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Introduction

A NEW RATIONALITY?

E arlier this century in The Open Universe: An Argu-
ment for Indeterminism, Karl Popper wrote, “Common
sense inclines, on the one hand, to assert that every event is
caused by some preceding events, so that every event can
be explained or predicted ....On the other hand, ...
common sense attributes to mature and sane human per-
sons . . . the ability to choose freely between alternative
possibilities of acting””! This “dilemma of determinism,”
as William James called it, is closely related to the meaning
of time.? Is the future given, or is it under perpetual
construction? A profound dilemma for all of mankind,
as time is the fundamental dimension of our existence.
It was the incorporation of time into the conceptual
scheme of Galilean physics that marked the origins of
modern science.

This triumph of human thought is also at the root of
the main problem addressed by this book: the denial of
what has been called the arrow of time. As is well known,
Albert Einstein often asserted, “Time is an illusion.” In-
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deed time, as described by the basic laws of physics, from
classical Newtonian dynamics to relativity and quantum
physics, does not include any distinction between past and
future. Even today, for many physicists it is a matter of faith
that as far as the fundamental description of nature is con-
cerned, there is no arrow of time.

Yet everywhere—in chemistry, geology, cosmology, bi-
ology, and the human sciences—past and future play dif-
terent roles. How can the arrow of time emerge from what
physics describes as a time-symmetrical world? This is the
time paradox, one of the central concerns of this book.

The time paradox was identified only in the second half
of the nineteenth century after the Viennese physicist
Ludwig Boltzmann tried to emulate what Charles Darwin
had done in biology in an effort to formulate an evolution-
ary approach to physics. The laws of Newtonian physics
had long since been accepted as expressing the ideal of ob-
jective knowledge. As they implied the equivalence be-
tween past and future, any attempt to confer a fundamental
meaning on the arrow of time was resisted as a threat to
this ideal. Isaac Newton’s laws were considered final in
their domain of application, somewhat the way quantum
mechanics is now considered to be final by many physi-
cists. How then can we introduce unidirectional time
without destroying these amazing achievements of the
human mind?

Since Boltzmann, the arrow of time has been relegated
to the realm of phenomenology. We, as imperfect human
observers, are responsible for the difference between past
and future through the approximations we introduce in
our description of nature. This is still the prevailing scien-
tific wisdom. Certain experts lament that we stand before
an unsolvable mystery for which science can provide no
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answer. We believe that this is no longer the case because
of two recent developments: the spectacular growth of
nonequilibrium physics and the dynamics of unstable sys-
tems, beginning with the idea of chaos.

Over the past several decades, a new science has been
born, the physics of nonequilibrium processes, and has led to
concepts such as self-organization and dissipative structures,
which are widely used today in a large spectrum of disci-
plines, including cosmology, chemistry, and biology, as
well as ecology and the social sciences. The physics
of nonequilibrium processes describes the effects of unidi-
rectional time and gives fresh meaning to the term irre-
versibility. In the past, the arrow of time appeared in
physics only through simple processes such as diffusion or
viscosity, which could be understood without any exten-
sion of the usual time-reversible dynamics. This 1s no
longer the case. We now know that irreversibility leads to
a host of novel phenomena, such as vortex formation,
chemical oscillations, and laser light, all illustrating the es-
sential constructive role of the arrow of time. Irreversibility
can no longer be identified with a mere appearance that
would disappear if we had perfect knowledge. Instead, it
leads to coherence, to effects that encompass billions and
billions of particles. Figuratively speaking, matter at equi-
librium, with no arrow of time, is “blind,” but with the
arrow of time, it begins to “see.” Without this new coher-
ence due to irreversible, nonequilibrium processes, life on
earth would be impossible to envision. The claim that the
arrow of time is “only phenomenological,” or subjective,
is therefore absurd. We are actually the children of the
arrow of time, of evolution, not its progenitors.

The second crucial development in revising the concept
of time was the formulation of the physics of unstable
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systems. Classical science emphasized order and stability;
now, in contrast, we see fluctuations, instability, multiple
choices, and limited predictability at all levels of observa-
tion. Ideas such as chaos have become quite popular, influ-
encing our thinking in practically all fields of science, from
cosmology to economics. As we shall demonstrate, we can
now extend classical and quantum physics to include insta-
bility and chaos. We are then able to obtain a formulation
of the laws of nature appropriate for the description of our
evolving universe, a description that contains the arrow of
time, since past and future no longer play symmetrical
roles. In the classical view—and here we include quantum
mechanics and relativity—laws of nature express certi-
tudes. When appropriate initial conditions are given, we
can predict with certainty the future, or “retrodict” the
past. Once instability is included, this is no longer the case,
and the meaning of the laws of nature changes radically,
for they now express possibilities or probabilities. Here we
go against one of the basic traditions of Western thought,
the belief in certainty. As stated by Gerd Gigerenzer et al.
in The Empire of Chance, “Despite the upheavals in science
in the over two millennia separating Aristotle from the
Paris of Claude Bernard, they shared at least one attitude
of faith: Science was about causes, not chance. Kant even
promoted universal causal determinism to the status of a
necessary condition of all scientific knowledge”

