C(o)) e-i~!“‘~A(o)p(o)~p(0))) + c C’“’ e-~~‘,“~A(v)D(v)P(0)lp(O))) 
tif0) 

= (p(O) + AC!‘) + A’ . . .)e-“zePf(l + A2Ai”) + A3 . . .)/p(O))) 

+ k3-y’ e-i(~,pc2)+~*~~‘)tDj2)P(0)IP(0))} + A’ . . . . 
(143) 

where the subscripts IZ in the operators represent their A” order contributions, and the 
superscript (v) corresponds to tih order correlations. Applying (47) and (48) to each term 
in (143) one can easily verify that the volume dependence for all correlation components 
are in agreement with (45). The reader can find the detailed estimation of the volume 
dependence in our earlier articles [17, 181. This shows that the class of singular distribution 
functions (45) is not only form invariant but it acts even as an attractor. In Section 13, as 
well as in Appendix F, we shall see that (45) acts as an attractor in the thermodynamic 
limit even for trajectories. 

7. LYAPUNOV FUNCTIONS-X THEOREMS 

The non-unitrary transformations have led to the similitude relation (123) between the 
total Liouvillian LH and the collision operators. As the consequence, we may introduce 
transformed states and observables (130) whose time evolutions are described only by the 
PC”) components in each correlation subspace. This permits us to introduce ‘Lyapunov 
functions’ which are dynamical analogue of Boltzmann’s X-function (i.e. ‘entropy’) for 
dynamcial systems [4, 51. Entropy is the consequence of the complex, irreducible spectral 
representation of the Liouvillian. 

To illustrate this statement, let us consider first the generic reduced single particle 
momentum distribution function defined by” 

q1(Pj, t) = ((@p,Idt))) = /dp’@Pi - P,)Po(IP’, t), (144) 

with 

((@p,l E ldq/dp’&Pj - Pj)((q* ~‘1 = Li”‘*ldp’Q; - pj>((O, p’lPco’, (145) 

where the right-hand side of (145) is written in the wave number representation. We have, 
for example; (see (52)) 

((P ĵI = /dPjPj((@p,I. (146) 

We note 

- 

(147) 

“The Lyapunov functions are defined for the generic distribution functions. For a trajectory (as a specific 
distribution function), we have divergence for l~‘l(p,)/2 because of the square of the delta function of the 
momentum. 
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Hence the hermitian operator I@,,)) (( QJ,,l p reserves positivity. The reduction does not 
change the sign of the distribution function. 

We now consider the transformed distribution function (see (130)), e.g. for j = 1, 

d(PIT t> = m&m)). (148) 

Then, a Lyapunov function associated to this distribution function may be defined by 

x,“(t) = 4hp,B(p,, t>i2, 
I 

(149) 

where 

l&P,> a2 = ((P(t)lAt,I~~*))((~~,l~BIP(t))). 

We have from (132) (e.g. for B = C) 

(150) 

All decay modes are damped for t > 0. Moreover, we now show that the damping is 
monotonous. Taking the time derivative of (150), we obtain 

-$WIH(PI. t>12 = -((ps(t>lrC’,o’(P*>lPs(t))), (152) 

where YC(,“’ is defined by 

@)(Pl) = I@~,~H~@#@ + w’,“‘)+l@~,m~,l. (153) 

YC(,) is a hermitian operator. Thus these eigenvalues are real and the left-eigenstates are a 
hermitian conjugate of the 7. 
of Y@ is known 

right-eigenstates Let us assume that the spectral decomposition 

ymPI> = cYB(P1)Iwp(P1)))((wa(Pl)l, (154) 
P 

where ys are real numbers and 

Gq3(PI)lwg~(Pd)) = $?,B’, 
(1W 

~bir(~~))H~wp(~,)~ = Idp”‘h ~1, {dN-‘MO, PI, W-‘1. 

As mentioned, the operator ($r,,)) ((I!&,,/ p reserves the positivity. The reduction does not 
change the sign of the collision operator. Therefore, YC’,“) is a non-negative operator, i.e. 

Y/API) 2 0. (1.56) 

Then we have 

$ld(PI. t)12 = -~Yp(Pl)l((Wp(PI)lPB(f)))12 c 0. (157) 

The evolution of / qF(pr, t) I2 ’ IS therefore monotonic. As the consequence, (see (149)) 

$e,“(t) s 0. (158) 

VIn the reduced subspace of lP1, eigenstate of JC@) B are normalizable. This is in contrast to the eigenstates of the 
Liouvillian. 
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Hence, the 2 theorem holds. Then, X,“(t) monotonically decreases for t > 0, until all 

decay modes disappear and the system approaches equilibrium. Contrary to Boltzmann’s 3Y 
theorem, our % theorem is valid for all 1 (or concentrations) for which the spectral 
decomposition of ‘%(,o’ can be determined. 

Instead of the Lyapunov function (149), we can introduce the more familiar form of the 
X-function, such as 

x;‘(t) = dphd(p1, t)lloglv;(~l> t>i. 
I 

Taking the time derivative, we obtain 

(159j 

-$X;‘(t) = 5, dp, ’ 
I&P15 41 

(160) 

Again we recover the X theorem. In the lowest order of E, (or of the concentration) the 
transformation (148) is not necessary (i.e. A, = 1) and Boltzmann’s formulation is 
recovered. 

For the more general case of generic reduced distribution functions fs, we have 

fXq1 . . * qs> Pl * ’ . Ps, t> = K$, ,.__, ps,pl /..., pslP(t))) 
N! 

= (N - s)! I I 
dq’ dp’4q; - sd . . . @(I: - %bxP; - P1) . . * 

x a(~: - PMq’, P’, t>, 061) 

with 

((Al, >...> cl,@* ,..., P1l = 
$+, . . ~eWs~+-+k,~q,) 

1 k, 

x L3N’2 
I 

dp’6(p; - pJ -1. 6(p: - p,)((k,, . . ., k,, {O}? ~‘1. (162) 

We may now introduce the Lyapunov functions through 

X;(t) = 
I 

dq, . . . dq, 
I 

dpl . . . dp,K(fq ,r..., q,.p ,r..., p,b&)))/2. (163) 

The extension of the above arguments is straightforward. 

8. POINCARfi RESONANCES, FLOW OF CORRELATIONS AND ENTROPY BARRIER 

The complex spectral representation obtained in Sections 4 and 5 as well as the X 
theorem in the previous section permit us to understand in an intuitive way the mechanism 
of irreversibility, which is associated to the ‘flow of correlations’ [6, 171. 

Let us consider the evolution of binary correlations g2. 

g,(q,, q2> Pl, P23 t) = 1 dq N-2/ dpN-‘+T eik.(ql-qz)pk,-k(pl, p2lpN-2, t> 

(W 
= L’“12/ dq N-21 dp N-2xeik’(ql-q:)((k, -k, {O}N-2, pip(t))), k 
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where 

Ip(t))) = cc e-iZk”qF:))) (( F’,“‘lp(O))) 
Y (Y (165) 

= C(p(v) + C(“)e- ~~:“‘Ab’)(f+‘~ + D(v))lp(()))). 

” 

Let us then consider for example an initial condition with no correlations, i.e. the system is 
initially in the vacuum of correlation, 

lb(O) >> = ~co’P@) >>. (166) 

We assume that the coupling is small, i.e. A << 1. The traditional approximation for a 
weakly coupled system in kinetic theory is the A22t-approximation [17]. Then one only 
retains contribution of the order (k’t)” with II > 0. For the evolution of correlations, 
however, this leads to the trivial result that all correlations vanish in the weakly coupled 
limit d+ 0. Hence, we have to go beyond this approximation. We shall keep terms to 
order h(k22t)n in (165). We call this the ‘A(12t)“-approximation’. It should be emphasized 
that the h’“t-approximation describes only the asymptotic evolution in time. As the result, 
one cannot discuss causality in this approximation. In contrast, our approximation is 
applicable for all time scales. It is easy to extend this procedure to higher order 
approximations. 

Then we have the contribution from II(‘) associated to the vacuum of correlation, and 
from II(*,-k) associated to binary correlations (all other contributions are neglegible in this 
approximation) : 

((k, -kWv-2, PIP(Q)) 

where 

= A(&, -k, {O}“-2, &‘~) e-i~2@‘~ + e-i(k’8~?f~‘~~‘~“‘)rg(lk~-k))P(0)jP(O))), (167) 

I dp’((k, -k, {0>“-2, pl~Ci% P%o(P’) 

=- 
I dp’((k, -k, {O)N-2, ~lXJ(,~.-~)to> P’))Po(P’) 

= -A Vk 
k ‘g,, - ie 

k * d,,Po(p). (168) 

To evaluate (164) explicitly, we have to specify the interaction, and to solve the eigenvalue 
problem for the collision operators h2@) and k * g12 + h228r’-k). For a simple system, such 
as the ‘perfect Lorentz gas’ (see Appendix F), we can solve the eigenvalue problem 
explicitly. We shall present detailed calculations for the causal evolution of the correlations 
in separate papers [41, 421 ( see Appendix C for a remark on the causality). Here. we shall 
present a sketch of the results. 

We first note that the effects of the two subspaces II(‘) and IIckzMk) cancel at t = 0. For a 
short time scale, effects of dissipation coming from the collision operators are negligible. 
The integration over k in (164) is quite similar to the calculation of the momentum transfer 
(218) discussed in Section 11. In Appendix J we present the result of the integration of 
(218), using a short-range Gaussian repulsive interaction (see (58) and (512)). As far as the 
coordinate dependence is concerned, (164) are essentially the same as (218). Hence, we 
shall refer here to the results for (218). The results show that the binary correlation in II(‘) 
remains finite for Jql - qzJ + 00 (see (J15)). This results from the resonance singularity at 
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k * g12 = 0 in (168). The resonance effect leads in the II(“) subspace to ‘long-range 
correlations’ between the particles 1 and 2 whatever their distance. On the other hand, the 
effect in the subspace II (k,-k) is simply a shift with an opposite sign of the contribution in 
D(O) for short time scale, as qi - q2 is replaced by q1 - q2 - g12t (see also (512)). Hence 
the total contribution of the binary correlation develops in space, following a causal 
evolution (see Fig. 2). Due to the Poincare resonances, the long-range correlations are 
built up, as time goes on. However, it should be noted that the long-range correlations are 
associated only to non-equilibrium modes, as for equilibrium mode we have p,,(p) = f( Ho) 
in (168) and it leads to k * d12PO(P) = k * g12f’(HO), where the prime denotes the derivative. 
The factor g12 compensates the denominator in (168) and there is no resonance singularity 
at k * g12 = 0 for the equilibrium mode. 

For large time scales, the effects of the dissipation coming from the collision operators 
are no longer negligible. Effects from non-equilibrium modes both in DC”) and in D’k,-k’ 
subspaces vanish for large time scales due to the repeated collisions with particles in the 
medium. In (164) only equilibrium short-range binary correlations remain finite around 
each particle. However during this process, ternary non-equilibrium correlations are built 
up, and then also decay to equilibrium correlations, then fourth order correlations etc. As 
time goes on, the non-equilibrium correlations are propagating over larger distance*, and 
transfer the correlations among more and more particles. We then have the directed ‘flow 
of correlations’. This flow finally disappears in the ‘sea’ of highly multiple, incoherent 
correlations 1171. While the very meaning of irreversibility is difficult to express in terms of 
the usual dynamics of particles, it acquires a direct intuitive sense in terms of the ‘dynamics 
of correlation’ based on the complex spectral representation. 

The X-property, as well as flow of correlations, are direct consequences of the existence 
of the complex spectral representation of the Liouvillian. As mentioned before, the 
dynamical group splits then into two semi-groups. We have to retain the semi-group for 
which the system approaches equilibrium in our future. This corresponds to the ‘second law 
of thermodynamics’. This law plays a basic role as it leads to a ‘selection principle’ for the 
states which can be observed in nature. 

