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Internal Space 
Dave Peterson,  1/15/24  -- 2/5/24,  Preliminary. 

 

A quote:  

 “Prior to isospin, the symmetries of physics, such as translation invariance, rotation invariance, 

and Lorentz invariance, were confined to the spacetime we live and love in. Heisenberg’s profound 

insight {in 1932} led to the discovery of a vast internal space, the ongoing exploration of which has been a 

central theme of fundamental physics for close to a hundred years now. Isospin has a wealth of 

falsifiable implications. For instance, Yukawa’s pion field {1947} was expected to transform like a 3-

component vector under rotation in this internal space” [Anthony Zee, “Simply,” pg. 197] .      

 

Terms in the literature:  internal quantum numbers, internal symmetry, internal gauge symmetry, internal 

space, internal space operator, internal “charge” (e.g., “color”), internal rotation, internal direction, internal 

lines (propagators for “interaction fields”).    The “Standard Model” of particle physics is an internal gauge theory with gauge 

group SU(3)×SU(2)×U(1).    A big question is: 

  ¿  How “real” are the internal gauge symmetry groups and their “phase angles?”   

 

Below our familiar classical reality in space-time lies the unseen hidden arena of the quantum-

amplitude world {“quantum-land”}.  As a foundation for modern particle physics, we now also have 

quantum “Gauge Theories” based on “gauge symmetry groups.” The word “gauge” is historical and 

misleading and usually just means quantum “phase” symmetries. These refer to the possible symmetry 

transformation of the “wave-functions” {or “spinors, ψ” } in the Lagrangians, ℒ , of the relevant “force” 

fields.   

The strange “gauge game” is to imagine making local phase change, θ(x,t), to wave functions and 

then compensate for that by also changing potential fields and derivatives so that the triplet of changes 

are invisible to us in our experimental space-time world {we might call it four-way if we include the 

Lagrangian which then uses the modified derivative: “∂μ → Dμ” that incorporates new “gauge” potential 

fields {like “A”}. Changing the quantum phase locally is already “strange” because it means changing the 

phase of a “matter wave” by action of a possibly fictitious electromagnetic “sub-potential,” χ , a new 

scalar potential that can alter an existing scalar or vector potentials.   A key equation is θ(x,t) = qχ(x,t)/ℏ. 

 “Imparting a local gauge symmetry to a field theory immediately leads to the appearance of a 

gauge field that can couple to the source of the conserved charge.”  Gauge bosons are the quanta of 

gauge fields and are considered as generators of the symmetry.   

 

The triplet of changes reveal the forms of interactions for quarks and leptons. A goal is to 

maintain the invariance of the Lagrangian -- keep all the choreographed changes hidden. This “hiding 

conspiracy” makes discussions of “reality” difficult but yields remarkable results.   During the last sixty 

years or so, physicists realized that all fundamental interactions were consistent with constraints 

imposed by using local gauge symmetries.  In quantum electrodynamics {QED} for example, gauge 

symmetry pertains to both “electron matter waves” and electromagnetic {EM} waves and interrelates 

them.  Later-on, it also revealed the world of “color” in quantum chromodynamics {QCD} and the vector 

bosons of the electro-weak interactions {the W’s and Z ‘heavy photon’ particles associated with the combined “Lie 

group”  G = U(1)y × SU(2)left broken to U(1)EM }.  1971 was a key year in which “Yang-Mills” {YM} theory was shown 
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to be renormalizable even after the realization of the importance of “spontaneous symmetry breaking” 

{the “Higgs” mechanism}.  This meant that it was now possible to deal with the infinities of quantum 

field theory {QFT} calculations in a systematic way. The leading current theories are all of the YM type.   