There were, however, dissenting voices. The great
physicist James Clerk Maxwell spoke of a “new kind of
knowledge” that would overcome the prejudice of deter-
minism.* But, on the whole, the prevailing opinion was
that probabilities were states of mind rather than states of
the world. This is so even today in spite of the fact that
quantum mechanics has included statistical concepts in the
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core of physics. But the fundamental object of quan-
tum mechanics, the wave function, satisfies a deterministic,
time-reversible equation. To introduce probability and
irreversibility, the orthodox formulation of quantum me-
chanics requires an observer.

Through his measurements, the observer would bring
irreversibility to a time-symmetric universe. Again, as in
the time paradox, we would be responsible in some sense
for the evolutionary patterns of the universe. This role of
the observer, which gave quantum mechanics its subjective
flavor, was the main reason that prevented Einstein from
endorsing quantum mechanics, and it has since led to un-
ending controversies.

The role of the observer was a necessary concept in the
introduction of irreversibility, or the flow of time, into
quantum theory. But once it is shown that instability
breaks time symmetry, the observer is no longer essential.
In solving the time paradox, we also solve the quantum
paradox, and obtain a new, realistic formulation of quan-
tum theory. This does not mean a return to classical deter-
ministic orthodoxy; on the contrary, we go beyond the
certitudes associated with the traditional laws of quantum
theory and emphasize the fundamental role of probabili-
ties. In both classical and quantum physics, the basic laws
now express possibilities. We need not only laws, but also
events that bring an element of radical novelty to the de-
scription of nature. This novelty leads us to the “new kind
of knowledge” anticipated by Maxwell. For Abraham De
Moivre, one of the founders of the classical theory of
probabilities, chance can neither be defined nor under-
stood.> As we shall illustrate, we are now able to include
probabilities in the formulation of the basic laws of
physics. Once this is done, Newtonian determinism fails;
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the future is no longer determined by the present, and the
symmetry between past and future is broken. This con-
fronts us with the most difficult questions of all: What are
the roots of time? Did time start with the “big bang”? Or
does time preexist our universe?

These questions place us at the very frontiers of space
and time. A detailed explanation of the cosmological im-
plications of our position would require a special mono-
graph. Briefly stated, however, we believe that the big bang
was an event associated with an instability within the
medium that produced our universe. It marked the start of
our universe but not the start of time. Although our uni-
verse has an age, the medium that produced our universe
has none. Time has no beginning, and probably no end.

But here we enter the world of speculation. The main
purpose of this book is to present the formulation of the
laws of nature within the range of low energies. This is the
domain of macroscopic physics, chemistry, and biology. It
is the domain in which human existence actually takes
place.

The problems of time and determinism have remained
at the core of Western thought since the pre-Socratics.
How can we conceive of human creativity or ethics in a
deterministic world?

This question reflects a profound contradiction in West-
ern humanistic tradition, which emphasizes the impor-
tance of knowledge and objectivity, as well as individual
responsibility and freedom of choice as implied by the
ideal of democracy. Popper and many other philosophers
have pointed out that we are faced with an unsolvable
problem as long as nature is described solely by a deter-
ministic science.® Considering ourselves as distinct from
the natural world would imply a dualism that is difficult for
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the modern mind to accept. Our aim in this work is to
show that we can now overcome this obstacle. If “the pas-
sion of the western world is to reunite with the ground of
its being,” as Richard Tarnas has written, perhaps it is not
too bold to say that we are closing in on the object of our
passion.’

Mankind is at a turning point, the beginning of a new
rationality in which science is no longer identified with
certitude and probability with ignorance. We agree com-
pletely with Yvor Leclerc when he writes, “In the present
century we are suffering from the separation of science and
philosophy which followed upon the triumph of New-
tonian physics in the eighteenth century.® Jacob Bronowski
beautifully expressed the same thought in this way: “The
understanding of human nature and of the human condi-
tion within nature is one of the central themes of sci-
ence.”

At the end of this century, it is often asked what the fu-
ture of science may be. For some, such as Stephen W.
Hawking in his Brief History of Time, we are close to the
end, the moment when we shall be able to read the “mind
of God”’'? In contrast, we believe that we are actually at
the beginning of a new scientific era. We are observing the
birth of a science that is no longer limited to idealized and
simplified situations but reflects the complexity of the real
world, a science that views us and our creativity as part of
a fundamental trend present at all levels of nature.



Chapter 1

EPICURUS’ DILEMMA

[

Is the universe ruled by deterministic laws? What is the
nature of time? These questions were formulated by the
pre-Socratics at the very start of Western rationality. After
more than twenty-five hundred years, they are still with us.
However, recent developments in physics and mathema-
tics associated with chaos and instability have opened up
different avenues of investigation. We are beginning to see
these problems, which deal with the very position of
mankind in nature, in a new light, and can now avoid the
contradictions of the past.