In the previous paper [5] we have already shown for a simple non-integrable quantum 
system (i.e. the Friedrichs model) that the ‘entropy barrier’ defined as the difference 

(Ul - 42),, 

II 
(k,-k) 

Fig. 2. Causal propagation of binary correlations g2 in the parallel direction (ql - q2)!; to the relative velocity gtz. 
The contribution from the ffc”) diverges exponentially as a function of (qt - qz)N (see the discussion in Appendix 
C). The contribution in the space Il co) damps in time, while the contribution in the space fI(k.-k) shifts with the 
relative velocity 812 and damps. Outside the non-causal region (q, - qI)li > Igt2lt the contribution in the space 
fIc”) is canceled by the contribution in IT (k.-k). As time goes on, a long-range correlation is built up by the 

resonance. 

*Due to the existence of diffusion modes in space associated to small wave vectors k, the non-equilibrium 
correlations can propagate over a larger distance (see Appendices F and K). 
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between the value of the X-function after and before a ‘velocity inversion’ increases 
exponentially as a function of time to at which the velocities are inverted. For this case the 
‘long-range correlations’ between the unstable particles and the emitted photons are built 
up again due to resonances. The longer the time t,,, the more difficult it becomes to 
prepare the ‘velocity inverted’ states. Asymptotically, the entropy barrier diverges. One 
can no longer prepare the ‘inverted’ states. As mentioned, the resonances also build up 
long-range correlations among the particles for the N-body system. We can then extend 
this argument for the system in the thermodynamic limit. We present this extension in 
Appendix K. There we shall show that long-range correlations lead again to an ‘entropy 
barrier’. To be consistent with our experience, it is natural to exclude the set of initial 
conditions which would lead to an infinite value of the X-functions or of the ‘entropy’. 
Therefore, the second law of thermodynamics may be formulated as follows. 

Only states which lead to finite values of X functions are found in nature. 

In other words, only states in the domain of A are found (or can be prepared) in nature. 
This seems to us a very natural conclusion. 

9. LINEAR AND NON-LINEAR LIPPMANN-SCHWINGER EQUATIONS 

In the previous sections we have derived the complex spectral representation of L, 
through the solutions of the ‘non-linear’ eigenvalue problem of the collision operator r$“) in 
(83) and (106). Also, if we first determine the operators Cc”) and DC’), we can construct the 
global collision operators 19;’ which do not explicitly depend on the eigenvalues Z’,) 
(see (91) and (111)). Then, using the solutions of the ‘linear’ eigenvalue problem for 0$“, 
we can construct the solutions of the eigenvalue problem of L, through the intertwining 
relations (127) [4, 141. In this approach the nonlinearlity of the problem appears in the 
equations for C’“’ and D(“). Indeed, the intertwining relations (127) with (91) and (111) 
lead to non-linear equations for 6: and &,“, through which we can determine Cc”’ and D(“) 
[14, 23, 241: 

L”@ - @;L, = -L&f + @L,q, (169a) 

L”6.y” - @L, = @L, - 4yL”~~. (169b) 

Let us operate 6: and &;,” on the eigenstates of the unperturbed Liouvillian Lo. 

I@:)) = 6:IY)), ((@:I = ((vI6.t’. (170) 

In general these states are not eigenstates of L H. 
From (169) we derive the non-linear equations, 

(171a) 

(171b) 
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We have imposed the boundary conditions 

I@:)) = IJ$), and ((QyDJ = ((VI, (for A = 0). (172) 
The analytic continuations of the denominators in (171) are given by the ie-rule (75). 

By iterating (171) we can construct the explicit form of Cc’) and DC”) in powers of A. We 
can then construct A(') through (118), and thus II(“) as well as @’ in powers of A. We shall 
call equations (171) the ‘non-linear Lippmann-Schwinger equations’ (NLLS), as we shall 
show that they are corresponding to a ‘non-linear extension’ of the classical version of the 
‘Lippmann-Schwinger equations’. The non-linear terms of NLLS involve the contribution 
from the diagonal transitions associated to the collision operators (see (91) and (111)) 

((wdo) = ~w?l~>> - I,, W’yDI~L”l~)) = ((+6?l~)) - 1,). (173) 

Let us consider the case when the contribution from the diagonal transitions in the 
left-hand sides of these expressions are negligible. In the next section we shall discuss the 
conditions when this is satisfied. Then, we have 

@,J) zz LJJC’“, (174) 

where B stands as before for C or D. This implies that the eigenstate of 0’,’ is the 
unperturbed state 1~)) , and the eigenvalues of LH are I,, the same as for L,. Dissipation is 
negligible, i.e. the evolution is time-symmetric. As the result, we have (again neglecting the 
diagonal transitions: see (115)) 

N’“’ = 1 (Y (175) 

as well as 

A”” = PC”) (176) 

Combining them with (127), we have 

JhA@VC)) = Wyc))> W’YDILH = ((QCL (177) 

i.e. for this special case the states +F and @f are eigenstates of L, with real eigenvalues 
I,. We shall show later that this situation corresponds to ‘integrable systems’ in the sense of 
Poincare . 

Then equations (171) reduce to the ‘linear’ equations, 

(178) 

where we have abbreviated the notation of the limit Q -+ ~0. These are the ‘classical’ 
versions of the Lippmann-Schwinger equations. We emphasize that (178) as well as (177) 
is valid only for the integrable systems where the diagonal transitions associated to the 
collision operator are negligible. For this case we have 

and the spectral decomposition of the evolution operator, 

emiLHf = CI@yC)) e-irJ((Qfl. ww 
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Moreover the transformations AB reduce to 

AB = A,, (181) 

where 

which lead to 

ABL,A,l = A,LHA;r = Lo. (183) 

We have put in the index Z in order to emphasize that AI is associated to integrable 
systems, as (183) holds only for this case. In Appendix L we present the explicit form of 
the solutions of (178) for @: and @f for two-particle systems (or potential scattering). 

Let us consider the case that interaction among the particles is ‘transient’. For this 
situation, there exist asymptotic states before and after scattering. This is the situation to 
which the S-matrix theory in quantum mechanics applies. In analogy to the quantum 
S-matrix theory, we can introduce the asymptotic states which are the classical versions of 
the ‘Moller scattering states’ Q: defined as the solution of the equations (33-35) 

IW = IN> + z 
” 

_ ; 
0 

+ itQ(‘)w~~~~ 

((@:I = ((~1 + w3wl 
v 

_ ; 
0 

+ ie’ 

They also satisfy 

MC>> = 4M% 
as well as (for the integrable systems) 

(184) 

08.5) 

and 

and similar relations for @i. The states @: correspond to the ‘retarded’ solutions of the 
scattering, while @D; to the ‘advanced’ solutions. 

Equation (187) is the unitary spectral decomposition of the evolution operator. Moreover 
we can introduce the unitary transformations (for repulsive forces) 

(188) 

which lead to 

U,L,Ut, = Lo. (189) 

and a similar relation for U-. 
The structure of A, is quite similar to that of U+. However, due to the difference in the 

analytic continuations between (178) and (184) these transformations are not the same. For 
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example, the eigenstates corresponding to the vacuum of correlations (i.e. the states with 
zero eigenvalue lo = 0) are given for (178) by 

I@3> = IN+x WI3 = Wd. (190) 

As the complex spectral representation uses both analytic continuation in (182), A, is a 
non-unitary transformation even for the integrable case. Nevertheless, because of the 
bi-completeness relation in (179), the spectral representation (180) and (187) lead to the 
same evolution of the distribution function I&t))). 

It is remarkable that integrable LPS admits both the non-unitary transformation (182), as 
well as the unitary ones (188).§ However, there is a significant difference between the two. 
To see this, let us evaluate the inner product ((Q&i@&,)) for the unitary transformations. 
Because the inner product is a distribution, we evaluate this with an integration over p’ as 
(e.g. with the momentum pr) 

~Wr4~@‘ip+%,p)~ = PI - s&j. dp’p;k *djn Ik I”*i’ . 
n>j k *,n 1E 

12k *dj,J(p’ - PI + W3) 

= PI - $g2Fk. 4, 
lVk12 

n /k .g,, + ic/2k + o(a3) 
(191) 

= p1 + O(N/EQ). 

To obtain the second equality in (191) we have performed an integration by parts over the 
momenta. The non-vanishing contribution comes only from the terms which are ‘con- 
nected’ to the labeled particle 1. All ‘disconnected’ terms vanish by integration by parts 
over the momentum Pi for j # 1. As the result, the number of terms of the A2 contribution 
in (191) reduce from N* to N. We note that this is a general property associated to 
reduced quantities (SO) (see also (67)). Whenever we consider the reduced observables, all 
disconnected terms vanish. 

Due to the Poincare resonances, there appears a singularity -E-’ in (191). However, for 
N finite this singularity is harmless, as we have to take first the limit Q + 0+ before taking 
the limit E + 0+ (see (B2)). Nevertheless, the unitary transformations cannot be extended 
to non-integrable systems in the thermodynamic limit, since Q-l is compensated by N in 
this limit. In contrast, the non-unitary transformation regularizes the Poincare diver- 
gence as 

+ c.c - ~1 + WV/Q). (192) 

Hence, (182) has a natural extension for the non-integrable systems where the time- 
symmetry is broken (see also the Appendix D). 

10. INVARIANTS OF MOTION AND INTEGRABILITY CONDITIONS 

Let us discuss the relation between A and the invariants of motion for integrable 
systems. We consider the transformations for observables, 

(( MB(t)1 SE (( fiwhJw). (193) 

*The non-uniqueness of the spectral decomposition including a non-unitary spectral decomposition has also been 
observed for the Friedrichs model in quantum mechanics [5]. 
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We note the difference of this quantity from (( k,(t)1 introduced in (130). The time 
evolution of (( mB( t)l is generated by the Liouvilian LH, while (( i@,( t)l is generated by 
the collision operator OB. 

The important property of 6?’ is that when fi is in a single correlation subspace PC”), 
then ai” is in the II(‘) subspace. For example, let us assume 

((rl;i(O)l = (( fi(o)pw (194) 

Then we have indeed (see (125)) 

(( i?i”(o)p(“) = -J-T<{ A(o)lzlp))(( FpJN(,“)-“*rI(“) 

a 

For this case we have (see (141)) 

= pqO)lu’,“))((F~)l Ny2 = ((hP(O)l. (195) 

(( iliD( = C(( fi(O)lu&'))) e-'zg'r((Ql@~' = (( fi(O)I e-leg+6f. (196) 
0 

Of special interest is the case where Y = 0, because this leads to ‘invariants’ of motion for 
integrable systems. To see this, let us consider the transformed ‘momenta’ (see (52)) 

Gm = KBil~D”llt~). (197) 

We have 

((fiD(t)lP(O))) = (( fiil e-‘eg’rG?p(0))). (198) 

When the diagonal transitions are negligible, i.e. 06’ = 0, the transformed momenta reduce 
to the invariants of motion (see (182)) 

((Pftt)IdO))) + ((P^,IAIIP~O))) = Idp’((BilO, P’>> ((Q’oqp,l~(O)))~ (199) 

The invariants evaluated on a single trajectory are of special interest. This corresponds to 
MO))) = WY P”>>t 

Pftq’, PO) = ((i$lq”, PO>> = L’““Idp’pl((~~,,lq’, p’>>. GJW 

This defines a set of 3N ‘new’ momenta. Therefore, when the conditions (a) diagonal 
transitions are negligible, and (b) the right-hand side of (200) exists, the Pf(q’, p’) are 
invariants of motion, and the system is integrable in the sense of Poincare. We shall call 
the condistions (a) and (b) the ‘integrability conditions’. We shall discuss later these 
conditions in detail for various situations. 