 

Heisenberg’s 1932 proposal of “isospin” was a foundational concept first for nuclear physics and 

later for particle physics in general.  If electromagnetism is ignored, the neutron and proton look a lot 

alike with respect to strong interactions. Isospin postulated that n and p could be somehow “rotated” 

into each other in dominant strong interactions in analogy to electron spin up-versus-down states in a 

“spinor” [Heisenberg].  He was also motivated by the case of electron exchange binding in the hydrogen 

molecule ion H2
+.  The symmetry group of quantum spin is the continuous {special unitary} “Lie group” 

“SU(2)”  {for more on Lie groups, see [Renaud], [Wikipedia] or [Kunasz] }.   It is important to note that this isospin 

concept has nothing to do with usual quantum-mechanical “spin;” it just follows a similar mathematics. 

Roger Penrose defines a spinor as an object which turns into its negative after a complete 2π  = 360o 

rotation: S(θ +2π )= -S(θ) – acting in a sense like the square root of a vector. In 1954, Yang and Mills built on this 

isospin view as an SU(2) Lie group that could change its values locally rather than just globally {meaning 

everywhere at once} – “local gauge symmetry.”   
 

As electron spin is represented by a column spinor such as (+
-),  there could be a nucleon {iso-} 

spinor ψ= (p
n) to be operated on by elements of the group – an internal symmetry transformation.  The 

proton in terms of three quarks is written by the “ket” vector |uud〉 while the neutron is |udd〉, so we may 

now say the transformation reduces to that between u and d {“up” and “down”} quarks; or ψ = (u
d) with 

isotopic spin projection Iz= + ½ and – ½   {Heisenberg himself stated Jz = +1 for n and -1 for p}. “The weak decay 

of the down quark generates the decay of the neutron” [Zee Simple].  Turning all u quarks into d quarks and 

vice versa, u↔ d,  can be accomplished by multiplying its isospinor by one of the quaternions matrices,  

M= iσy , where σy is a 2x2 “Pauli matrix:”   Mψ =( 0-1 10)(u
d)→ (d

u).  “± iσy” is also the generator of rotations 

for the continuous rotation group SO(2) ≃ U(1).   

   

The basic generators of infinitesimal “little” su(2) {“the tangent space of the Lie group SU(2) at the 

identity”} are Hamilton’s  i, j, k  quaternions of 1843– the first hypercomplex number system (with a basis 

of three different imaginary numbers}.  But, it is a frequent convention to instead use the more standardized 

Pauli matrices {σx , σy, σz} for operations on electron state spinors. Technically, Pauli matrices are not 

really proper generators unless multiplied by “i” – which again makes them quaternions. We rise to the 

full SU(2) group by “exponentiation” of these entities; and that includes eo=1 which provides the group 

identity element.  The 2×2 real matrix for rotations in the x-y plane {SO(2)=R2} is given by e to the matrix 

M times angle θ : R2 = eθM = [cosθ
sinθ  -sinθ

cosθ] {shown by expanding eθM as its definition in a power series and 

consolidating terms}.  And in reverse, matrix M of so(2) is returned by taking the derivative of R2 at the 

identity (θ → 0): M = d(R2)/dθ|θ = 0 .  For su(2), we have a slightly more complex 2×2 matrix form,   

[ ib
-c+id

    c+id
-ib ] for real variables b, c, and d ∈ ℝ .  The more elementary case of the one-

dimensional unitary group of circular rotations, U(1), has just a 1×1 matrix single number generating 

element that could be “i” or “1” since the circle group is like the real axis, ℝ , winding around a hoop.    

 

The special transformations that Yang and Mills [YM] considered in 1954 were like   

ψ’= exp[ -iθ⃗⋅σ⃗]ψ  where three continuous phase angle theta’s can now vary locally in space time θi = 

θi(x,t).  {Many books write this as ψ → exp[ ( ½ )(τ ⋅α)]ψ where tau’s are Pauli matrices }. The “symmetry” of ℒ is in the 
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local symmetry of the possible phases in the wavefunctions ψ.  Yang and Mills were hoping that local 

SU(2) transformations would eventually be useful for nuclear strong interactions. That turned out not to 

be true, but their general approach would be key to progress in particle physics.  SU(2) was partly 

relevant to the weak interactions (like beta decay involving neutrinos), but a larger SU(3) group was 

needed for progress towards strong interactions and finally resulted in the quantum chromodynamics 

[QCD] of quarks and gluons.  

