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Notes from An Introduction to Modern Cosmology, by Andrew Liddle 

 

The cosmological principle, p. 1-2. 

The cosmological principle is an extension of the evolving scientific view that we and our 
surrounding area are not special.  The Mediterranean Sea, Earth, the solar system, and the 
Milky Way galaxy are not the center of the Universe.  If you ignore "small" irregularities, (out to 
about the scale of galaxy clusters) the Universe is about the same everywhere (homogeneous), 
and in every direction (isotropic).  This large-scale approximation holds quite well, as far as can 
be observed.  On a scale smaller than galaxy clusters, it breaks down because matter is not 
uniformly distributed.  (Note that being isotropic everywhere implies homogeneity, but not vice 
versa.  Consider an infinite stack of paper:  It is the same everywhere, but directions in the 
plane of the sheets are different than directions that cross multiple sheets.)  The assumption 
that all places and directions are the same is fundamental to modern cosmology. 

Expansion of Universe, recession velocity, Hubble "constant", p. 9, 21, 33, 45, 57. 

The Universe is expanding, apparently even accelerating.  Any two points in the Universe that 
are far apart (not bound together by gravity or some other force, i.e. beyond the scale of galaxy 
clusters) are receding from each other at a velocity proportional to the distance between them.  
The Hubble "constant" is the proportionality constant.  It is believed to be constant across all of 
space, but it varies with time as the expansion rate of the Universe changes.  It is defined as 

r

v
tH )( , where v  is the velocity and r  is the distance.  Its value at the present time 

7.130 t billion years, the age of the universe, is 872)( 00  tHH  Km/sec/Megaparsec 

(2007).  This is often represented as h100 , where 08.72. h , to accommodate uncertainty in 

its value.  After correction for dissimilar distance units, its units are time-1, or fractional change 
per unit time.  Numerically, this says space is presently expanding at approximately 73 parts per 
trillion per year, or 3/4 of an atomic diameter per meter per year.  It also says that if the Universe 
had been expanding at the same rate throughout its life, it would reach its present size at about 
13.6 billion years of age.  It hasn't been, and the closeness of this Hubble time to the age of the 
Universe is somewhat coincidental.  Note also that ordinary matter on Earth is not expanding at 
this rate because it is held together by electrical and gravitational forces.  This is the rate of 
expansion of space itself, not galaxy clusters or other, smaller concentrations of matter (p. 21).  
Since velocity is proportional to distance, two distant points can recede from each other at 
greater than the speed of light.  This is allowed because neither of them is moving through 
space faster than light, they do not encounter each other with excess relative velocity, and no 
signal can pass between them.  Only space itself is moving faster than light (p.21). 
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Scale factor of the Universe, comoving coordinates, p. 19. 

In dealing with the expansion of the Universe, distances may be specified as physical distances, 
or as differences of "comoving coordinates", which expand with space.  The distance between 
two points in comoving coordinates does not change as space expands, while the physical 

distance does.  The scale factor of the Universe, a(t), is defined as 
x
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physical distance and x


 is comoving distance.  Since the Hubble parameter is the ratio of 

physical velocity to distance for any two points, it is often expressed in terms of a, 
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dt

da
.)  In a homogeneous Universe, a depends only on time.  It is 

believed that the Universe has been expanding continuously throughout its life, and may 

continue forever.  Therefore, a  is always positive and )(ta  increases monotonically. 

Redshift, p.9, 34, 125. 

Although the expansion of space does not stretch matter or clusters of matter held together by 
gravity, electrical or nuclear forces, it does stretch photons.  Redshift z is the fractional increase 

in wavelength   due to the expansion of space between emission and observation.  
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The ratio of wavelengths before and after stretching,
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scale factors of the Universe at the start and end times of the path.  In effect, the expansion of 
space stretches the wavelength of photons along with it.  Due to the uniqueness of the speed of 
light, and the assumed monotonicity of a(t), specifying the redshift of presently observed light 
also uniquely specifies the time and distance of its emission. 