In analogy to the quantum S-matrix theory, we can write the solution of the Moller state 
@)oqp in (190) in terms of the classical version of the 5-matrix,§ 

<<@,q,l = ((0, PI + ((0, m+4 1 
+ic - Lo' 

(201) 

where the T-matrix is the solution of the integro-differential equation (c.f. (lol)), 

T(z) = AL, + s-(z) 
1 

-ALv. 
z - Lo 

(202) 

$For integrable systems we can remove the restriction expressed by Q (“) in (178). See the discussion of the last 
part in the next section. 
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Then the invariants of motion (200) are given by (for integrable systems) 

PD(qo7 PO) = Pi + j& dp’plC((O, p’lT(+i~)(k, p)) 1 e-ik .q(’ 
. (203) 

k +ie - k* u” 

Hence, the existence of the T-matrix corresponds to the condition (b) of integrability. As 
we shall show in the next section, for short-range repulsive interactions and not too large 
number of particles N, this condition is satisfied. * The system is then integrable in the 
sense of Poincare. Even when there is no analytic solution described by the Born series in 
h of the T-matrix, there may exist non-analytic solutions of (202), such as they occur for 
attractive forces in quantum scattering. We hope to present a classical analogue of this 
situation elsewhere. 

The invariants (203) are examples of ‘singular invariants’ (as the Fourier components of 
the invariants are singular at the resonance k * u = 0) first introduced by one of the authors 
1.17, 361 (see also [37, 381). It is worthwhile comparing our result with the usual canonical 
transformation theory based on Hamilton-Jacobi’s equation for the generating function 
F(P’, q), where P’ are the generalized momenta which are also invariants of motion 
1391. By the standard perturbation analysis for F(P’, q), one can easily show that the 
generalized momentum Pi is the same as (203) to first order in il (see also (206)). Hence, 
assuming the analyticity of the T-matrix at il = 0, the invariants (203) are the Hamilton- 
Jacobi invariants of motion. 

Let us now discuss in detail the integrability conditions for (198). We first consider the 
case where the number of particles N is finite, and the distribution functions are regular as 
given by (31) with no delta function singularity in their Fourier representation. Expanding 
(198) in powers of A, we have 

W(tMW) = $zC/ 1 dp dp’pi((O, ~1 e-“‘@‘(l + itDy’ + A’Df’)/k, p’))pk(O) + A’ * . . 
k 

(204) 

Here A”@‘,” and A”Df’ are the nth order approximation of the corresponding operators 
(see (97)). To the second order in /1, we obtain 

X ((0, p][l -t AD?’ + h2(Dp’ - i#‘t) + A3 * . *Ilk, p’))pk(O). (205) 

The contribution from D’,o’ corresponds to off-diagonal transitions, while 8, (‘I corresponds 
to diagonal transitions in the space P(O). 

As an example, we consider a single trajectory corresponding to (200). To first order in 
A, we have (e.g. for i = 1) 

P;(q’, PO, t) = P; - ~~~m~&'j&pd+n 
'lk -W$-d)g(p _ #> + 0(~2> 

n>j k k.gi, - ice 

= py + illim l;C 

(2061 
vk 

*For more than two-body systems, we need a careful discussion of the analyticity of the F-matrix, as performed 
by Faddeev for the three-body collision. We shall not discuss this problem here. 
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To obtain the last line in (206) we have again retained the ‘connected’ contribution to the 
labeled particle 1 (see (191)). 

Similarly, the second order contribution D2 is given by 

x (k - k’) . dl, Vlk-k’/ 

k’*g,, - ic 
e-lk’.(d-d)&, _ pO), (207) 

where the bar denotes the particular term we are looking at. This term comes from binary 
correlations. To this order we have also to retain the effect of ternary correlations, which 
we do not write here. The prime on the summation sign over k’ denotes that we exclude 
k’ = 0. This restriction is the result of the fact that D(O) is the off-diagonal transition 
(expressed by Q’“’ in (103)). 

For the diagonal transition we have (see (97)) 

For any finite N, the diagonal transition (208) is negligible as this term is proportional 
to SL-‘. 

In Appendix J we present the result of integration over k in (206), using a short-range 
Gaussian repulsive interaction (see (J8) and (512)). We see that the effect of the interaction 
for particles IZ in (206) remains finite for 1s; - qil + ~0 (see (J15)). This results from the 
resonance singularity at k * gtn = 0 in (206). Similar to the discussion in Section 8 the 
resonance effect leads to the long-range correlations between the particle 1 and IZ whatever 
their distance. Hence the order of this contribution is 0(;1N). Similarly one can show that 
the order of (207) from the binary correlations is A2N, and from the ternary correlations in 
AZ contribution is O(;t2Nz), and so on (see the discussion below). As the result, if the 
number of particles N + ~0, then (206) generally diverges. In order for (206) to be an 
invariant of motion, N should be finite. Even if N is finite, but too large, then the series 
expansion in A may not converge. 

We can easily extend the above estimations for the diagonal transition and the 
off-diagonal transitions to all orders of A. Indeed, by increasing A in the off-diagonal 
transition, we multiply by the factor n-lck (see (28)). This factor does not lead to any 
extra volume factor in the limit of Q 4 ~0 (see (20)). A new particle may or may not 
participate in the interaction. On the other hand, the diagonal transition is a point 
transition in the summation over k, so that it leads to a factor S2-’ without any summation 
over the wave vector. Hence this vanishes in the limit !,2 + co. As the consequence, all 
diagonal transitions are negligible for regular distribution functions for finite N. Therefore, 
the integrability condition (a) is satisfied. 

Moreover we note that the restriction expressed by Q(O) in the off-diagonal transition can 
also be removed for this situation. Indeed, the term corresponding to k’ = 0 in (207) is of 
order (.&?-I and can be neglected by the condition (B2). 

Extension of these estimations to more general observables in equation (196) is 
straightforward. Applying these results to NLLS (171), we see that they reduce to the 
linear Lippmann-Schwinger equation (178). 

In summary, systems described by regular distribution functions are expected to be 
integrable. On the contrary, if the distribution functions are singular, or the number of 
particles approaches infinity, the system is no longer integrable. Then, one can observe the 
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dissipative effects in LPS. In the following sections we shall discuss these non-integrable 
situations which cannot be described by Newtonian trajectory theory. 

11. PERSISTENT INTERACTIONS AND SINGULAR DISTRIBUTION FUNCTIONS 

In the previous sections we have constructed the invariants of motion (203) for systems 
with a finite number of particles and described by regular distribution functions. We now 
show that the new momenta defined in (200) are no longer invariants of motion when they 
are associated to singular distribution functions. 

Let us integrate (200) over the coordinate q, 

Z(P, t> = W’k P, t>. 
I 

The diagonal transition in (208) now gives a finite contribution, while the off-diagonal 
transitions in (206) and (207) vanish because of the restriction by Q’“’ in the D(O) operator. 
Therefore we obtain from (208) (e.g. N = 1, and dropping the index of particle 1) 

$Z(p, t) = A2/dk~dp’p’~V,~2k * $&(k * v’)k * $6(p’ - p) + O(n”). WO) 

We see that Z(p, t) evolves in time. 
One can understand this result as follows. The integration corresponds to the introduc- 

tion of a non-local ensemble which has a -delta function singularity in its Fourier 
representation, 

do) = P:(P> O)&(k) + P;(P* 0) (211) 

where we assume that pi and pk do not depend on s;Z in the limit of large volumes. 
Because of this singularity, the effect of the diagonal transitions are amplified Q times. As 
the result, Z(p, t) evolves in time.” 

However, we note that the normalization of this singular distribution function diverges, 

/d+w(q> P, 0) = ~~P[Q&P, 0) + PXP, 011 + w. 

Physically, this corresponds to a situation where we continuously send ‘test’ particles 
towards a single potential. We assume that the interaction between the test particles are 
negligible as compared with their interaction with the potential. Moreover, we assume the 
test particles are distributed with a finite concentration in space. Therefore, the interaction 
between the particles with the potential is ‘persistent’. There are no asymptotic states for 
this scattering process. This situation goes beyond the usual S-matrix theory. 

Corresponding to (210), we obtain for the ensemble (211), 

$P(r)/p(O))) = A2/dkldppiVk[2k * +(k *v)k* $-&I; 0) + W”). (213) 

Therefore ((p”o(t)lp(O))) evolves in time when associated to the singular distribution 
function (211). In the right-hand side of (213) we recognize the Fokker-Planck operator 
(see (95)). Dissipative processes are enhanced by the delta function singularity in (211). 

*For this case non-negligible diagonal transitions appear only in the vacuum of correlation. Hence, the analytic 
continuation for the diagonal operators is also uniquely determined by the complex distribution, as in the case of 
the thermodynamic limit discussed in (97). 
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The system is non-integrable for persistent interaction described by the singular distribution 
functions. 

In the evolution of (@“(t)lp(O))) there appear generally higher order contributions in 
time, as (-iO’,“‘t)n with II 2 2 (see (141)). However, as one can easily see, a repetition of 
diagonal transitions always leads to extra volume factor Q-i for the singular case we 
consider in this section. All higher order contributions t” in time with fz 2 2 are negligible 
in the large volume limit. The evolution of pD( t) is strictly linear in time. In previous 
papers we have investigated in detail this situation and performed numerical simulations 
[l, 2, 161. The agreement is excellent. 

Because of the linear time dependence of ((pD(t)]p(0))) in (213), however, the system 
cannot approach equilibrium in a finite time. This is in contrast to the systems studied in 
the next section, where we shall investigate the evolution of dynamical systems which are 
described by singular but L1 normalizable distributions such as (45) in the thermodynamic 
limit. 

In the above example, we have shown that the evolution in the II(‘) subspace gives a 
finite contribution in the limit of large volumes for the singular distribution function (211). 
This is generally true for all contributions in the II co) subspace, whenever the contributions 
involve the effect of the interaction ALI,. However, there is an exceptional component 
which leads to a divergence in the A transformations. That is the contribution coming from 
the free motion. For example, the unperturbed component of ((pD(t)]&O))) diverges when 
it is associated to the singular function (211), in spite of the fact that its time derivative 
gives the finite contribution (213). The integration of the momentum py in (206) over space 
diverges. Physicall,y, this divergence can be easily understood, as we are continuously 
sending test particles towards the potential. A detector behind the potential registers this 
incident flow of test particles. Simply by putting the detector in a direction which is not 
parallel to the flow, one may avoid this diverging contribution. 

12. SINGULAR DISTRIBUTION FUNCTIONS AND THE THERMODYNAMIC LIMIT 

We now consider the singular distribution functions of class (45) corresponding to the 
thermodynamic limit. As mentioned in Section 3, canonical equilibrium belongs to this 
class. The main differences from the one considered in the previous section is that the 
distribution functions while singular in the Fourier representation have well-defined L, 
norm. The time evolution of this class of ensembles is the main subject of non-equilibrium 
statistical mechanics (NESM). Its time dependence has been already investigated in our 
earlier work [17-191. All results obtained from the NESM can be recovered by our 
complex spectral representation. This includes the derivation of the Fokker-Planck 
equation, of the Boltzmann equation, and more generally of non-Markovian master 
equations. As this class of ensembles leads to non-Newtonian contributions, we concluded 
at this time that these contributions result from approximations introduced in the solution 
of the Liouville equation. We see now that these results are exact consequences of the 
solution of the eigenvalue problem of the Liouvillian for singular distribution functions 
outside the Hilbert space. 

It has also been shown that this class of distribution functions approaches equilibrium for 
t --+ ~0 [17]. This is confirmed by our formulation of the X theorem in Section 7. 

Let us now show that this class of distribution functions belongs to the domain of the 
non-unitary transformation A. To illustrate this, let us evaluate the transformed momentum 
p”?(O) on the ensemble (45). As in (206), we have to first order in A: 
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((p”%9b(O))) = /Wwo(b, 0) 

Note that the difference in the volume dependence between (214) and (206). Now the 
transformed momentum has a well-defined value of order c in the thermodynamic limit (2). 

One can easily verify that (214) is well-defined to the arbitrary order of il, as follows. In 
the second order contribution A*, there are three possible contributions; the first is the 
diagonal transition coming from the vacuum of correlation p,,(lp), the second from the 
binary Correlations &‘-k’(pl, p,l), and the third from the ternary correlations Pk,k’,-k-k’(pl, 
p,, p,(). All other terms in the second order terms do not contribute, as they are not 
‘connected’ to particle 1 through the interactions (see the discussion in (206)). In all the 
three cases there appears an extra volwme factor Q -’ through the new interaction (see 
(28)) as compared with the first order contribution in (214). 