 These 3 θ’s for the case of SU(2) increase in number to eight phase angles for the bigger group 

SU(3) {e.g., the “eightfold way” for mesons using u, d & s quarks}.   Also note that the 8 3×3 complex “Gell-Mann” 

matrices, “Ta” for SU(3)color with its 8 generators for the case of quark “colors” {“charges” q= R,B,G}  explains 

why there are 8 colored gluons acting between nucleon quarks. The transformation form again looks like 

q(x) → exp[iαa(x)Ta]q(x) where there are now a=1 through 8 SU(3) angles αa and 8 transformation 

matrices Ta.   For tiny angles, an infinitesimal SU(2) transformation is just ψ’ ≃ (1+ iθ⋅σ)ψ, and an isospin 

operator is Î = ∫ψ† σ⃗ ψd3x [Ait p. 260] .     

 

 

What we might consider as an initial   
List of “internal quantum numbers” and  “internal spaces”  could include:  

 

 {Strong} Isospin, I and Iz  connecting up and down quarks (and hence proton to neutron 

 nucleons). Electric charge is Q = Iz+ ½ Y for “strong hypercharge, Y ”  {Special cases Yu=Yd = 1/3,  

and Yn=Yp = +1}.  As discrete global symmetries, they correspond to useful conserved physical quantities. 

 Internal gauge symmetries lie below any observable physical quantities. 

 Flavor symmetry: between all quark flavors {ignoring mass differences}. Strong isospin is a 

 low-mass flavor subset.  There are six flavors of quarks and six flavors of leptons. 

 

 {Strong} Hypercharge, Y, assisting isospin, electric charge and flavors u, d, and s.  Y = B + S =  

baryon number + “strangeness” (strange quark) {but then, we later need also  “charmness,” bottomness (or 

beauty), and topness quantum numbers (once called truth) added on}.   
“Color” Isospin and Color Hypercharge: I3

c vs Yc  SU(3) triangles for R,G,B and anticolor R̅ ,G̅,B̅ . 

  Yc
r=Yc

g = 1/3, Yc
b = -2/3, Ic

3r =+ ½  = -Ic
3g, Ic

3b = 0. Change signs for anticolor.   

Weak Isospin Iw  or T3 gauge symmetry of the weak interactions.  . The weak isospin is the same as 

the electric charge because Yw = 0.  Iw3 of W+ = +1.   

Weak hypercharge in the electroweak interactions,  Yw . Charge Q = T3w + ½ Yw .   

 

These are all associated with discrete quantum numbers of importance to high energy particle 

physics.  Isospin is conserved in strong interactions but can be violated for electromagnetic and weak 

interactions.  The “s” quark, for example, decays slowly via a weak interaction {s→ u+W-, W-→ e-+ν̅e} . They 

may also have associated continuous gauge groups which are the special unitary groups SU(n)’s. “Each 

theory of fundamental interactions has two symmetry groups, a space-time group and a local group, the 

latter is intimately connected with interaction dynamics” [Auyang]. 

 

  Some think of all of these as being only abstract or fictitious and physically unreal with the 

frequent definition of “real” often meaning “classically real” to us in our space-time.  But if Nature 

actually uses something isomorphic to these concepts in internal spaces, then they have aspects of 
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reality even if hidden to us and beneath classical space-time.  There are ongoing debates about the 

“reality” of “inner spaces.”  These concepts are so extremely useful that we might assume some sort of 

reality “isomorphic to” their uses.    

Continuing beyond these, note that every elementary particle has its own labeled universal 

quantum field extending throughout all of space-time. Particles are the excitations of the corresponding 

fields, and most fields are hidden until stimulated (or “fluctuated”). The phrase “internal fields” might 

apply for all of these.   