The Greek philosopher Epicurus was the first to address
a fundamental dilemma. As a follower of Democritus, he
believed that the world is made of atoms and the void.
Moreover, he concluded, atoms fall through the void at the
same speed and on parallel paths. How then could they
collide? How could novelty associated with combinations
of atoms ever appear? For Epicurus, the problems of sci-

9
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ence, the intelligibility of nature, and human destiny could
not be separated. What could be the meaning of human
freedom in a deterministic world of atoms? As Epicurus
wrote to Meneceus, “Our will is autonomous and inde-
pendent and to it we can attribute praise or disapproval.
Thus, in order to keep our freedom, it would have been
better to remain attached to the belief in gods rather than
being slaves to the fate of the physicists: The former gives
us the hope of winning the benevolence of deities through
promise and sacrifices; the latter, on the contrary, brings
with it an inviolable necessity.”! How contemporary this
quotation sounds! Again and again, the greatest thinkers in
Western tradition, such as Immanuel Kant, Alfred North
Whitehead, and Martin Heidegger, felt that they had to
make a tragic choice between an alienating science or an
antiscientific philosophy. They attempted to find some
compromise, but none proved to be satisfactory.

Epicurus thought that he had found a solution to this
dilemma, which he termed the clinamen. As expressed by
Lucretius, “While the first bodies are being carried down-
wards by their own weight in straight lines through the
void, at times quite uncertain and at uncertain places, they devi-
ate slightly from their course, just enough to be defined as hav-
ing changed direction””? But no mechanism was given for
this clinamen. No wonder that it has always been consid-
ered a foreign, arbitrary element.

But do we need this novelty at all? For Heraclitus, as un-
derstood by Popper, “Truth lies in having grasped the
essential becoming of nature, i.e., having represented it as
implicitly infinite, as a process in itself”’> Parmenides took
the opposite view. In his celebrated poem on the unique
reality of existence, he wrote, “Nor was it ever, nor will it
be, since now it is, all together.”*
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It is amusing that the Epicurus clinamen has appeared
repeatedly in the science of our century. In his classic paper
on the emission of photons associated with the transitions
between atomic states (1916), Einstein explicitly expressed
his confidence in scientific determinism, although he as-
sumed that these emissions are ruled by chance.

Greek philosophy was unable to solve this dilemma.
Plato linked truth with being, that is, with the unchanging
reality beyond becoming. Yet he was conscious of the
paradoxical character of this position because it would de-
base both life and thought. In The Sophist, he concluded
that we need both being and becoming.®

This duality has plagued Western thought ever since. As
observed by the French philosopher Jean Wahl, the history
of Western philosophy is, on the whole, an unhappy one,
characterized by perpetual oscillations between the world
as an automaton and a theology in which God governs the
universe.® Both are forms of determinism.

This debate took a turn in the eighteenth century with
the discovery of the “laws of nature” The foremost exam-
ple was Newton’s law relating force and acceleration,
which was both deterministic and, more important, time
reversible. Once we know the initial conditions, we can
calculate all subsequent states as well as the preceding ones.
Moreover, past and future play the same role because
Newton’s law is invariant with respect to the time inver-
sion t = —t. This leads to nightmares such as the demon
imagined by Pierre-Simon de Laplace, capable of observ-
ing the current state of the universe and predicting its evo-
lution.’

As is well known, Newton’s law has been superseded in
the twentieth century by quantum mechanics and relativ-
ity. Still, the basic characteristics of his laws—determinism
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and time symmetry—have survived. It is true that quan-
tum mechanics no longer deals with trajectories but with
wave functions (see Section IV of this chapter and Chap-
ter 6), but it is important to note that the basic equation of
quantum mechanics, Schrédinger’s equation, is once again
deterministic and time reversible.

By way of such equations, laws of nature lead to certi-
tudes. Once initial conditions are given, everything is de-
termined. Nature is an automaton, which we can control,
at least in principle. Novelty, choice, and spontaneous ac-
tion are real only from our human point of view.

Many historians believe that an essential role in this vi-
sion of nature was played by the Christian God as con-
ceived in the seventeenth century as an omnipotent
legislator. Theology and science agreed. As Gottfried von
Leibniz wrote, “In the least of substances, eyes as piercing
as those of God could read the whole course of things in
the universe, quae sint, quae fuerint, quae mox futura trahantur”
(those which are, which have been, and which shall be in
the future).® The discovery of nature’s deterministic laws
was thus bringing human knowledge closer to the divine,
atemporal point of view.

The concept of a passive nature subject to deterministic
and time-reversible laws is quite specific to the Western
world. In China and Japan, nature means “what is by it-
self”” In his excellent book Science and Society in East and
West, Joseph Needham tells us of the irony with which
Chinese men of letters greeted the Jesuits’ announcement
of the triumphs of modern science.” For them, the idea
that nature is governed by simple, knowable laws seemed
to be a perfect example of anthropocentric foolishness.
According to Chinese tradition, nature is spontaneous har-
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mony; speaking about “laws of nature” would thus subject
nature to some external authority.