However, for the first case with p. we have an extra factor Q as compared to Pk,-k in 
(214), which compensates the factor 52-l coming from the interaction. Hence, the first 
contribution is also of order c. In the second case with Pk’,-k’ we have an extra summation 
over k’. This summation, together with the factor Q-’ from the interaction, leads to 
well-defined result in the thermodynamic limit. Hence, the second contribution is also 
order c. Similarly, one can easily show that any order terms in L from binary correlations 
give the contribution of order c. In the third case with Pi+‘,-k-k’ we obtain a contribution 
which is of order c*. Similarly, one can show that any order terms in 3L from ternary 
correlations give contribution of order c*, as the summation over the third particle gives a 
contribution of order N which compensates the factor Q-l. One can in this way verify that 
all terms coming from nth order correlations lead to contributions of order c”-I. 
Therefore, assuming convergence of the series11 the transformed momentum @f(O) in (214) 
is well-defined to the arbitrary order in A. Similarly, the transformed observables (193) are 
finite in the thermodynamic limit. Ensembles described by the distribution function in (45) 
are in the domain of the non-unitary transformations A. 

In order to compare the behaviour of @f(t) in association with the ensembles (45) to the 
results in the previous section, let us evaluate its time evolution. As mentioned before, 
p;(t) is in the II(“) subspace. Hence, we can apply the formula (141). Then, we obtain 

~(QmPm)) = 1 dm+o(p, t> + O(A3>, (215) 

where po(p, t) satisfies (under the integration over the momentum in (215)) the Fokker- 
Planck equation, 

In the thermodynamic limit, the right-hand side of (216) gives a finite contribution of 
order c. 

In this equation we can neglect the contribution of a/ap,, in the derivative operator dl, 
at the left because of the boundary condition (5). This is possible, because we understand 
(216) together with the inner product together with the observable @f that leads to the 
integration over the momentum in (215). 

The result (215) is quite similar to (213), but there is an interesting difference. The 

‘IThis may involve resummations. 
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right-hand side of (216) depends on time, while it does not in (213). In the situation 
considered here, there appear summations over new particles due to repeated collisions 
(-i6’,o’t)n, As each summation over particles leads to a factor N, we can no longer neglect 
the higher contribution of t” with IZ 3 2 (see the discussion around (213)). Because of this 
non-linear contribution in time, the system approaches equilibrium in a finite time scale 
t i- - (PC)-‘. 

We shall not try to summarize the results we obtain starting from the singular 
distribution functions (45) and applying our complex spectral decomposition. This would 
involve a summary of most of non-equilibrium statistical mechanics [17]. We want only to 
emphasize that here we have a striking example of the emergence of non-Newtonian 
contributions. 

We already mentioned that the ensembles (45) are form invariant. Are there other form 
invariant distributions? This leads us to the basic question: are trajectories conserved in the 
thermodynamic limit. 7 Can non-Newtonian effects be observed starting from a single 
trajectory? These are the questions we want to consider now. 

13. THE THERMODYNAMIC LIMIT AND THE COLLAPSE OF THE TRAJECTORIES 

We now start with the initial condition (4) and consider the limit N -+ ~0. In the previous 
section we have considered the time evolution in the thermodynamic limit described by the 
class of singular distribution functions (45). A single trajectory does not belong to this 
class. As we shall show in this section, time dependent perturbation analysis may lead for 
trajectories to diverging contributions due to the Poincare resonances. However, there is a 
generic class of initial conditions for trajectories which are in the domain of A. For this 
class, time going on, trajectories are destroyed by the Poincare resonances and the 
distribution function approaches the class of (45). 

Let us consider the time evolution of momentum pi with the initial condition (4) 
corresponding to a trajectory. The evolution operator “u(t) satisfies the integro-differential 
equation. 

The iteration of this equation leads to a perturbation expansion of 
expansion to the momentum in (52) for j = 1, we obtain the first order 

PI(~) = P! + j&A/ dPp,CWdo,p;k,pO 
k 

k. uolm in (e-rk’“ot - 

(217) 

“u(t). Applying the 
contribution of A, 

1) emik.q” 

where we have added -in with the positive infinitesimal E in the denominator. This 
addition does not change the value of the right-hand side, since k - u” = 0 is not the 
singular point of the integrand in (218). 

Let us first consider the case where N is finite. With non-vanishing initial velocity of the 
particle, the interaction terminates after a finite time scale. Hence, the interaction among 
the particles is transient, and the value of pi(t) reaches asymptotically a constant. Indeed, 
for t + +m the time dependent term in (218) vanishes, as the pole at k * gy,, = +ic in this 
term does not contribute for t > 0. In Appendix J we show this explicitly for a specific 
interaction. Then we obtain (for t + +m) 
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N 

pi(t) + p; + Ax 
n=2 I 

dk ” 
k * cd, 

- ieke- 
ik.(d-d) + o@) = pf(@, #). (219) 

This corresponds to Pf(q’, p”) in (206). Recall that the contributions to the invariant come 
only from the space II . co) In contrast, the time dependent term in (218) is the contribution 
from the creation operator ACi2’ in the II(‘) subspace associated to the binary correlations 
Pc2). Hence, the asymptotic contribution comes only from the II(“) subspace. 

As mentioned (see after (208))) the resonance singularity at k * gy, = 0 in the denomina- 
tor in (219) leads to a non-vanishing contribution in the limit of 1s: - qi/ -+ cc, even for the 
short-range interaction. Due to the collisions, long-range correlations are build up. As the 
result, (219) may diverge in the limit N + a. Then, trajectories do not belong to the 
domain of D(O), and neither to the domain of A. As the thermodynamic limit implies the 
existence of ‘intensive variables’, this limit does not exist when pi(t) diverges for N + x.* 

However, there are classes of initial conditions that give a finite contribution to pi(t) as 
well as to Pf(q”, p’), even in the limit N + CQ. For example, let us suppose that the initial 
positions of the particles q”, are chosen randomly. Here, random means that the algorithm 
to write the sequence qy, qi, qg, . . . is ‘incompressible’ [40]. Then, in the thermodynamic 
limit, the summation over n and k in (218) gives a contribution of order, 

(220) 

As a consequence, the right-hand side of (218) gives a finite contribution of order vc in 
this limit. One can verify this estimate by taking the average of the square of the absolute 
value of (220) over qz with the assumption of an uniform distribution of qi in space. In 
this estimate, we have to take the thermodynamic limit after taking the average. This then 
shows that the square is of order c in the thermodynamic limit. 

Let us remark that this estimate of the concentration dependence is valid only for the 
ensemble average over the random distribution of the initial positions. For each given 
sequence q:‘, qy, qi, . . ., the value of the summation (220) may change significantly. 
However, the interest of this estimate is that it guarantees a finite value of (220) for almost 
all choice of the initial condition qi, qi, qi, . . . for a single trajectory in the thermo- 
dynamic limit, as the average of the square of absolute value is finite. The random 
numbers are generic points in phase space [40]. 

Note that if we would first replace the summation over the wave vector by the integral in 
each individual term in the summation over 12 in (218) (such as has been done in (219)), 
then take the limit N --, ~0 assuming a random distribution of the particles, we would 
obtain a diverging contribution of order VN. This shows that we have to perform the 
summation over N and over k simultaneously. This difference between two limiting 
procedures is essential to understand the origin of dissipative processes. We have therefore 
tested the two different estimates for a simple example by numerical simulations. We 
present the results in Appendix M. The results confirm -our expectation and are in 
agreement with (220). 

As a result of a random initial condition, the destruction operator in (206), as well as in 
(207), gives a finite contribution for the trajectory in the thermodynamic limit. Moreover, 
the collision operator 0, (which corresponds to a diagonal transition) in (208) also gives a 
finite contribution in the thermodynamic limit, which is of order c regardless of the random 

*The above argument holds in any order of A whenever the F-matrix exists, as the long-range correlation is the 
result of the resonance at k. u” = 0 in the denominator of (203). In quantum mechanics there are many examples 
whose explicit form of the F-matrix are known, such as the delta-shell potential, separable potential etc. 
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or coherent choice of the initial values qz, as 0, does not depend on q”,. One can easily see 
that for every order in A the destruction operator gives finite contribution. Moreover, one 
can extend these estimates for the reduced observables (50) depending on a finite number 
of particles. This shows that this class of initial conditions belongs to the domain of the 
non-unitary transformations. 

It is interesting to compare the trajectory in the thermodynamic limit N -+ ~0 with the 
one with a random distribution of qi but for a finite number N of particles. If N is large 
but finite, then (220) vanishes as L-3D in the large volume limit. As a result, the effect of 
the interactions in (219) vanishes. Hence, the value of pr(t) approaches its initial value (for 
t+m) 

PI(t) + PYY (in the average). 

This contrasts with the situation in the thermodynamic limit. 

(221) 

As in the thermodynamic limit the collision operator leads to diffusion processes, the 
trajectory is not maintained in time. The trajectory ‘collapses’ due to the Poincare 
resonances. In Appendix F we illustrate the collapse of trajectory, using as a simple 
example the ‘perfect Lorentz gas’ [l, 181. There, we evaluate (PI(t)) as well as ([pi(t)]*) 
for a given initial condition of a single trajectory for the system in terms of the h(A’t)“- 
approximation (see the remark in Section 8). We have, of course, (~~(0))~ = ( [p1(0)12). 
But we shall show that (pl(t))2 f ([PI(t)]*) for t > 0 (see (F21)). PI(t) becomes a 
stochastic variable and obeys a Langevin type of stochastic equation. The usual meaning of 
a trajectory is thus destroyed. 

In Appendix F we shall also show that all effects of initial correlations in II(“) subspace 
except for II(“) in equation (FlO) vanish asymptotically. In the II(‘) subspace the correlation 
is generated from the vacuum of correlation P (‘) through the creation operator C(O) (see 
(93)). As illustrated in (48) the interaction ALV (hence the creation operator) introduces an 
extra volume factor Q-l as compared with the states in the vacuum of correlation. This is a 
general property of the II(“) subspace, and one can easily verify that the states in the II(O) 
subspace satisfy the delta function singularity in (45). Therefore, the delta function 
singularity in Fourier space emerges as time goes on, even if we start from a non-singular 
distribution function. The class of singular distribution functions (45) acts again as an 
attractor. 

In conclusion the maintainance of the volume dependence of the trajectory (4) and the 
existence of a thermodynamic limit are incompatible. Whenever the thermodynamic limit 
exists the trajectory becomes stochastic and approaches the class of singular distribution 
functions (45) in the sense of distributions. 

14. CONCLUDING REMARKS 

The main result of this paper is the extension of the Liouville operator L, for LPS to 
the class of functions which are singular in their Fourier transformations (Sections 4 and 5). 
These functions play an essential role in statistical mechanics (Section 3). The spectral 
decomposition of LH in this function space has quite unique features. The eigenvalues are 
complex and are given by the spectral decomposition of the collision operator 0. 
Non-Newtonian contributions appear in this representation. They would be ‘hidden’ in the 
spectral representation in the Hilbert space, if this representation could be obtained (even 
its existence is in doubt). 

There is of course much overlapping with our early work [17-19, 23-251. The main 
difference is that at this time we assumed that we had to limit ourselves to the Hilbert 
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space. To obtain a semi-group representation (including complex eigenvalues) we had to 
introduce a non-unitary transformation from the distribution function p to a new distribu- 
tion function p = Ap (the so-called ‘physical’ representation). Now irreversibility appears 
already in p. The non-unitary transformation theory appears naturally as the result of the 
intertwining relation between LH and 0 (see Section 6). 