 

It is not usually stated, but relevant complex and hypercomplex spaces might also be considered 

as “internal spaces” not easily seen in our classical world of mainly real variables. Even for ordinary 

quantum mechanics, we have wave phase as ϕ = kx-ωt+ ϕo with particular reference phase ϕo not ever 

detectable and hence “meaningless” to us (labeled as a “redundancy”—and gauge theories are all about 

redundancies). The presence of complex waves themselves, ψ∝ e iϕ(x,t) , are also not directly seen but may 

be deduced after experiment. So, even these simple complex waves live in a world below the classical 

world.  And, just beyond this, electron spin is described using hypercomplex quaternions as basis 

generators of the Lie algebra su(2).    

 

I am tempted to say that the inner quantum world is a “square root of reality” which is generally 

covered by physically relevant “Clifford algebras” [algebras encompassing “square roots” of -1 like the 

quaternions and also +1 such as that of the Pauli matrix algebra]. But, unfortunately, “unlike SU(2) which 

is isomorphic to Spin(3) and which therefore can be described via the Clifford algebra Cℓ(0,3) {for the 

number of “√ +1’s” and “√ -1’s” },  SU(3) does not arise naturally in any Clifford algebra. But, it is a group 

of fundamental importance in elementary particle physics - it is central to the Standard Model” [Renaud]. 

Also, many believe that the hypercomplex “octonians” with seven different imaginary number bases are 

useful in particle physics. But they are a non-associative algebra and hence not a Clifford algebra.  

 

We might also distinguish between elements in a “space” such as spinors versus operators on 

the elements such as the SU(n) group elements.  For Dirac theory, spinors exist at points in space, and 

operators include Dirac gamma matrices. The operators and elements of inner spaces go together.  

 

The real interest in this note is the degree of “reality” of the internal gauge symmetry groups 

and their phase angles. Much about them is “unmeasurable” and hence in opposition to the usual 

pragmatism, positivism, and instrumentalism of Copenhagen quantum mechanics. But, “during the last 

six decades, Yang-Mills theory has become the cornerstone of theoretical physics—the great “relevance 

of local irrelevance.”  It is seemingly the only fully consistent relativistic quantum field theory in four 

space-time dimensions” [Shifman]. It provides a basis for the standard model by “providing a unified 

framework to describe the quantum-mechanical behavior of electromagnetism, the weak force and the 

strong force” and their experimental predictions” [wik.intro]. Some view gauge theory as just as 

significant as relativity and quantum mechanics. The renormalizability of QED also depends on gauge 

symmetry.  Such high importance must imply some essential reality – but it is hard to pin down. 

 

 

QUANTUM GAUGE THEORY: 
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First, a little necessary background review on classical gauge theory for electromagnetism.  

E and B physical force vector fields are real because they produce measurable experimental results and 

have energy densities proportional to E2 or B2 (and we might say that energy is the king of concepts in 

physics).  Their nature is specified by “Maxwell’s Equations;” and they are each allowed to be expressed 

using potential fields because of the vector identities  div curl ≡  0 and curl grad ≡  0.  That is: 

 

             Maxwell’s “No magnetic Poles” equation, ∇⋅B = 0, allows B = ∇×A since ∇⋅(∇×A) = 0.  A is “vector 

        Potential.”   {For a long time, people believed that these potentials were unreal and avoided them}. 

There is “gauge freedom” in expressing A since B = ∇×A = ∇×(A+∇χ(x,t)) with ∇×∇χ ≡ 0.  

“Chi” can be any irrelevant but differentiable scalar function on space-time and has no  

effect on physical B. 

Faraday’s Law ∇×E = -∂B/∂t = -∂(∇×A)/∂t = ∇×(-∂A/∂t) and also = ∇×(-∇ϕ) where ϕ(x,t) is the 

electric potential scalar function.  This allows the electric field E to be expressed in terms of two 

potentials as E = -∇ϕ -∂A/∂t.    The addition of the ghostly unreal chi field must not affect E.  