 

Cosmic microwave background, black body radiation, p. 12-15, 75-6. 

About 350,000 years after the big bang, the Universe was about .001 of its present size, and the 
temperature  had dropped to about 3000K.  At that temperature, matter glows brightly with a 
yellowish white color.  Above that temperature, hydrogen, which made up most of the Universe, 
is ionized.  The thermal radiation photons are interacting rapidly with the free electrons in the 
plasma, and are not able to travel large distances.  As the temperature drops, the hydrogen ions 
capture the electrons, forming neutral hydrogen atoms.  The thermal photons are suddenly able 
to move freely, since they do not interact with the atoms.  Because the density of the Universe is 
very low, they can travel very long distances, and are in fact still detectable, arriving at Earth 
from all directions.  This is the cosmic microwave background. 

This radiation, which started out about the color of an ordinary incandescent light bulb, has been 
redshifted by the expansion of space, from yellowish to reddish to infrared, and all the way to 
microwave.  Its wavelength is about 1000 times as long as it was, but the original and final 
spectra both have the form of black body radiation, initially around 3000K, and now at 2.725K. 
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The energy density spectrum of this radiation is the expression usually used to describe it.  This 
spectrum has a broad peak at an energy of about 3kT, and a similar average photon energy.  
Integrating the density spectrum over energy to get total energy density at the present time 

shows that the total density is 
4TCMB   , where 

431610*565.7  KJm .  (Numerically, this 

is about 42 Joules, a small firecracker, in a 100 Km cube.  Or enough energy in each cubic 
kilometer to lift a small drop of water a millimeter.) 

Once the thermal radiation has "decoupled" from matter (because the temperature has dropped 
too low for them to interact), it travels freely through space, affected only by being stretched 
along with the scale factor.  Since the radiation energy density decreases inversely as the fourth 
power of scale factor (3 for volume, 1 more for stretching of the wavelength of each photon), we 

must have 
)(

1

ta
T  , the radiation temperature inversely proportional to scale.  This preserves 

the characteristic shape of the black body radiation spectrum while shifting it to lower 
temperature.  It also explains how the temperature falls from about 3000K to 2.725K as the size 
of the Universe increases about 1000 times since decoupling.   

Expansion of the Universe - Mathematical description 

The expansion of the Universe is described by three equations, the Friedmann equation, the 
fluid equation, and the acceleration equation (sometimes called one of the Friedmann 
equations).  These are not independent, since the acceleration equation can be derived from 
the other two.  Together, they form a set of differential equations that describe the evolution in 
time of the scale factor of the Universe, based on what is in it.  The cosmological principle is 
extensively used in the assumption that no point and no direction is unique.  This allows the 
convenience of arbitrary choice of coordinate origin and use of spherical coordinates with 
dependence only on r.   

The principal variables are: 

t, time since the Big Bang, 
H(t), the Hubble parameter, 
a(t), the scale factor of the Universe, 

)(tp  , pressure of various components of the Universe, and 

)(),( tt   , mass or energy density of various components of the Universe. 

These are all functions of time and (presumably) not of position.  The subscript zero 
refers to the present value. 

k, the curvature parameter, is selectable for positive, negative, or zero curvature, but 
doesn't change with time or position (p. 20). 

 , the cosmological constant, is given by nature and is presumed not to change with 
position.  It may change with time in an unknown manner. 
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The Friedmann Equation, p. 18-21, 24, 30, 34, 51-53. 

The standard form of the Friedmann equation, scaled so that c=1 and 0a =1, is 
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It can also be scaled so that k=0 or ±1, instead of 0a =1, but Liddle does not do this.  This 

equation describes how the scale factor changes in time, depending on how the density in the 
Universe changes, as well as its curvature. 

The fluid equation, p. 22. 

To use the Friedmann equation, the behavior of density )(t  over time must be specified.  The 

fluid equation relates the time behavior of density, scale, and pressure: 
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Pressure can be eliminated from this equation with the assumption that it is a unique function of 
density (the equation of state), determined by the type of matter or energy in the Universe. 