This non-unitary transformation is necessary to formulate X-quantities which decrease 
with time until equilibrium is reached. The existence of X-functions have nothing to do 
with extra-dynamical assumptions such as coarse graining but is a consequence of the 
time-symmetry breaking due to Poincare resonances. 

The value of the X-function depends on the deviation from equilibrium. It is natural to 
assume the existence of an entropy barrier. Only states which lead to finite values of X 
may be found in nature (or can be prepared, see Section 8). In more anthropomorphic 
terms that means that only systems involving a ‘finite information’ exist in nature. From the 
mathematical point of view, this means that only distribution functions which are in the 
domain of the non-unitary transformation A are realized in nature. For a finite number of 
particles, this includes simple trajectories. Of special interest to us is the so-called 
thermodynamical limit. The existence of this limit requires special conditions as the result 
of the long-range correlations due to Poincare resonances (see Section 8). As shown in 
Section 13, this leads to the conclusion that the thermodynamic limit is always associated 
with a singular distribution function lying outside the Hilbert space. If we would start with 
a trajectory it would ‘collapse’. The concept of a trajectory is no more the basic, primitive 
concept as assumed in classical dynamics. In general for LPS we need a statistical 
description. But this is not due to our ‘ignorance’ but to the effect of the non-Newtonian 
terms due to resonances. 

The extension to ‘non-Hilbert’ spaces is an element which is common with the spectral 
theory associated to deterministic chaos [14]. But the nature of the function space is quite 
different. There the extension is introduced to avoid the difficulties associated to ‘sensitiv- 
ity to initial conditions’. Here the main new element is the role of resonances associated to 
persistent interactions. This latter condition means that we have to consider the system as a 
whole. If we would extract any N particles and treat them in isolation all dissipative effects 
would vanish and we would come back to the traditional trajectory description. 

We are well aware that there are many interesting mathematical and physical questions 
which need further elaboration. We limited ourselves to repulsive forces. It would be 
interesting to consider also the effect of attractive forces. Also we have used formal 
expressions in the coupling constant A without studying their radius of convergence. In 
concrete situations we may need partial resummations. Incomplete as this work is, it shows 
that irreversibility can be included in the classical dynamic description. This unification of 
dynamics and thermodynamics requires a statistical formulation of the laws of dynamics 
and gives to them a new meaning in agreement with the evolutionary patterns of nature. 
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APPENDIX A. COMPLEX EIGENVALUES OF THE LIOUVILLIAN 

In this appendix we shall show that the imaginary part of the eigenvalue of the Liouvillian associated to the 
future t > 0 is non-positive. We shall use the resolvent formalism. The advantage of this method is that we can 
derive some general properties, such as the sign of the imaginary part of the eigenvalues, without going into 
detailed calculations. However, to solve the eigenvalue problem the formulation presented in Sections 4 and 5 is 
much more straightforward. 

In terms of the resolvent operator R(z) - (z - LH)-l associated to the Liouvillian, the evolution operator in (7) 
is written by (for t > 0) 

“u(t) = $ I C’ 

dz e+R(z), 

where the contour C+ lies in the upper-half plane of z running from + m to --oo. We have the resolvent identities, 

and 

1 R(z) = - + 1 
z - L" 

-kL,R(z), 
z - L" 

(A21 

R(z') - R(z) = (z - z')R(z)R(z'). (A31 
Equation (A2) leads to the expansion in powers of the coupling constant, 

We consider the matrix element together with observables M (see (50)) and the distribution function p, 

Rw,,(z) = (t M t R(z)b)). WI 
Because of the hermiticity of L H in the Hilbert space, each term of R.u,p(z) in (A4) is holomorphic in z for 
Im z # 0. Let us recall that throughout this article we are considering the situations where the perturbation 
expansions, such as (72) and (A4), converge. Hence, R M,~(z) itself is holomorphic for Imz #O.* For the 
continuous spectrum limit, each terms of R M,~(z) in (A4) are represented by Cauchy integrals which have a 
discontinuity on the real axis of t approaching from above and from below [18]. The discontinuity of R,,,(z) 
spreads over the whole real axis, as the Liouvillian is not bounded from below [18]. Because the contour lies in 
the upper-half plane for t > 0, we are interested in the resolvent operator defined in the upper-half plane. Let us 
analytically continue the function R M,p z) to the lower-half plane, and denote the analytically continued function ( 
as RL,p(z). Then, RL,p(z) has singularities in the lower-half plane or on the real axis. 

In the simplest case the singularities are simple poles located at Z, with Im Z, s 0 (including the case 
Im Z, < 0). An example is the perfect Lorentz gas presented in Appendix F. We then consider the ‘residue’ of a 
state R(z)lp)) with arbitrary ]p)) at this pole, 

IF,)) = lim (z - Z,)R(zhD. r-2, (A@ 

We now show that 1 F,)) is the eigenstate of the Liouvillian with the eigenvalue Z,, i.e. 

LffIF,)) = z~l~cY)). (A7) 

Using the resolvent formula (A3), we have 

1~~)) = ,!"z (z' - Z,)[R(z') - R(z)]lp)) = (z - Z,)R(z),ji~ (z' - Z,)R(z')lp)) = (z - Z,)R(z)tF,)). 
" Y 

(A@ 
This gives a state R+(z)lF,)) which is regular in the upper-half plane, 

R+(z)IF,)) = -$$E)). 649) 
(I 

Hence, we obtain the desired result, 

LHIF,)) = lim L 
,+O+ 2a jc+dze-. “+$-p = Z&lFW)) (Al’4 

This show that the imaginary part of eigenvalues of the Liouvillian which is associated to the future t 10 is indeed 
non-positive. 

However, the above argument specifies only the sign of the imaginary part of eigenvalues. In order to solve the 
eigenvalue problem explicitly, we have to know in detail the analytic properties of the resolvent operator. This can 
be done, for example, by the series expansion of R(z) in (A4). In each term of this expansion we have to specify 
the branch of analytic continuation. This is precisely what is achieved through the rule of time ordering 
corresponding to the ie-rule presented in the earlier works [26, 291. 

- 
*See (41, 421 for a similar statement for the resolvent of the Hamiltonian for quantum N-body systems. 
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APPENDIX B. ON THE LIMIT OF E -+ 0+ 

For the continuous spectrum limit R -+ m the propagator in (74) becomes the distribution, 

1 1 
-+P------ 

I, - I, 7 ie 1, - 1” 
T i&(1, - I,), (Bl) 

where 9 stands for the principal part. The use of the 6 function a(!, - I,) is possible only because we consider the 
wave vectors k as a continuous variable. For finite E the delta function ss(l,) are approximated by the Lorentzian 
distribution E/( 1: + e*). To obtain a cousistent evaluation for the delta function in terms of the box normalization 
formalism, there should be enough discrete states around the peak of the Lorentzian. Therefore, our expressions 
have to be understood in the continuous limit Ak = 27r/L + 0 and E + 0+ with the condition (see (19)) 

ldlv/dklAk ~ o, 032) F 

APPENDIX C. COMPLEX DISTRIBUTIONS 

Let us define the ‘complex delta function’ by (with a suitable test function f(z)) 

dwf(w)6c(w - z) = f(z). (Cl) 

Then the complex distribution in (79) can as (for 2:’ = w’ - iy with real w’ and y  with y  3 0) 

(C2) 

The most striking consequence of the analytic continuations (76) is that the transformed state 1~~)) in (130) 
does not preserve the positivity of distribution functions. This is the result of the complex distribution (76a) which 
leads to an exponentially growing contribution in space. Let us consider a one-dimensional integration over 1 with 
a suitable test function f(l) and with v  > 0 and x > 0: 

I(x) = 
I 

+= f(l) 
-cc [lu - z]+zb” 

eiL dl. 

Then, the residue Res [ I] of this integration at the pole I = Z t’/u is given by 

(C3) 

This gives the exponentially growing contribution in x for decay modes with Im Z’,’ < 0. 
This type of contribution in space is necessary to ensure the causal evolution of the deca modes, as the 

damping factor exp (-i.Z’,“‘t) in time necessary requires a space dependence given by exp [iZ,’ (x - ut)/u]. For (7 
u > 0 with finite time t, this diverges in the limit of x + +m. However, the bi-completeness relation of the 
eigenstates ensures that the contribution from x > ut in the distribution function vanishes. As the result, some 
components of the transformed states should have negative values for x > v f  (see Fig. 2). This question will be 
more fully discussed in a separate paper [43]. 

Note that the causal evolution in the frame of the complex spectral representation has been already verified for 
a quantum unstable system, i.e. the Friedrichs modes, which is a model for the spontaneous emission of photons 
by an excited atom [44]. The reader should consult the original article for more details. 

APPENDIX D. BI-ORTHONORMALITY AND THE ANALYTIC CONTINUATION 

In this appendix we shall prove that the analytic continuations (76) for the right eigenstates and (102) for the left 
eigenstates are sufficient to lead to a bi-orthonormal set of the eigenstates of L,. 

Let us consider the inner products 

((Eh”‘lFp)) = (Nk”N~‘)‘/*[((a’)~~~)) + ((a~)l~(“(zj;“)~(~J(z’,“‘)iub”‘))]. (Dl) 
As far as Zc’ and Z’#“ which have non-vanishing finite imaginary parts, or the off-diagonal transitions are 
concerned, these inner products are well defined. The danger of divergence for the inner products occurs in the 
diagonal transitions with v  = Jo and /3 = (Y (recall that we consider here only the non-degenerate case), when the 
imaginary part of the eigenvalue becomes infinitesimal. As discussed in Appendix F (see also Appendix K) 
infinitesimal imaginary parts appear in the diffusion modes for macroscopic scales in space, such as the 
hydrodynamic scale. However, even for diagonal transitions, (Dl) is well defined, as the analytic continuations 
(76) and (102) lead to the product of the propagators (see (82), (101) and the discussion of the analytic 
continuation in (97)) 

((~‘,“l~(V)(Zkv))~(Y)(Z~))l~~))) - l 
([z - L&y)* 
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This is in contrast with the situation corresponding to the ‘velocity inversion experiment’ discussed in Appendix K. 
There appears the square of the absolute value of the propagator (see (K7)), instead of its square as in (D2). As 
the result, there appear singularities in the inner products which lead to an infinite ‘entropy barrier‘ in the 
asymptotic time scale. 

As (D2) are well defined for all v  and (Y we can now prove that our analytic continuations lead to the 
bi-orthgonal relation of the eigenstates. As usual, let us consider the relation 

(( T(,V)IL&y)) = Z’,‘(( T(nq FkY))) = Zk”(( F’h”‘l@)). (D3) 

As the inner products are well defined, and we consider the non-degenerate case, we have the bi-orthogonality for 
ff+p. 

(( F(,“I@)) = 0. (D4) 

Moreover, the eigenstates are bi-normalizable. 
We note that if we would use a simple analytic continuation with a single sign of ic, such as the Mdller 

scattering states in (184), we would obtain diverging products of order c-l, such as (191) without the factor Q-i. 
for the non-integrable systems (see also (K8)). Our analytic continuations (76) remove this difficulty. The 
existence of well-defined inner products is essential to obtain a consistent description of non-integrable LPS in the 
thermodynamic limit. 

Let us recall that the analytic continuation (75) leads to the non-linear Lippmann-Schwinger Tq,uations (1211. 
By acting with L,, - I, on (171), we recover the intertwining relations (127). This shows that ]F,Y )) and (( F(,” j 
with our analytic continuations are indeed eigenstates of LH. The bi-completeness of the eigenstates should be 
verified for each specific Hamiltonian. 