So, E = E’ = -∇ϕ -∂A/∂t = -∇ϕ’ -∂(A+∇χ)/∂t = -∇ϕ’ - ∂A/∂t - ∇(∂χ/∂t), or ϕ’ = ϕ -∂χ/∂t.  

Combining these together in relativistic 4-vector notation, we have A’μ → Aμ + ∂μχ  {the modern 

notation ∂μ means ∂/∂xμ with index μ = 0,1,2, and 3 where zero means “time-variable” t}. The χ 

field is scalar with single values in space-time and has values Δχ =∫χ⋅dℓ independent of chosen 

path.  

 The “gauge function” χ(x,t) is initially seen as an unusual little beast – a strange 

“potential for calculating another potential.” We’ve likely never encountered anything like this 

before.  

 

 “Choosing gauge” or gauge conditions such as the familiar “Coulomb” gauge or “Lorenz 

gauge” become useful when we are trying to solve for potential fields beginning with wave 

equations for potentials that involve terms like ∇2ϕ and ∇2A⃗ (a vector Laplacian).  Selecting gauge 

conditions crosses-out terms in the wave form and enables easier calculations for ϕ(x,t) and 

A(x,t).  In the classical case, rather than “phase” transformation, gauge transformation just 

means an exploitation of the redundancy in potentials. Phases become important in quantum 

theory. 

 

Regions of space where there is no magnetic field, B=0, should have  A⃗  = -∇χ(x,t) – a 

simple gradient field.  An important exception is the case of the “Aharonov-Bohm [AB] effect” for 

electron wave paths around a long-thin solenoid. These solenoids may have a strong interior 

field B = Bo > 0 along with extremely weak exterior magnetic fields.  But, they still have a 

significant exterior A⃗ > 0  field that can wind around the solenoid’s center “hole” and are 

“dragged” around by rotational currents.  A⃗out (ρ) = A⃗ϕ (ρ)= BoR2φ ̂/2ρ, where R is the radius of 

the solenoid, ρ is a radial distance and φ ̂is a unit vector in the “phi-angle” direction. This 

winding field is multi-valued and not a true gradient field because pathways are not simply 

connected due to the hole.  The AB effect is not changed by the introduction of a ∇χ(x,t) field. 

In this example, the quantum mechanical AB  A⃗ϕ field has some well-tested quantum 

reality because it causes an observable electron interference phase shift between parts of the 

wave function:  
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ψAB = e I Δθ =exp[(ie/ℏ)∫A⋅dℓ ] ψA=0   which is path dependent (and we consider a full circle 

path about a solenoid).  This leads to a view of the vector potential field that Maxwell 

entertained—“eA” is like an electromagnetic momentum as if an electromagnetic space were 

being dragged along with current flows.  And a moving-frame Lorentz transformation with 

relative velocity v of a Coulomb electrostatic field produces a vector A⃗ field. That also dovetails 

with canonical momentum being pc = pk + eA where pkinetic = mv.   The quantum phases here are 

said to be “kickable” – we kick the system by increasing solenoid current, and it responds by 

visibly shifting electron phase interference patterns. Being kickable is a measure of physical 

reality [Auyang]. 

 

 

Gauge Theory in Quantum Field Theory:  
 

“The term ‘gauge’ refers to any specific mathematical formalism to regulate redundant degrees 

of freedom” [Wik].   The point of local quantum “gauge” symmetry {usually now meaning quantum 