In a message to the great Indian poet, Rabindranath
Tagore, Einstein wrote:

If the moon, in the act of completing its eternal path round
the earth, were gifted with self-consciousness, it would feel
thoroughly convinced that it would travel its path on its own,
in accordance with a resolution taken once and for all.

So would a Being, endowed with higher insight and more
perfect intelligence, watching man and his doings, smile
about this illusion of his that he was acting according to his
own free will.

This is my belief, although I know well that it is not fully
demonstrable. If one thinks out to the very last consequence
what one exactly knows and understands, there would hardly
be any human being who could be impervious to this view,
provided his self-love did not rub up against it. Man defends
himself from being regarded as an impotent object in the
course of the Universe. But should the lawfulness of happen-
ings, such as unveils itself more and more clearly in inorganic

nature, cease to function in the activities in our brain?!°

To Einstein, this appeared to be the only position com-
patible with the achievements of science. But this conclu-
sion is as difficult to accept now as it was to Epicurus. Time
is our basic existential dimension. Since the nineteenth
century, philosophy has become more and more time cen-
tered, as we see in the work of Georg Wilhelm Hegel, Ed-
mund Husserl, William James, Henri Bergson, Martin
Heidegger, and Alfred North Whitehead. For physicists
such as Einstein, the problem has been solved. For philoso-
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phers, it remains the central question of ontology, at the
very basis of the meaning of human existence.

In The Open Universe: An Argument for Indeterminism, Pop-
per wrote, “I regard Laplacian determinism—confirmed
as it may seem to be by the prima facie deterministic theo-
ries of physics, and by their marvelous success—as the
most solid and serious obstacle to our understanding and
justifying the nature of human freedom, creativity, and re-
sponsibility”” For Popper, “The reality of time and change
is the crux of realism.!!

In his short essay, “The Possible and the Real,” Bergson
argued, “What is the role of time? ... Time prevents
everything from being given at once. . . . Is it not the vehi-
cle of creativity and choice? Is not the existence of time
the proof of indeterminism in nature?””*? For both Popper
and Bergson, we need “indeterminism.” But how do we
go beyond determinism? This difficulty is well analyzed in
an essay by William James entitled “The Dilemma of De-
terminism.”’!® In accord with well-defined mechanisms,
determinism is “mathematizable,” as shown by the laws of
nature formulated by Newton, Schrédinger, and Einstein.
In contrast, deviations from determinism seem to introduce
anthropomorphic concepts such as chance or accident.

The conflict between the time-reversible view of phys-
ics and time-centered philosophy has led to an open clash.
What is the purpose of science if it cannot incorporate
some of the basic aspects of human experience? The anti-
scientific attitude of Heidegger is well known. Already
Friedrich Nietzsche had concluded that there are no facts,
only interpretations. As stated by John R.. Searle, postmod-
ern philosophy, with its idea of deconstruction, challenges
Western traditions regarding the nature of truth, objectiv-
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ity, and reality.!* In addition, the role of evolution, of
events, in our description of nature is steadily increasing.
How then can we maintain a time-reversible view of
physics?

In October 1994, there appeared a special issue of Sci-
entific American devoted to “life in the universe.”!> At all
levels—cosmology, geology, biology, and human society—
we see a process of evolution in regard to instabilities and
fluctuations. We therefore cannot avoid the question: How
are these evolutionary patterns rooted in the fundamental
laws of physics? Only one article, written by the eminent
physicist Steven Weinberg, is relevant to this problem. He
writes, “As much as we would like to take a unified view
of nature, we keep encountering a stubborn duality in the
role of intelligent life in the universe, as both subject and
student. . . . On the one hand, there is the Schrddinger
equation, which describes in a perfectly deterministic way
how the wave function of any system changes with time.
Then, quite separate, there is a set of principles that tells
how to use the wave function to calculate the probabilities
of various possible outcomes when someone makes the
measurement,” 10

Does this suggest that through our measurements, we
ourselves are at the origin of cosmic evolution? Weinberg
speaks of a stubborn duality, a point of view found in
many recent publications such as Stephen W. Hawking’s
Brief History of Time."” Here Hawking advocates a purely
geometrical interpretation of cosmology. In short, time
would be an accident of space. But he understands that this
interpretation is not enough. We need an arrow of time to
deal with intelligent life. Therefore, along with many other
cosmologists, Hawking introduces the so-called anthropic
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principle. Nevertheless, this principle is as arbitrary as was
Epicurus’ clinamen. Hawking gives no indication of how
the anthropic principle could ever emerge from a static
geometrical universe.