APPENDIX E. THE BRILLOUIN-WIGNER PERTURBATION METHOD 

Let us consider the lowest order contribution (i.e. to A* order) of the collision operators, To this order wC and 
+o are identical. Denoting them by I/J*, we have (see (97) and (121)) 

I,#(” + 1%&’ = L()P(“’ + /a$‘. (El) 

The intermediate states have a higher order of correlation than the initial and final states in (El) (see the 
discussion of (97)). This determines the analytic continuation of the denominator as in (97). Let us then denote 
the eigenstates of ~2 by 

(L”W’ + n*?g’)lg’“‘)) = pyg’“‘)) a a a 1 ((gb”)l(L”w) + PI&‘) = ((&“‘. n R w.1 
They also satisfy 

Sol&‘,) = 1 Id”‘)) “a 3 M?vo = WV 0 Y> (E3) 

as well as 

((d%$‘)~ = c&3, ~ls’n”‘,,ccgbiyl = P(“‘. (W 

The classical version of the Brillouin-Wigner equations are then given by [4] 

IF!??) = I&‘)) + Q’,‘C 
-1 

P (I, - Z’,““,c,.), 
P(~‘AL~~IF(“‘)) n ( 

(( F’,“‘i = (( j&v’1 + c (( F$+L”P(P’ l 
(Z(“’ - , ) 

Q (I” 
a ’ s a P D\,, 

(E5b) 

where 

and 

z$’ = ((&lLHIF(,Y))) = ((F$‘IL”lgy’)), 03) 

Q’“’ ZE 1 - lg”“)) (( $‘I, a lY a (E7) 
The iterative use of these equations leads to the Brillouin-Wigner perturbation expansion of the eigenstates of the 
Liouvillian 

APPENDIX F. THE PERFECT LORENTZ GAS AND THE COLLAPSE OF THE TRAJECTORY 

In this appendix we shall illustrate the ‘collapse’ of the trajectory using a simple model; the so-called perfect 
Lorentz gas [18]. We have already used this model in a previous paper to illustrate the complex spectral 
representation [l]. We shall first present a brief summary of the results (for more detail, see the original paper [ 11. 
as well as [43]). This model corresponds to the motion of a light particle of mass ml scattered by infinitely many 
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heavy particles of mass m,(m, << m, for n 3 2). The Hamiltonian is given by (1) with a short-range repulsive 
interaction V(lq, - qnl). Moreover, we improve the condition, 

for i = 1. 
otherwise. tF1) 

The perfect Lorentz gas is defined as follows: 

(i) We assume ml/m, << 1 for n 3 2. Therefore, we can drop the terms proportional to rn,’ in (26). 
(ii) Because of their large mass, the average velocity of the heavy particles is much smaller than the average 

velocity of the test particle. The distribution function for the velocities of the heavy particles is replaced by a 
product of delta functions, 6,(u) = nE$(v,). 

We shall consider a weakly coupled system ,? << 1. Then, the results we have obtained can be summarized as 
fo1lows. 

(1) n lo) subspace 

In the A2 order approximation, the collision operators @ and tY$’ 
by ,%*0$“. Then, the matrix element of 1*0$” is given by 

are the same (see (97)). Let us denote them 

P((0, ule$O)IO, u)) = a*e&u - u), CM) 

where (c as the conckntration of the heavy particles, and with the unit ml = 1) 

A2eo = i(2a)2A2c 
I 

dllV,121 +(I .vl)l .--&. (F3) 
L 1 

This is a linear (anti-hermitian) operator acting on the velocity of the light particle. Hence, in the eigenvalue 
problem 

~2eofdvl) = Zafa(v1: a), (F4) 

the eigenvalues Z, are purely imaginary and the left-eigenstates of the collision are hermitian conjugates of the 
right-eigenstates. The linearity is a characteristic feature of the perfect Lorentz model, and thanks to it, we can 
solve explicitly the eigenvalue problem for the collision operator. It is well known that the Fokker-Planck 
operator for the perfect Lorentz gas can be written in terms of the ‘orbital angular momentum’ operator (see [NJ). 
Therefore, the solutions of the eigenvalue problem are given by (with the index (Y = (w, I, m)) [l] 

fdv1) = w -l~(lvIl - w)y;“(e, 4)3 (F5) 

where Yy(0, 4) is the spherical harmonics, where 0 and I# are angles in the polar coordinates of v  in an arbitrary 
reference system. The eigenvalues are given by 

Z, = -id*A~-~l(l + l), tF6) 
where 

A = 4cs5 
I 
zdw31K12. 

0 

(F7) 

The equilibrium mode corresponding to the zero eigenvalue of the Liouvillian belongs to the n(O) subspace, and 
all non-vanishing eigenvalues in this subspace satisfy Im Z$’ < 0 with Im 2:’ - h2c. 

(2) II(“) subspace with v # 0 

In the same approximation, the collision operators with non-vanishing wave vector k # 0 for v  = (k, 0) are 
complex operators, and are given by (see (97)) 

((k, ul@lk, u)) = ((k, u/&‘/k, u)) = B&u - u), OW 

where 

ek = (k.v,) + Re,. (F9) 

The eigenvalues of Bk depend on the wave vector k, and are generally complex numbers. Hence, the 
left-eigenstates of the collision are not hermitian conjugates of the right-eigenstates. There are no steady 
eigenstates with zero eigenvalue for Bk. For small (kl (which corresponds to large scale in space in the Fourier 
analysis) eigenvalues are purely imaginary number and proportional to Ik12. They correspond to the diffusion 
modes in space. For large /kj, there are critical values k,, thereafter, the eigenvalues are complex numbers. For 
large Ik/, the real part of the eigenvalue approaches k *VI. Hence, for small scales in space there appears a 
convection flow [41]. The diffusion modes with small non-vanishing k are the slowest damped modes. All other 
modes decay with a relaxation time of order t, - (a2c)-‘. The time scale td of damping for the diffusion modes 
depends as usual on the wave vector as td - (Pcjk12)-‘: the larger the scale in space (i.e. the smaller the /k/), the 
slower the damping. Hence in any finite time scale, the effect of the diffusion modes does not vanish for 
sufficiently small /k/ [l, 411. 
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Let us now discuss the collapse of the trajectory. We consider as the initial condition the trajectory (4) 

p(q, u,O) = &;e w9-&(” - “O)fp(“,), 
r=2 

where we have dropped the index 1 of the light particle to simplify the notations. The correlation components with 
k # 0 have the same volume dependence as the vacuum of correlation component with k = 0. There is no delta 
function singularity for the wave vectors for the trajectory. We assume that the initial conditions q” are chosen in 
such a way that we are in the domain of the non-unitary transformation. This means that the spatial distribution of 
the heavy particles is random (see Section 13). Therefore, we can apply the subdynamics (141) to evaluate the 
evolution of the velocity v  of the test particle. 

As mentioned, we shall consider weak coupling, A << 1. The traditional approximation for weakly coupled 
system in kinetic theory is the A2t-approximation [17]. Then we only retain contributions of order (n2t)” with 
n 3 0. We shall go beyond this approximation and keep terms in the order of n(12t)n in subdynamics (141). In this 
approximation, we use the completeness relation of the spectral decomposition by adding the contributions from 
other subspaces than IIco) (see also the related remark in Section 11). Therefore, our approximation is applicable 
to all time scales, and is no longer an asymptotic approximation such as the ,%2t-approximation. It is easy to extend 
this procedure to higher order approximations. 

In the A(A2t)“-approximation we have to retain the contribution to v  in the binary correlation subspaces IIc2), in 
addition of the contribution from the vacuum of the correlation subspace n (O). The contribution from all other 
subspaces are negligible. Then we have (see (141)) 

(v,) = (VC)” + (Vll2. Wl) 

where 

(v,)~ = /duv((O, 01 e-iH’“‘r[P(o) + mu>‘,“‘]]p(0))) 

= &ve-i%f6(v - v”) 
I 

N 
+ $ z 2 ,=-;k .(q”-d) 

n 2k 

and 

(v,)~ = k[duv((O, ulC!2’e-‘“‘2’fIp(0))) 

= ii2T e-fk.(q’-qf), dvvk * -& &e-ia*fd(v - va). 

FW 

(F13) 

where 0, and ok are given in (F3) and (F9). For I = 0 in (Fll) we recover the initial condition (va) = vu. 
Because 0, and 0k are finite in the thermodynamic limit, the diagonal transitions associated with the collision 

operators give finite contribution in (F12) and (F13). In contrast, if we do not introduce any restriction in the 
initial condition in (FlO), then the perturbation series of (vI) diverge for asymptotic time scales due to the 
off-diagonal transition associated to the destruction operator (see (219), (53) and (J15)). The assumption of the 
random distribution of qy for the heavy particles leads to a finite contribution of the off-diagonal transitions (see 
Section 13). As a result, the effect of the diagonal transition is enhanced as compared with the effect of 
off-diagonal transitions. One can then isolate the contribution of the diagonal transitions from the contribution of 
off-diagonal transitions. 

Because of the relation, 

v  = (u sin 0 cos f$, u sin 0 sin @, L) cos 19) 
(F14) 

= 
t 
;(Y; + Y;‘), $(Y: - YC’), “YY 

1 
) 

all components of v  are represented by the spherical hermonics with the index I= 1. Hence, v  belongs the decay 
mode of 0, with the eigenvalue -ia2yi (see (F6)), where 

y,(w) = ~Aw-~. W5) 

Then we obtain (with ho - ]v”i) 

(v,)o = VO e-A'y,(u')r + ki2T e-ik '(q"-Pf)I dvv e-A*Y,(u)rk . -& a&v - ~0) 

Similarly we can follow the time evolution of v2. We note v2 - Yt(H, Q). Hence, v2 is the eigenfunction of 6,, 
with zero eigenvalue, 

eov2 = 0. (F17) 

Then we have 
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(VT, = (v30 + (v3z1 
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WV 

where 

(v;)~ = (vO)~ + $; e-‘k.(s0-s:)[dvv2k. & &d(v - v”) 

and 
N 

(v!)~ = k,z2T e-‘k’(q”-qf)[dm2k. d Vk 
& k.v-ie 

eCHx’G(v - v”). 

(FI9) 

Because of the short-range interaction, only a finite number of the heavy particles can contribute to the last term 
of (F19). Hence, we obtain a finite non-vanishing contribution of (v& in the thermodynamic limit. 

Let us now compare (Fll) with (F18). In (F16) when we expand the exponential term in the power of 1, the 
secular effects in the first term of (F16) start with -k2yt(00)t, while they start with A3t in the second term in 
(F16). Similarly, the secular effect in (F13) starts with k3t, as the imaginary part of the eigenvalues of t)k is of 
order k2. On the other hand, for v: there is no secular term in (F19). The secular effects come only from (F20) in 
the binary correlation subspace IIc2), which are of order A33t. 

As a consequence, secular effects of the square of (Fll) start with order vr, while (FM) with order k33t. This 
implies 

(4, f (v02. F-21) 
v, becomes a stochastic variable. Hence, the usual sense of the trajectory is indeed destroyed. 

We note that the effect of (F13) cannot be neglected for any time scale due to the slow processes in the 
diffusion modes for sufficiently small Ik/. The value of v, does not vanish for any time scale, and depends on the 
initial condition (FlO) for each individual trajectory. However, if we take the ensemble average for these randomly 
chosen initial conditions, then the effect of the binary correlation (F13) vanishes. In this sense we obtain (for 
I+=)* 

(v,) + 0. (in the average). (F22) 
This contrasts with the situation for finite N in (221). 

For finite non-vanishing k, the spectrum of Bk consists of decay modes with finite time scales r7 or rd. Thus all 
effects of initial correlations in II(“) subspace except for II(O) m equation (FlO) vanish asymptotically for any finite 
scale in space. We note that states in the II(O) subspace satisfy the delta function singularity in (45). Therefore, the 
delta function singularity in Fourier space emerges as time goes on, starting from non-singular distribution 
functions. For this class of distribution functions, the only possible volume dependence which is stable over the 
time evolution is the one corresponding to (45). In this sense this class acts as an attractor. 

APPENDIX G. EQUATIONS OF MOTION FOR THE PERFECT LORENTZ GAS 

For non-integrable systems belonging to LPS the non-unitary transformation leads to a set of kinetic equations 
(132). On the other hand, the evolution of trajectories is described by the Hamilton equations of motion which 
correspond to a special case of the classical Heisenberg equations (14). Therefore, it is natural to inquire how the 
transformed equations of motion (134) look when trajectories are destroyed by resonances. In this appendix we 
shall give the explicit form of the transformed equations of motion for the perfect Lorentz gas. As in Appendix F, 
we shall put m, = 1, and we shall not distinguish the velocity from the momentum. 