“phase” symmetry} is that “it constrains the form of the action, S, and dictates the form of the 

interaction,” ℒ int    [dp2013]. “The gauge principle provides a method to transform a Lagrangian, ℒ, which 

is invariant under a global symmetry into a Lagrangian that is invariant under a local symmetry.” “For 

physics to be invariant under a group of transformations, it is only necessary for the action to be 

invariant [Zee].” For the case of ordinary quantum mechanics, we change the phase of a wave locally: ψ→ 

e iθ(x)ψ  where local phase shift angle θ = qχ(x)/ℏ {where it is almost an axiom that electric charge, q, is 

absolutely conserved}. The “gauge parameter” factor u=eiθ(x) is an element of the phase group U(1) of 

complex rotations. To actually achieve phase-shifting requires the existence and action of a potential on 

a wave associated with a moving charge. Physicists see electromagnetic E and B physical fields that can 

result from a potential A-field expressed in a variety of ways due gauge freedoms that do not affect the 

physical fields (redundancy and under-determination of potentials).  

 

We play a game of compensating for the local phase shifting by tweaking the potential field 

A(x,t) “connection” due to charges and currents and also by modifying space-time derivatives to 

“covariant” derivatives, D, that incorporate the effects of the potential fields. For a given gauge 

symmetry group, this derivative is defined uniquely; and all ∂μ’s in ℒ can be replaced by covariant 

derivatives. Then, “this uniquely specifies the interaction between matter and the gauge fields.”  

 

This is a careful and creative 3-way mutually compensating choreographing between θ(x,t), 

A(x,t), and ∂μ together. We modify an A with A’=A+∇χ   and D = ∇ -ieA/ℏ with the result that this 

combined change effectively “prevents observability of un-measurables” (can’t see absolute phase, can’t 

see redundant changes to potentials, can’t see symmetries – such as the SU(n) groups themselves).   The 

quanta of interacting gauge fields are bosons such as the photon represented by the A field, gluons in 

QCD, and heavy bosons of electroweak theory.   

In the case of Dirac QED, “the crucial point is that substituting ∂μ → Dμ into the Dirac Lagrangian 

automatically gives the interaction JμAμ term ℒint which agrees with the “vertex” of quantum 

electrodynamics” Feynman diagrams.  And A’=A+∇χ also leaves the important 4×4 electromagnetic Fμν 

tensor unchanged in the electromagnetic or the Dirac Lagrangian. In addition, gauge symmetry plays a 

key role in making gauge theories “renormalizable” thus producing useful answers instead of infinity. 
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      For those unfamiliar with saying that an interaction is “JA,” we should refer to things you do 

know:  Note that in simple vector form:    L classical = mv2/2 + A⃗⋅qv⃗  – eϕ  has the “interaction” term  

[A⃗⋅J⃗single particle  ] as a “velocity dependent potential.”  And plugging that into the usual “Lagrange-Euler 

equations” solution {∂t(∂L/∂ẋ) = ∂L/∂x } automatically yields the all-important and more familiar  

“Lorentz-Force Law,”  F = qv × B + qE. {e.g., see https://en.wikipedia.org/wiki/Lorentz_force}. This is foundational 

for observing the effects of magnetic fields on moving charges. It should also seem initially strange in the 

sense of one velocity arrow crossed into another magnetic arrow yields a force perpendicular to both.  

{What other force does this? The Coriolis “fictitious” force due to being in the “wrong” frame of 

reference – that’s a clue. It also occurs in general relativity with the 1918 Lense-Thirring dragging of 

inertial frames. And that in turn produces a “gravito-magnetic” effect like the Lorentz force (e.g., 

important for the case of rotating Kerr black holes). 

 These examples refer to large scale fields. But, also note that if two individual charged particles 

scatter off each other, they each contribute a “current” ev⃗ ≃ J that causes a mutual interaction Aμ  that 

Zee calls Z(J1J2) with “internal line” exchange in a Feynman diagram – “the photon.”  We could say that 

the charges radiate the gauge field, A. 

 

Advancing to Yang-Mills theory is similar but much more complex because it moves into higher 

continuous gauge symmetry groups such as SU(2) and SU(3) which are “non-abelian”  {elements uv ≠ 

vu}.  These Lie groups represent the symmetry of the Lagrangian. We might picture angles as 

representing real rotations, but SU(2) is the group of rotations in complex two-dimensional space , ℂ2. Its 

local internal symmetry might be called fictitious because unlike a global gauge symmetry it does not 

correspond to a conserved physical quantity. 