As mentioned earlier, Einstein attempted to maintain
the unity of nature, including mankind, at the cost of re-
ducing us to mere automata. This was also the view of
Baruch Spinoza. But there was another approach suggested
by René Descartes, also in the seventeenth century, which
involved the concept of dualism: on one side is matter, res
extensa, as described by geometry, and on the other, the
mind, associated with res cogitans.*® In this way, Descartes
described the striking difference between the behavior of
simple physical systems such as a frictionless pendulum and
the functioning of the human brain. Curiously, the an-
thropic principle brings us back to Cartesian dualism.

In The Emperor’s New Mind, Roger Penrose states, “It is
our present lack of understanding of the fundamental laws
of physics that prevents us from coming to grips with the
concept of ‘mind’ in physical or logical terms.”' We be-
lieve that Penrose is right: We need a new formulation of
the fundamental laws of physics. The evolutionary aspects
of nature have to be expressed in terms of the basic laws of
physics. Only in this way can we give a satisfactory answer
to Epicurus’ dilemma. The reasons for indeterminism, for
temporal asymmetry, must be rooted in dynamics. Formu-
lations that do not contain these features are incomplete,
exactly as would be formulations of physics that ignore
gravitation or electricity.

Probability plays an essential role in most sciences, from
economics to genetics. Still, the idea that probability is
merely a state of mind has survived. We now have to go a
step farther and show how probability enters the funda-
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mental laws of physics, whether classical or quantum. A
new formulation of the laws of nature is now possible. In
this way, we obtain a more acceptable description in which
there is room for both the laws of nature and novelty and
creativity.

At the beginning of this chapter, we mentioned the
pre-Socratics. In fact, we owe to the ancient Greeks two
ideals that have since shaped human history. The first is the
intelligibility of nature, or in Whitehead’s words, “the at-
tempt to frame a coherent, logical, necessary system of
general ideas in terms of which every element of our ex-
perience can be interpreted.”® The second is the idea of
democracy based on the assumption of human freedom,
creativity, and responsibility. As long as science led to the
description of nature as an automaton, these two ideals
were contradictory. It is this contradiction that we are be-

ginning to overcome.

II

In Section I, we emphasized that the problems of time and
determinism form the dividing line between science and
philosophy, or alternatively, between C. P. Snow’s two cul-
tures.’! But science is far from being a monolithic bloc. In
fact, the nineteenth century left us a double heritage: the
laws of nature, such as Newton’s law, which describes a
time-reversible universe, and an evolutionary description
associated with entropy.

Entropy 1s an essential part of thermodynamics, the sci-
ence that deals specifically with irreversible, time-oriented
processes. Everyone is to some extent familiar with these
processes. Think about radioactive decay, or about viscos-
ity, which slows the motion of a fluid. In contrast to time-



18 The End of Certainty

reversible processes, such as the motion of a frictionless
pendulum, where future and past play the same role (we
can interchange future, that is, +t, with past, —f), irre-
versible processes have a direction in time. A radioactive
substance prepared in the past will disappear in the future.
Because of viscosity, the liquid flow slows over time.

The primordial role of the direction of time is evident
in the processes we study at the macroscopic level, such as
chemical reactions or transport processes. We start with
chemical compounds that may react. As time goes on, they
reach equilibrium and the reaction stops. Similarly, if we
start with an inhomogeneous state, diffusion will tend to
homogenize the system. Solar radiation is the result of ir-
reversible nuclear processes. No description of the ecos-
phere would be possible without taking into account the
innumerable irreversible processes that determine weather
and climate. Nature involves both time-reversible and time-
irreversible processes, but it is fair to say that irreversible
processes are the rule and reversible processes the excep-
tion. Reversible processes correspond to idealizations: We
have to ignore friction to make the pendulum move re-
versibly. Such idealizations are problematic because there is
no absolute void in nature. As previously mentioned, time-
reversible processes are described by equations of motion,
which are invariant with respect to time inversion, as is the
case in Newton’s equation in classical mechanics or
Schrodinger’s equation in quantum mechanics. For irre-
versible processes, however, we need a description that
breaks time symmetry.

The distinction between reversible and irreversible
processes was introduced through the concept of entropy
associated with the so-called second law of thermodynam-
ics. Entropy had already been defined by Rudolf Julius



Epicurus’ Dilemma 19

Clausius in 1865 (in Greek, entropy simply means “evolu-
tion”).?? According to this law, irreversible processes pro-
duce entropy. In contrast, reversible processes leave the
entropy constant.

We shall come back repeatedly to this second law. For
now, let us recall Clausius’s celebrated formulation: “The
energy of the universe is constant. The entropy of the uni-
verse is increasing.” This increase in entropy is due to the
irreversible processes that take place in the universe. Clau-
sius’s statement was the first formulation of an evolution-
ary view of the universe based on the existence of these
processes. Arthur Stanley Eddington called entropy the
“arrow of time.”?®> Nevertheless, according to the funda-
mental laws of physics, there should be no irreversible
processes. We therefore see that we have inherited two
conflicting views of nature from the nineteenth century:
the time-reversible view based on the laws of dynamics
and the evolutionary view based on entropy. How can
these conflicting views be reconciled? After so many years,
this problem is still with us.