Let us consider the evolution of the transformed momentum for the light particle (abbreviated to particle 
index 1) defined by (see (130)) 

((~dt)l = ((V^(aG. (Gl) 
To simplicity we shall consider the k2t-approximation. ((Og(0)l is then identical to the unperturbed velocity ((?I 
which is in the P(“) subspace. Hence, in this approximation (134) leads to 

((v^,(t)lP(O) = ((V(O)1 e-rA’oy’r. (‘32) 
Recall that v  is the eigenstates of 60 in (F3) with the eigenvalue -ik2t2y, in (F15) (see (F14)). Thus, we obtain 

(( GB( t)l P(O) = ((V(O)] e-“‘yl’. tG3) 
This leads to the equation of motion in the A2t-approximation, 

~((i&)lP~O) = -A2y1((v^B(t)~P(o). 

This is a dissipative equation which breaks time-symmetry and describes the damping of the velocity. 
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Similarly, the transformed kinetic energy ?&‘2 obeys (as v* is the eigenstate of 0, with zero eigenvalue; see 
(F17)) the equation, 

-@(t)/2]Pra) = 0. 

One should note that these equations are identical to the equations for moments of the velocity which are 
generated by the Fokker-Planck equation (see (F3)), 

dll V,j21 . -$S(l . v)l . $q(v, t) 

APPENDIX H. STAR-UNITARY TRANSFORMATIONS 

In this appendix we shall display some symmetry properties, called ‘star-conjugation’, of the projection operators 
II(“) and of the non-unitary transformation As [14, 20, 251. In the last part of this appendix we shall also discuss 
the relation between the ic-rule and the star-conjugation. 

The projection operators II(‘) are not hermitian. They satisfy more general symmetry relation. To see this let us 
first observe the relation between the ‘Schrodinger picture’ of the evolution in (3) and the ‘Heisenberg picture’ in 
(14). By interchanging the role of the distribution functions and observables, as well as interchanging the sign of 
LH, one picture leads to the other picture. The interchange operation is called the ‘prime operation’ [25]. For the 
operator II(“) (137) this interchange operation corresponds to interchange of the left eigenstates by the right 
eigenstates Bo F. A combination of the prime operation with hermitian conjugation is called the ‘star-conjuga- 
tion’ (or the ‘Heisenberg-Schrodinger conjugation) denoted by ‘*’ [4, 261.11 Then we have 

(e-ILfr’IFt”)) (( Pky)I)* = (e+iLd(IF~))) (( Fc)l)‘)+ 

= (e+iLdlFby))) (( Fy)l)+ = IF:))) (( Ft)I emrLd. (HI) 

as well as 
(e-‘LfffIF~))) (( p’,“I)* = (Ip(,y))) (( F(,Y)I e+lLffr)’ = I&?)) (( Et’1 e-iLffr, WJ 

Hence we obtain 
(e-tLff’IF$‘)) (( F’,“‘I)* = e-rLff’IF(aV))) (( F;f’l, 

and 
n(v)* = n(v) ) L*H = -L”. 

II(“) is a star-hermitian operator, while L H is an anti-star-hermitian operator. Equation (H4) leads to 
A(‘)* = A(v) C(v)* = DC” 

as well as 

(H3) 

(H4) 

(H5) 

(luW)) z(~)((~wj)* = -I,(“))) z(“)((p 

The collision operators &” a 

CT a i? II ar i.e. &9* = -&‘, (Hh) 

and 0$) are anti-skew star-symmetric. Applying these operations to As, we have 

AT: = A;‘, A5 = A--’ 
C, (H7) 

that is (for B’ # B with B, B’ = C, D) 

AsA;’ = A$A, = 1. (HS) 
We can introduce more symmetric transformations operators [14, 20, 251. Let us define 

A = ~A(W!2(j-W + DC”), A-’ = c(f”v’ + Cb’9,4(“‘!2, (H9) 
Y 

This is a star-unitary operator, 

Then we have 

AA* = A*A = I. VW 

((f@WtMo))) = ((liilA*exp(-iOt)Alp(O)l), 
where 0 is a new collision operator defined by 

0 = ALHA*. 

*We thank Dr B. Misra for this remark. 
i/By definition we have (lV*)* = W. 
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This satisfies 

with 

as well as 
(y(v)* = -B(V) , i.e. @* = -0, (Hl4) 

The new collision operator is an anti-star-hermitian operator. Moreover, the new transformation operator leads to 
the same subdynamics II(“) as (137): 

We note that the non-unitary transformations preserve the reality of the states (see Appendix I). But the 
transformed states ((q, pIAlp)), as well as ((4, plABp)), cannot be considered as probability distribution 
functions, as they do not preserve the positivity of the distribution function. This is a direct consequence of the 
causal evolution of the dynamics combined with the analytic continuation (76) and (102) involving complex 
distributions (see Appendix C). However, as mentioned these states play an essential role as they permit us to 
introduce X-functions for dynamical systems as shown in Section 12. 

The k-rule and the prime operation 

We shall show that the application of the prime operation to the ie-rule leads to (see (76)) 

(ifz,“)’ = -ic,, = 
i 

-ie-, for d, > d,, 

+ie, for d, =Z d,. 

The nonlinear Lippmann-Schwinger equation (171a) leads to 

(( vlC(“‘ly)) = ((,lC(“lv))C.C. 

= ((VI(W) + w+)aL”lp)) 1 
I, - I, + ie,,, 

(H17) 

+ ((VI(&)+ - bI)I~N((w”)+lP)) I _ ,l+ in 
v P w 

On the other hand we have from (171b) that (see (H5)) 

VW 

(( ~(D(~)‘lp)) = (( vl(P(“) + D’““)(-AL,)Ip)) 
1 

-(I, - lp) + (it,)’ 

+ ((d(&” + LI)I~))((W%~) 
-1 

-(I,, - Iv) + (ic,)’ 

= ((Y/(W) + c(“)+)IL”Ip)) l 
I, - I, - (i&J’ 

+ ((vl(&” - L~)lv))((vlc(‘)+lp)) -l 
I,, - I, - (ie,)’ 

Because of (HS), equation (H17) is the same as (H18). This implies 

(ic,)’ = -iE,,, 

which is the desired result (H16). 
(H19) 

Let us emphasize the difference between the ‘star-conjugation’ defined in this article from the one introduced in 
our previous paper [l]. There we defined star-conjugation through (instead of the second equation in (H4)) 

L*H = L”. W34 
Corresponding to (H19), we have for this case 

(ie,)’ = ic,,. (H21) 
However, with this definition the relation between star-conjugation and Heisenberg-Schrodinger conjugation is 
lost. For this reason, we shall not use the definition (H20), but use the definition (H4) for the star-conjugation. 

APPENDIX I. REALITY PRESERVATION BY THE NON-UNITARY TRANSFORMATIONS 

In this appendix we shall proof that the non-unitary transformations (125) preserve the reality of the distribution 
functions (( q , p j p )) 
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We verify the relations 
(C(W)C.C = C(k), (DC-k1)c.c = D(k), (A(-k))cc = A(k), (11) 

as well as 
(&k’)CC = -&“‘, W) 

Here we have specified the correlations by its value of the wave vectors k. Equation (12) and the last equality of 
(11) are the consequence of the first two equalities of (11). As the result, ((4, p/ha/p)) are real for real 
distribution functions ((4. pip)). 

Here we prove only the first equality of (11). The proof of the second one is essentially the same. We start from 
the nonliner Lippmann-Schwinger equation (171a). In the q-representation, we have 

(13) 
((9lQf)) = l -elk.q + - 

L”N/? 
Lt,vk;,,eik’q -’ ~dq’((~‘llL,~k~‘))e-Lk”.~‘((q’~~~)) 

lk. - lk + ick.,k 

+ i!- c 

,I 

dq’&“q 
I 

LEN k, kzs ik’ - lk + ick’k e- 
“““‘((s’l~:))jdq”((kf~l~L”lqff))(iq”/~~)), 

where we have abbreviated the momentum to save the notations. We note that 

(iLH)L.C. = iLH. cLH) cc = -LH, (14) 

Then we take the complex conjugate of (13). Using (26) and changing sign k as well as of the dummy variables k’ 
and k”, we obtain by a straightforward calculation 

((qi@~k))‘~‘~ = --!-.-elk’4 + 1 c &‘q -’ 
L’N/” L3N k’.k” lk’ - 1k + iek’k 

jdq’((k’li.LVlk”))e-‘k”q’((q’l~‘4))~~ 

(15) 

+ Ic dq’e’k”4 
-1 

L3N k’.k” 
lk, _ lk + iEk,k e-'"""'((q'l~~k))jdcl"((k"~~L"~rl"))((q"~~~,))" 1 

where we have used the relations 1-k = -/k and l -k’,-k = Ek’,k. This shows that ((ql@!k))C.C satisfies the same 
equation (13) as ((q/a:)). Moreover, we have the same boundary condition, 

((d@f-‘k))” = ((q/Q;)) = ((qlk)), for 1 = 0. (16) 
Hence we obtain for any k, 

((qt@ck))“. = ((d@t)), (17) 

Because of the relation (see (126) and (170)) 

((ql@:)) = ((ql(P(k’ + C(k91k))> (18) 

we obtain the first equality of (11). Similarly one can prove the second equality of (11). 

APPENDIX J. RESONANCE DIVERGENCE OF THE MOMENTUM 

In this appendix we shall consider the time evolution of the momentum pi(t) in (218). This calculation leads 
also to the evaluation of the invariant Pf(qO, p”) in (206).” 

We assume a Gaussian potential 

(Jl) 

where B = Voa3/rr312. 
We first consider the case where N is finite. As mentioned in Section 13 the time evolution of (218) consists of 

the contributions from II(O) and IIc2) subspace. Let us denote the contribution from II(O) by pi’), and the one from 
IIc2’ by p\*‘(t), 

p,(t) = p’p’ + p’12’(r). 

p{‘) corresponds to the time independent part of (218), and we have (see also (219)) 
N 

pp’ = pI+riBz dk 
n=2 I 

’ ke-a’kzerL.r,,, 

k.a,, - 1~ 

(J3 

(33) 

where 

rn = qn - 91, (54) 

- 
“We thank to Mr Z. L. Zhang who has performed the integrations given in this appendix. 
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and we have abbreviated the superscript 0 on q and p for the initial condition to simplify the_notations. Let us 
denote the unit vectors of the polar coordinates of ginA in an arbitrary reference system by (u^,, tVn, &), where G, 
is the unit vector in the_longitudinal direction of g in, Bn in the transversal direction of gi, parallel to the direction 
of the angle B,, and & in the transversal direction of gi, parallel to the angle c#J~. Let us also introduce the 
notations, 

and 

we can write (53) as 

ml = (r, . 6,). rn2 = tr, . a,), rrt3 = tr, . &h (J% 

k, = (k . G,), k2 = (k. a,), k3 = 6. &J. (Jh) 

p’:)) = p, + ,,~2j~~d,,j~~d,2j~~,j k,u,f- iE(klD, + k28,, + k3~,)e-a2(ki+ki+k:)ei(klr”l+kzr,,l+k:r,,?J, 

(57) 
where u,,, = Igin]. We assume that nin # 0. Note that the factor kl in the numerator of the longitudinal 
component cancels with kl in the denominator. Hence, there is no resonance singularity at k,ol,, = 0 in the 
longitudinal component. The resonance effect appears only in the transversal components. 