 

“The essential building blocks of gauge theory are the gauge symmetry group, the gauge 

potential field which defines the connection, and the physical particles which are the sources of the 

gauge field and which also interact with each other via the gauge potential” [Moriyasu, p. 34].  Potential, Aμ, 

“is both an external field and an internal space operator.” For the non-Abelian gauge groups, the 

“potential fields can carry internal charges” as well. U(1) is Abelian {meaning that the product of 

elements U(θ1)U(θ2) = U(θ2)U(θ1) }, and that means that the photon doesn’t self-interact.  

 

How about also considering Dirac’s gamma matrix algebra (which is a Clifford algebra, Cℓ(1,3)), 

Gell-Mann matrix algebra, and spinors as internal spaces.  Feynman “slash” notation uses gamma 

matrices and presents as a 4-vector.  Strong and electro-weak interactions also have “gauge groups” with 

continuous transformations that are valued in Lie groups.  QCD is based on unbroken SU(3)color; and 

electro-weak theory uses the combination SU(2)×U(1) with spontaneous symmetry-breaking (the 

“Higgs” mechanism). “The color group SU(3) corresponds to the local symmetry whose gauging gives 

rise to QCD [wik]. 
 

Some Problems:  
A local change of phase by e iθ =e iqχ(x)/ℏ is said to be compensated by A’ = A + ∇χ  where gradient 

of chi is really useless ( ∇×∇χ ≡  0).  The field A = 0 satisfies this.  How to justify introducing a background 

A(x,t)≠ 0 field that is useful?  Maybe it is already a given as deduced from Maxwell equations. So, the 

early issue was what did we also already know about strong and weak forces?  Initially, not much. 
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Putting ∂μ
2 → Dμ

2 into the Schrodinger equation gives an ieA⋅∇ψ term needed for current-field 

interactions but also an e2A2 term which breaks gauge invariance – how is this discarded?  Note that the 

Dirac part of its own Lagrangian only has only one derivative ∂μ → Dμ term which automatically leads to 

the proper interaction without an e2A2 term: ℒint = qψ̅ γμAμψ = JμAμ .  So proper QED resolves the non-

relativistic Schrodinger problem.  

Gauge theory itself doesn’t much discuss charges and currents – they are added on.  

 

Suppose we play around a bit trying to take Chi(x,t) seriously: 

 First, consider it as a local “bump” in space-time – a “nice shape” is Gaussian (Bell)-- perhaps like 

χ(x) = B exp[–(br)2]. Its derivative, ∇χ = r ̂∂χ/∂r = -2r ̂b2rB exp[-b2r2]  has to resemble a vector potential. 

Instead of peaking at the center like Bell, this is maximum in a spherical shell around center.  

UNITS: Let [ ] stand for “units of”: find [χ]=[B]:  [A] = joules/amp-meter = volt-s/m = 

[momentum]/charge, and we wish q∇χ to be like a momentum [p]. So, [q χ ] = [p]⋅ meters, and [χ ] = 

[p]meters/unit charge 

And  [b] = [1/r] so [b2r] = [1/r] and [B] = [r ∇χ ]=[r ∂χ/∂r] = [χ], OK.  

 How about the other potential ∂χ/∂t in S.I. volts, so [χ(x,t]] =[ϕ] is volts-seconds = [A]⋅ meters – 

so, at least this is consistent. But, how about an interpretation for this sub-potential χ?  

 What is the meaning of [qχ ] = momentum × meters in every point in the “bump”? 

Consider that [Planck h] = joules/hz = joules⋅sec = kg m2/s = momentum times distance, 

….is that interesting? 

 Well, we already knew that angle θ = qχ(x)/ℏ, so of course [qχ ] = [h]. For q = electric charge, qχ 

drives matter wave radian angle changes in units of ℏ .  