For the Viennese physicist Ludwig Boltzmann, the
nineteenth century was the century of Charles Darwin,
the man who defined life as the result of a never-ending
process of evolution and thus placed becoming at the cen-
ter of our understanding of nature. Still, for most physi-
cists, Boltzmann is now associated with a conclusion quite
opposite to that of Darwin; he is credited with having
shown that irreversibility is only an illusion. It was Boltz-
mann’s tragedy to have attempted in physics what Darwin
had accomplished in biology—only to reach an impasse.

At first glance, the similarities between the approaches
of these two giants of the nineteenth century are striking.
Darwin showed that if we start with the study of popula-
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tions, and not individuals, we can understand how individ-
ual variability, subject to selection pressure, produces a
drift. Correspondingly, Boltzmann argued that we cannot
understand the second law of thermodynamics, and the
spontaneous increase in entropy it predicts, by starting
with individual dynamical trajectories; we must begin in-
stead with large populations of particles. The increase in
entropy would be the global drift resulting from the nu-
merous collisions between these particles.

In 1872, Boltzmann published his famous H-theorem,
which included the H-function, a microscopic analogue of
entropy.?* This theorem takes into account the effects of
collisions that modify the velocities of particles at each in-
stant. It shows that collisions bring the distribution of ve-
locities of the population of particles closer to equilibrium
(the so-called Maxwell-Boltzmann distribution). As the
population approaches equilibrium, Boltzmann’s H-func-
tion decreases and reaches its minimum value at equilib-
rium; this minimum value means that collisions no longer
modify the distribution of velocities. For Boltzmann, the
particle collisions are thus the mechanism that leads the
system to equilibrium.

Both Boltzmann and Darwin replaced the study of “in-
dividuals” with the study of populations, and showed that
slight variations (the variability of individuals, or micro-
scopic collisions) taking place over a long period of time
can generate evolution at a collective level. (In later chap-
ters, we shall come back to the role of populations.) Ex-
actly as biological evolution cannot be defined at the level
of individuals, the flow of time is also a global property
(see Chapters 5 and 6). But while Darwin attempted to ex-
plain the appearance of new species, Boltzmann described
an evolution toward equilibrium and uniformity. Signifi-
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cantly, these two theories have had very different fortunes.
Darwin’s theory of evolution, which was to triumph in
spite of fierce controversies, remains the basis for our
understanding of life. On the other hand, Boltzmann’s in-
terpretation of irreversibility succumbed to its critics, and
he was gradually forced to retreat. He could not exclude
the possibility of “antithermodynamical” evolutions, as a
result of which entropy would diminish and inhomo-
geneities, instead of being leveled, would increase sponta-
neously.

The situation confronting Boltzmann was indeed dra-
matic. He was convinced that in order to understand na-
ture we have to include evolutionary features and that
irreversibility, as defined by the second law of thermody-
namics, was a decisive step in this direction. But he was also
heir to the grand tradition of dynamics, and realized that it
stood in the way of his attempt to give a microscopic
meaning to the arrow of time.

From today’s vantage point, Boltzmann’s need to choose
between his conviction that physics had to understand be-
coming, and his loyalty to its traditional role, seems partic~
ularly poignant. The fact that his attempt would end in
failure now seems self-evident. Every student learns that
a trajectory is time reversible, and thus allows no distinc-~
tion between future and past. As Henri Poincaré noted,
explaining irreversibility in terms of trajectories that are
time-reversible processes, however numerous, appears to
be a purely logical error.®® Suppose that we invert the sign
of the velocity of all molecules. The system would then go
into its own “past.” Even if entropy was increasing before
velocity inversion, it would now decrease. This was Joseph
Loschmidt’s velocity-reversal paradox, which was the rea-
son why Boltzmann could not exclude antithermodynam-
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ical behavior. When faced with severe criticism, he re-
placed his microscopic interpretation of the second law
with a probabilistic interpretation based upon our lack of in-
formation.

In a complex system formed by huge numbers of mol-
ecules (on the order of 10?°, or Avogadro’s number), such
as a gas or liquid, it is obvious that we are unable to com-
pute the behavior of each molecule. For this reason, Boltz-
mann introduced the assumption that all microscopic states
of such a system have the same a priori probability. The dif-
ference would be associated with the macroscopic state, as
described by temperature, pressure, and other parameters.
Boltzmann defined the probability of each macroscopic
state by calculating the number of microscopic states that
give rise to it.