We can perform the integration in (J7), and obtain 

where the error function is defined by 

We have 

erf(x) = $[e-;dr 

erf(-x) = -erf(x). 

lim erf(x) = 1. 
II-+= 

Similarly, p’:‘(r) (that corresponds to the time dependent part in (218)) is given by 

(38) 

(J9) 

(JlO) 

(Jll) 

(512) 

For r = 0 we recover the initial condition 

p,(O) = pl0’ + p’12’(0) = p,. (513) 

For a finite number N of particles, pi2’(t) vanishes in the asymptotic time limit (see (JlO) and (Jll)), and the 
contribution comes only from IIcol subspace, i.e. (for I + +a) 

(0) 
Pi(t) + PI . (514) 

Hence, the II(“) subspace gives the asymptotic contribution for pi(t). It is clear that the contribution from II(“) 
subspace alone cannot satisfy the causality. By adding the effects in IIc2) subspace we recover the causality for 
PI(~) in (52). 

We note that inspite of the short-range interaction, the effect of the interaction in the transversal direction does 
not disappear for ml + + m. After this limit is taken in (58) we have 

(JlS) 

For r = 0, p,(t) was in the vacuum of correlation as it depends on only its momentum. The interaction builds up 
the correlations between particles 1 and n. Then the resonance effect leads to the correlation which does not 
vanish whatever the distance of the particles. As a result, (J15) diverges in the limit of N + cc, and the asymptotic 
value of p,(t) is no longer analytic in I in this limit. Only for the systems with finite number of particles do we 
have a meaningful estimate of the above integrals. 

We note that (J15) also leads to the estimate of the invariant Pp in (206). 
Let us note that in the above estimate of the integrals we have first taken the large volume limit, keeping the 

number N of particles finite. Therefore, the limit N + 00 in (J15) is not the thermodynamic limit. As the result, 
we have a different order estimate of (206) from the one in (220), when the positions of the particles are 
distributed randomly. For example, let us recall the relation 

rnZ = r,[sin 0, cos (@, - &) - cos 8, sin f?,], r,,3 = rn sin 8, sin (45 - Q,J, (J 16) 
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and similar expression for ml, where rn, B,, and & are the polar coordinates of rn in the reference system 
introduced above (see Fig. 3). 

Assuming, for example, 8, is distributed randomly, one can see that the right-hand side of (J15) increases as 
VN for large N. I n contrast to (220), this diverges in the limit N 4 m. This result clearly shows that for randomly 
distributed q. one cannot replace the summation over k in (218) by integration, but should perform the 
summation over the wave vector k and the summation over the particles n simultaneously, as we have done in 
(220); see also the example given in Appendix M. 

APPENDIX K. VELOCITY INVERSION AND ENTROPY BARRIER 

In this appendix we shall discuss the qualitative behaviour of the Lyapunov functions (or the X-functions 
defined in Section 7 when we perform a velocity inversion at time to. We shall see that the longer we wait, a 
higher ‘entropy barrier’ is built up. In the limit ta -+ m the entropy barrier becomes infinity. 

Let us for example prepare an initial condition with no correlations, i.e. the system is in the vacuum of 
correlation, 

MO))) = p’“‘lP(o)))’ WI 

By the complex spectrual representation, the evolution of the state is given by 

Ip(t))) = CC e-tz!:‘rlF(,“}) (( F’,“lWlp(O))). 
Y a 

(KZ) 

The interaction then leads to the correlations among the particles. For a long time, the resonance then builds up 
‘long-range correlations’ (see Section 8 and Appendix J). Let us then consider the contribution to the nth order 
correlation coming from the n(“) subspace, 

(K3) 

At t = to, we perform the velocity inversion. Let us denote this operation by the operator I^,,. Then we have 

?uSj = 91, LP, = -P,, (K4) 

which lead to 

I""L" =-L". (K5) 
By an expansion in powers of I, one can easily see that the velocity inversion for the creation and destruction 
operator leads to their complex conjugation.7 Writing only the contribution from the creation operator in (K3), we 
have 

Z 

Fig. 3. In this figure we show only rn3 in (516). 

none can also verify that the velocity inversion changes only the sign of the real part of the collision operator, 
and leaves invariant its imaginary part. 
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I^,,PwP,p(t~))) - Pq%(‘)(Z(,“))]C’ P(V). (KfJ) 
Starting with a certain value of Lyapunov function, its value monotonically decreases till the moment t = ta before 
the velocity inversion. Now let us estimate the value of the Lyapunov function coming fr_om (K6) after the velocity 
inversion. To estimate this, we have to evaluate the value of the transformed state Asl,]p(ts))). Let us consider 
the contributions where the degree of correlation in P(fi) is larger than the one in PC”), i.e. d, 1 d,,. Then 
As ?&to))} involves the following contribution coming from the diagonal transition (see (81) and (100)) 

In general, there are diffusion modes in space Il (“) with v  # 0. We have illustrated this fact for the perfect Lorentz 
gas in Appendix F. The diffusion modes are associated to small wave vectors k which correspond to macroscopic 
scales in space, such as the hydrodynamic scale [18]. The characteristic feature of the diffusion modes is that their 
eigenvalues are purely imaginary and are proportional to -ilkI ( see Appendix F). As mentioned, resonances lead 
to long-range correlations. As we wait longer, long-range correlations are built up progressively involving more 
particles. This implies that smaller and smaller wave vectors k contribute to (K7). Hence, for sufficiently large lo. 
(K7) has a contribution given in the thermodynamic limit by 

bl”hJ(QJ)) - p4 l[z _ Itl’,,r”: - &. w9 

As the result, the value of the Lyapunov functions defined as the square of (KS) become larger for larger f,,. The 
‘entropy barrier’ increases as a function of fa, and becomes infinite for fs ---f + ~0. 

This divergence appears only in the diagonal transitions. For the off-diagonal transitions, the contributions are 
still finite even with the velocity inversion. 

It is also interesting to see the behaviour of the Lyapunov functions for the integrable case discussed in 
Section 9 (see also Appendix L). Let us again prepare an initial condition with no correlations. As mentioned, the 
resonance then builds up the long-range correlations among the particles which do not vanish whatever their 
distance (see also Appendix J). This situation is then described by the ‘retarded’ states I@:)) (see (184)). 
Dynamically there is no reason to exclude the opposite process which corresponds to the ‘velocity inversion 
experiment’. The initial condition has now an infinite range of correlations which are described by the ‘advanced’ 
states I@;)). After the collision the correlations disappear; but this situation which is possible from the dynamical 
point of view is not observed in nature. ‘Entropy’ distinguishes these two processes. To see this, let us ask if the 
advanced states are in the domain of As (or A, in (182) for this case). For example, let us consider the 
normalized advanced states for the potential scattering with a single particle discussed in Appendix L (with an 
abbreviation of the momentum indices in the states) 

where 

Ip)) = L-“‘WO)), (K9) 

We have (see (191)) 
I I dq dp((q, PIP)) = 1. (KlO) 

where we have displayed only the term which is related to the ‘entropy barrier’ built up by the Poincare 
resonances. The volume factor in (KIl) comes from the volume dependence of the T-matrix which is the same as 
the interaction IL” (26). Because of the limiting procedure (B2), the resonance contribution in (Kll) vanishes for 
Q + m. Hence, the normalized advanced state is in the domain of As and still leads to a finite value of the 
Lyapunov function. However, the appearance of the singular factor l -l due to the resonances already suggests the 
‘difficulty’ of the velocity inversion in scattering experiments even for the integrable systems. This marks the 
difference with retarded states. 

APPENDIX L. NON-UNITARY TRANSFORMATIONS FOR AN INTEGRABLE SYSTEM 

In this appendix we present the explicit form of the solutions of (178) for @z and @f for two-particle integrable 
systems. Observing the evolution in the center of mass system, the two-body problem reduces to potential 
scattering of a single particle. A similar result for the quantum potential scattering has been presented in our 
previous paper [I]. 

For potential scattering there are only two degrees of correlations; the vacuum of correlation with do = 0, and 
the ‘binary’ correlations with dk = 1. In order to simplify the notation, we shall use the plain notation for 
three-dimensional vectors, such as k. 

The left and right eigenstates of the Liouvillian are constructed by iteration of (178). They are given by (see 
also (184)) 
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wig = ((%,,I = ((0, PI + ((03 Pl~(+wY&~ 0 
I@&)) = I@o+,p)) = 10, P)) + &T+i40, p)), 
((c&l = ((@iF.,l = ((k PI + ((k plS(k-u - 4 k.u -1, _ L ) 

0 
(Ll) 

I~~.,)) = Q(“w~,p)) + -&m(k.” + ic)lk, p}) 

= I@;,p)) + 2ni@k. u)P(O)T(k . u + ie)Jk, p)). 

We have 

LHI@&J = 0, WOqplLH = 0, 04 
as well as 

LHI@Q = W~~lQ&JL ((@:&/ = ((e!,l(k ’ 0). (L3) 

We note that the difference I@:,,)) - IQ):,,)) in (Ll) is proportional to 6(k * u). Hence, both states @t,, and @;,p 
are the eigenstates with the same eigenvalue k. u. 

APPENDIX M. NUMERICAL VALIDATION OF THE SUMMATION FORMULA (220) 

In this appendix we shall give the result of numerical simulations to verify the estimate (220) in a simple 
example. * 

Let us consider the summation (for -L/2 s x, < L/2) 

where k, = nAk with Ak = 27r/L, and n > 0. The sum S(L) is real, and its average for a uniform distribution of 
4, is zero. By contour integration, one can easily perform the integration (for L + CC with N finite) 

S(L) -+ ,i /:)k-$--+emikq, = ,$,rem2~~q,~ sgn (4,). 042) 

Putting y, = 2q,/L, we obtain [45] 

S(L) = 2 2 
,=I ,=-mn2 + ;qL,77)2 

sin (nliy,) = 7 slnh;qL) ~lsinh[ilL(l - ll;i)lw(Y,). (M3) 
, 

For L -+ 00 with N finite, (M3) reduces to (M2). For L = N/c we have 

S(N’c) = sinh(iN/c) 5 =i ‘m h $?l - Iv,l) w(y,). 
I 1 

We have performed numerical calculations to evaluate the sums (M3) and (M4) by using a random number 
generator between -15 yj < 1 for various values of L and N. We have chosen the value n = 0.5. We have 
performed the simulations with 500 different sequences of the random number yj. 

We first consider the case corresponding to the ‘thermodynamic limit’. In the sum (M4) we have fixed the 
concentration as c = 1. Then we have to evaluate (M4) for various values of N between 100 to 1000. The results 
of the sum obtained by the numerical simulations are plotted as a function of VN in Fig. 4. The circles represent 
the mean value of the sum (M4) over 500 different sequences. We have indicated the square root of the mean 
deviation (SRMD) by squares. By increasing the value of N, SRMD remains constant as a function of \lN. This 
agrees with our theoretical prediction for the thermodynamic limit. 

Next we consider the summation using a ‘non-thermodynamic’ limit. In the sum (M3) we have given to L a 
large value L = 10000. Then we have to evaluate (M3) for various values of N between 100 to 1000. The results 
of the sum are again plotted as a function of VN in Fig. 5. As before, each circle corresponds to the mean value 
of the sum (M3) over 500 sequences. We have indicated SRMD by squares. By increasing the value of N, SRMD 
linearly increases as a function of VN. This again agrees with our theoretical prediction for the ‘non-thermo- 
dynamic’ limiting procedure. 

*We thank Dr K. H. Wen and Mr 2. L. Zhang who have performed the numerical simulations 
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Fig. 4. The sum (M4) for the thermodynamic limit with c = N/L = 1 as a function of VN. We have chosen 
100 < N G 1000. Each square corresponds to the square root of the mean deviation (SRMD) represented over 500 
different sequences of the random number y, for a given N. We have also indicated the mean value of the sum by 

the circles. By increasing the value of N, SRMD remains constant as a function of VN. 
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Fig. 5. The sum (M3) for the non-thermodynamic limit as a function of VN. We have chosen L = lo4 and 
100 c N 6 lOC0. Each square corresponds to the square root of the mean deviation (SRMD) represented over 500 
different sequences of the random number y, for a given N. We have also indicated the mean value of the sum by 

the circles. By increasing the value of N, SRMD increases linearly as a function of q N. 