 So, one question now is, “How real are the ‘bumps’ ?” 

 If we take the time derivative of the angle equation, we get  ΔE= ℏω = ℏ ∂θ/∂t = = q∂χ/∂t = qΔV 

– and we have already heard suggestions that ramping up potential voltage increases the energy of a 

system.  The possible existence of a “chi” field would only apply to the quantum world. 

 

 There is an electrostatic Aharonov-Bohm effect using potentials only without electric fields.  It 

was partly verified in 1998 in a form like that above: ℏ Δθ/Δt = qΔV  where Δθ is a resulting electron 

phase change, ΔV is an exposure to a higher voltage and Δt is time spent traversing a distance in an 

increased potential. A thorough test is a very difficult experiment and has yet to be done. 

 

Conclusion: 

  
Inner spaces are hidden from us, and we have been thinking of them as apparently useful within 

tiny regions of space-time.  Intuitively, it is somewhat like having new dimensions that are only seen by 
special “Inward Bound” close-up observers (but different from the ultra-tiny Planck size dimensions of 
string theory).  Now, concepts like entanglement and Bell’s tests suggest new arenas over large regions. 
Space-time is not a totally comprehensive arena.  The universal fields for each “elementary particle” 
throughout all space-time is also of course large scale.  And the Higgs potential field is universal and 
imparts mass to some particles.  

Many of us believe in a reality of quantum waves and that the vector potential A⃗  possesses at 
least some aspects of reality (and “qA” affects e iφ(x,t) ). The foundation of quantum mechanics begins 
with particle mass being an ultra-high frequency rest-vibration (hν = E = mc2) whose Lorentz 
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transformation to a moving frame {relative velocity v⃗ } yields Schrodinger wavelengths λ = h/p as a 
purely relativistic phenomenon (in “non-relativistic quantum mechanics”). Redundancy in the possible 
values of wave phase and choice of A leads to exploration of a “chi” field as a “non-physical 

transformation of momentum”: θ ≃ q∇χ (x,t) with ∇χ ⋅dℓ = dχ  implies that ∫∇χ ⋅dℓ  = Δχ  between two points, and 

Δp = qΔχ. “Chi” is allowed to exist locally, and charge couples with chi to give a shift in momentum. It could 

happen; but does it happen?  

Despite gauge freedom of choices, we might consider a natural preferred choice and intuitively 

pleasant interpretation of A as due to the effective “dragging of an electromagnetic space by moving charge 

currents.” This is seen in the “Lienard-Wiechert potential” A = (μo/4π)∫ (J⃗(r)/r)d3r  {but, it does use a particular 

“Lorenz gauge” ∂μAμ = 0}. However, it is also a consequence of a Lorentz transformation to a moving frame of a 

simple Coulomb field from charge --meaning that “preferred A” is interpreted as just the dragging of the 

electrostatic field to a velocity v. That might suggest the concept of gauge freedom of the field as more of a 

strangely useful but unreal “mathematical game.” 

 Supplementing the concept of “interior reality,” philosopher of physics Ruth Kastner adds the phrase, 
“outside of space-time.” A particular note is that the quantum amplitude “waves exist as possibilities 

outside of physical spacetime, and therefore it is necessary to accept such possibilities as part of reality 

[wik].”  Potentia can be real.  Nicolas Gisin adds, “quantum correlations are coming from outside space-
time.” 

The following quote is interesting: “There must be a new way of thinking about quantum field 
theories, in which space-time locality is not the star of the show. . . . by removing spacetime from its 
primary place in our description of standard physics, we may be in a better position to make the leap to 
the next theory, where space-time finally ceases to exist.  {Arkani-Hamed (2012), [Peebles] }. 

Bottom Line: Gauge theory is a basic, essential, powerful, and revealing tool.  But, it is also somewhat “magical;” 

and its {sub-} physical reality is far from apparent. 
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