Boltzmann would have us imagine, for instance, a vol-
ume divided into two equal compartments that communi-
cate with each other. This volume contains a large number
of molecules, which we shall call N. Although we are un-
able to follow the path of each individual molecule,
through measuring a macroscopic quantity, such as the
pressure in each compartment, we can determine the
number of molecules it contains. We can also prepare
a starting point, or “initial state” as it is generally referred
to by physicists, where one of the two compartments is
nearly empty. What can we expect to observe? Over the
course of time, molecules will populate the empty com-
partment. Indeed, the great majority of all possible micro-
scopic states corresponds to a macroscopic situation where
each compartment contains the same number of mole-
cules. These states correspond to equilibrium, or to pres-
sures that would be equal in the two compartments. Once
this state has been achieved, the molecules will continue to
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pass from one compartment to the other, but on average,
the number of molecules going to the right and left will be
equal. Apart from slight transitory fluctuations, the num-
ber of molecules in the two compartments will remain
constant over time, and equilibrium will be preserved.
However, there is a basic weakness in this argument. A
spontaneous long-term deviation from equilibrium is not
impossible, even if it is, as Boltzmann concluded, “im-
probable.”

Boltzmann’s probability-based interpretation makes the
macroscopic character of our observations responsible for
the irreversibility we observe. If we could follow the indi-
vidual motion of the molecules, we would see a time-
reversible system in which each molecule follows the laws
of Newtonian physics. Because we can only describe the
number of molecules in each compartment, we conclude
that the system evolves toward equilibrium. According
to this interpretation, irreversibility is not a basic law of
nature; it is merely a consequence of the approximate,
macroscopic character of our observations.

Ernst Zermelo added another criticism of Boltzmann’s

argument to Loschmidt’s reversal paradox®

in quoting
Poincaré’s recurrence theorem, which shows that if we
were to wait long enough, we could observe the sponta-
neous return of a dynamical system to a state as close to the
initial state as we might wish. As the physicist Roman
Smoluchowski concluded, “If we continued our observa-
tion for an immeasurably long time, all processes would

27 This applies directly to Boltz-

appear to be reversible.
mann’s two-compartment model. After a sufficiently long
time, the initially empty compartment will again become
empty. Irreversibility corresponds only to an appearance

that is devoid of any fundamental significance.
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Let us now return to the situation discussed in Section
I. Through our own approximations, we would be respon-
sible for the evolutionary character of the universe. In
order to make such an argument plausible, the first step in
assuring that irreversibility will be the result of our ap-
proximations 1s to view the consequences of the second
law as trivial and self-evident. In his recent book, The
Quark and the Jaguar, Murray Gell-Mann writes,

The explanation [of irreversibility] is that there are more
ways for nails or pennies to be mixed up than sorted. There
are more ways for peanut butter and jelly to contaminate each
other’s containers than there are to remain completely pure.
And there are more ways for oxygen and nitrogen gas mole-
cules to be mixed up than segregated. To the extent that
chance is operating, it is likely that a closed system that has
some order will move toward disorder, which offers so many
more possibilities. How are those possibilities to be counted?
An entire closed system, exactly described, can exist in a va-
riety of states, often called microstates. In quantum mechan-
ics, these are understood to be possible quantum states of the
system. These microstates are grouped into categories (some-
times called macrostates) according to the various properties
that are being distinguished by coarse graining. The microstates
in a given macrostate are then treated as equivalent, so that
only their number matters. . . .

Entropy and information are very closely related. In fact,
entropy can be regarded as a measure of ignorance. When it
is known only that a system is in a given macrostate, the en-
tropy of the macrostate measures the degree of ignorance the
microstate system is in by counting the number of bits of ad-
ditional information needed to specify it, with all the mi-

crostates in the macrostate treated as equally probable.?®
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Similar arguments can be found in most books dealing
with the arrow of time. We believe that these arguments
are untenable. They imply that it is our own ignorance,
our coarse graining, that leads to the second law. For a
well-informed observer, such as the demon imagined by
Laplace, the world would appear as perfectly time re-
versible, We would be the father of time, of evolution, and
not its children. Irreversibility subsists, whatever the preci-
sion of our experiments. This means that attributing these
properties to incomplete information can hardly be con-
sidered. It is interesting to note that Max Planck had al-
ready opposed the idea of incomplete information to
describe the second law. In his Treatise on Thermodynamics

he wrote,

It would be absurd to assume that the validity of the second
law depends in any way on the skill of the physicist or
chemist in observing or experimenting. The gist of the sec-
ond law has nothing to do with experiment; the law asserts
briefly that there exists in nature a quantity which always changes
in the same way in all natural processes. The proposition stated in
this general form may be correct or incorrect; but whichever
it may be, it will remain so, irrespective of whether thinking
and measuring beings exist on the earth or not, and whether
or not, assuming they do exist, they are able to measure the
details of physical or chemical processes more accurately by
one, two, or a hundred decimal places than we can. The lim-
itation of the law, if any, must lie in the same province as its
essential idea, in the observed Nature, and not in the Ob-
server. That man’s experience is called upon in the deduction
of the law is of no consequence; for that is, in fact, our only

way of arriving at a knowledge of natural law.?*
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However, Planck’s views were to remain isolated. As we
have indicated, most scientists considered the second law
the result of approximations, or the intrusion of subjective
views into the exact world of physics. In a celebrated state-
ment, Max Born asserted that “irreversibility is the effect
of the introduction of ignorance into the basic laws of
physics.”3°