The acceleration equation, p. 23. 

The acceleration equation can be derived from the other two, and describes the acceleration of 
the scale factor: 
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This equation also needs the equation of state to eliminate p.  Note that p and   have the 

same sign.  Density and pressure both have the same sign, so they both decelerate expansion.  
Counterintuitively, this pressure is not a force pushing the Universe to expand.  It is a form of 
stored energy, and hence an attractive influence, just as mass is. 
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Solutions 

These equations can be simply solved for various special cases in which one or another 
component of the Universe is dominant.  These solutions are useful because the various 
densities of components of the Universe change monotonically as it expands.  This means there 
are long periods when one is dominant, then a transition to dominance of another. 

Radiation dominated, 0k , 0 . 

In the early Universe, before about 40,000 years, the density was dominated by radiation.  (The 
exact time is determined by measuring the relative abundance of matter and radiation, and 
extrapolating densities backwards, with photon energy increasing as wavelength shrinks with a.)  

The equation of state for radiation gives a pressure 
3

2c
p


    Solving the fluid equation shows 

that 
4 arad .  The Friedmann equation then gives the following functions of time 

(remembering that subscript zero refers to the present time and that 10 a ): 
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Matter dominated, 0k , 0 . 

Non-relativistic matter has an equation of state 0p , no pressure.  The fluid equation then 

gives 
3 amat .  In a Universe containing both matter and radiation, eventually rad < mat , 

and the expansion will be dominated by matter.  The solutions then become: 
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In a Universe dominated by matter or radiation, but with no curvature or cosmological constant, 
the expansion continues forever at ever slower rates. 
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Negative curvature dominated, k<0, 0 . 

The curvature of the Universe is small, but possibly non-zero.  Therefore, it does not become 
dominant until long after matter has taken over from radiation.  However, since the   terms of 

the Friedmann equation decrease at least as fast as a-3, while the curvature term decreases as 
a-2, any curvature eventually dominates.  For negative curvature, the Friedmann equation shows 

that the expansion velocity is constant, tta )( , and expansion continues forever without 

slowing down ("free expansion").   

Positive curvature dominated, k>0, 0 . 

If curvature is positive, the right-hand side of the Friedmann equation eventually reaches zero 
and expansion stops.  Assuming that the Universe still contains matter or radiation, its attractive 
force causes contraction.  As the equations are time-reversible, the contraction reverses the 
expansion function in time. 

Cosmological constant dominated,  >0. 

Although long thought to be zero, the recently discovered acceleration of expansion of the 
Universe strongly suggests a positive cosmological constant.  The cosmological constant can 
be thought of as the energy density of empty space.  If it is positive, it functions like mass and 
energy density, but with negative pressure.  Since its density and negative pressure do not 
decrease with expansion, the Friedmann and acceleration equations show that eventually this 
leads to accelerating expansion, as other terms decrease with increasing a(t).  The extra term 
greatly increases the possibilities for behavior of the Universe.  In addition to accelerating 
expansion in a large, low-density Universe, a brief period of inflation in the very early Universe 
may have been caused by a transient spike in the cosmological constant. 

The density parameter, p.47, 52, 100 

Looking at the Friedmann equation, one can see that, with k=0, certain combinations of   and 

  can balance the equation for any value of H (all given at the same time, usually the present).  

Or, momentarily considering 0 , some value of   works.  This is called the critical density, 

)(tc .  It is a special value because k does not change with time, so a Universe with that 

density is forever flat.  Since   is the sum of matter and radiation densities, and   can also be 

expressed as a density, the sum of these densities equaling the critical value yields a Universe 

where k is always zero.  This is useful because observationally, 0k , so we know that 

ctotal   .  In addition, with appropriate scaling each of the three quantities mat , rad , or   

alone can force k=0 for all time.  (With no subscript, the sum of matter and radiation is usually 
intended.)  Thus, for each type of density, there is a ratio of actual to critical value.  This is 

called the density parameter, and is defined for the various densities as 
c

 
   (all are 

functions of time).  A value of one for the total density parameter gives a solution of the 
Friedmann equation (with k=0) for the value of H and the densities given.  This solution 

preserves k=0 and 1tot  for all time.  If 1tot , the error increases monotonically, i.e. a flat 

Universe is unstable; any curvature increases.  Therefore, the Universe must have been very 
nearly flat early on to be anywhere near flat now. 
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Correction of observational parameters for redshift, distance, curvature, etc. 

Luminosity distance, p. 128. 

Luminosity distance is the apparent distance to an object, based on radiant energy received 
from it, with the assumption of 1/r2 dependence.  In fact, this dependence only holds for small 
distances.  The received energy decreases faster than that for two reasons:  The energy of 
individual photons is reduced as the expansion during travel stretches the wavelength, and the 
time (distance) between photons is increased for the same reason.  Each of these effects 
reduces the energy rate as a-1, so together they reduce it by a-2.  This reduction of observed 
luminosity increases apparent distance in proportion to the scale factor.  Thus 

physlum dzd )1(  . 

Angular diameter distance, p. 132. 

Similarly, angular diameter distance is the apparent distance to an object of "known, fixed" size, 
based on its subtended angle (the angular extent between two points on the object, as viewed), 
with the assumption of 1/r dependence and Euclidian geometry.  Light from the angular 
extremes of the distant object propagate toward the observer, preserving the angle between 
them.  Thus, the apparent physical size increases in proportion to the physical distance.  This 
relative increase in subtended angle is equivalent to a reduction in apparent distance, so 

z

d
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.  This means that distant objects appear closer than they really are.  In fact, their 

subtended angle only decreases out to about z=1, beyond which objects of fixed size subtend 
ever larger angles.  Thus, the apparent distance not only decreases, but the object eventually 
fills a larger and larger part of the sky, as its physical size occupies a larger portion of the 
Universe at the time of emission.  The combination of increased angular extent with decreased 
luminosity at great distances makes observation still more difficult.  Not only are the photons 
lower energy and spread out more in time, but they are spread out over a larger area of the sky 
as well. 
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Observationally derived data 

Red light, 1.8 eV, 700 nm. 
Violet light, 3.1 eV, 400 nm. 
 
Age of Universe ≈ 13.7 * 109 years ≈ 4 * 1017 seconds. 
1 year = 31.5 * 106 seconds. 
 
Density of the Universe ≈ 1 galaxy per cubic megaparsec (Mpc), p. 47,63 
 ≈ 1011 solar masses/Mpc3. 
 
Mass of the visible Universe ≈ 1011 to 1012 galaxies, weighing ~1011 solar masses each, p. 47,63 
 ≈ 1079 nucleons 
 ≈ 6 nucleons/cubic meter, close to the critical density (see below). 
 
Expansion rate of the Universe 
H0 ≈ 72±8 km/sec/mpc (2007, units are (fraction of length)/time), p. 46 
(=100h where h≈.72±.08, to accommodate uncertainty in H0) 
 ≈ 3/4 atomic diameter/meter/yr 
 ≈ 73 parts per trillion per year. 
 
Constituents of the Universe at t0, p.63-69, 116: 

Critical density ≈ 10-29 g/cm3 = 10-29
water  

 ≈ 6 nucleons/m3 (of which <6% is actual baryonic matter). 
 

01.min  matterbaryonicousLu  (stars) 

05.03.  matterbaryonicDark  (dust, gas)   

 Total baryonic matter ≈ 1 proton in five cubic meters. 

30.25.   baryonicnonmatterDark  (?) 

70.tanlog  tconsicalCosmo  

00005.Radiation   Much less energy density than baryonic matter, but about 109 as ,many 

 particles, i.e. 1 photon in five cubic millimeters. 

00003.Re  matterlativistic  

04.100.1 Total , close to critical density, close to flat. 

 