Our own point of view is that the laws of physics, as
formulated in the traditional way, describe an idealized,
stable world that is quite different from the unstable, evolv-
ing world in which we live. The main reason to discard the
banalization of irreversibility is that we can no longer asso-
ciate the arrow of time only with an increase in disorder.
Recent developments in nonequilibrium physics and
chemistry point in the opposite direction. They show un-
ambiguously that the arrow of time is a source of order.
This is already clear in simple experiments such as thermal
diffusion, which has been known since the nineteenth
century. Let us consider a box containing two components
(such as hydrogen and nitrogen) where we heat one
boundary and cool the other (see Figure 1.1). The system
evolves to a steady state in which one component is en-
riched in the hot part and the other in the cold part. The
entropy produced by the irreversible heat flow leads to an
ordering process, which would be impossible if taken in-
dependently from the heat flow. Irreversibility leads to
both order and disorder.

The constructive role of irreversibility is even more
striking in far-from-equilibrium situations where non-
equilibrium leads to new forms of coherence. (We shall
come back to nonequilibrium physics in Chapter 2.) We
have now learned that it is precisely through irreversible
processes associated with the arrow of time that nature
achieves its most delicate and complex structures. Life is
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Figure 1.1
Thermal Diffusion
As a result of the difference in temperature between the two con~

tainers, the black molecules have a higher concentration in the left
compartment. This corresponds to thermal diffusion.
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possible only in a nonequilibrium universe. Nonequilib-
rium leads to concepts such as self-organization and dissi-
pative structures, which will be described in more detail
in Chapter 2. In From Being to Becoming, we had already
formulated the following conclusions based on the remark-
able developments in nonequilibrium physics and chem-
istry over the past several decades:

e Irreversible processes (associated with the arrow of
time) are as real as reversible processes described by the
fundamental laws of physics; they do not correspond to
approximations added to the basic laws.

* Irreversible processes play a fundamental constructive
role in nature.?!

What impact do these concepts have on current thinking
about dynamical systems? Boltzmann was well aware that
nothing analogous to irreversibility exists in classical dy-
namics; he therefore concluded that irreversibility can be
derived only from assumptions about the initial conditions
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in the early stages of our universe. We can keep our usual
formulations of dynamics, but we need to supplement
them with appropriate initial conditions. In this view, the
original universe was highly organized, and therefore in an
improbable state—a suggestion still accepted in a number of
recent books.*? The initial conditions prevailing in our uni-
verse lead to interesting and largely unsolved problems (see
Chapter 8), but we believe that Boltzmann’s argument is no
longer defensible. Whatever the past, there exist at present
two types of processes: time-reversible processes, where the
application of existing dynamics has proved to be successful
(i.e., the motion of the moon in classical mechanics, or the
hydrogen atom in quantum mechanics), and irreversible
processes like heat conditions, where the asymmetry be-
tween past and future is obvious. Our objective is to devise
a new formulation of physics that explains, independently
of any cosmological considerations, the difference between
these behaviors. This can indeed be achieved for unstable
and thermodynamic systems. We can overcome what looked
like an apparent contradiction between the time-reversible
laws of dynamics and the evolutionary view of nature
based on entropy. But let us not get ahead of ourselves.
Nearly two hundred years ago, Joseph-Louis Lagrange
described analytical mechanics based on Newton’s laws as
a branch of mathematics.®® In the French scientific litera-
ture, one often speaks of “rational mechanics” In this
sense, Newton’s laws would define the laws of reason and
represent a truth of absolute generality. Since the birth of
quantum mechanics and relativity, we know that this is not
the case. The temptation is now strong to ascribe a similar
status of absolute truth to quantum theory. In The Quark
and the Jaguar, Gell-Mann asserts, “Quantum mechanics is
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not itself a theory; rather it is the framework into which all
contemporary physical theory must fit.’3* Is this really so?
As stated by my late friend Léon R osenfeld, “Every theory
is based on physical concepts expressed through mathemati-
cal idealizations. They are introduced to give an adequate
representation of the physical phenomena. No physical
concept is sufficiently defined without the knowledge of its domain
of validity.”3>

It is this “domain of validity” required for the basic con-
cepts of physics, such as trajectories in classical mechanics
or wave functions in quantum theory, that we are begin-
ning to delineate. These limits are associated with instabil-
ity and chaos, which we shall briefly introduce in the next
section. Once we include these concepts, we come to a
new formulation of the laws of nature, one that is no
longer built on certitudes, as is the case for determinis-
tic laws, but rather on possibilities. Moreover, in this
probabilistic formulation, time symmetry is destroyed. The
evolutionary character of the universe has to be reflected
within the context of the fundamental laws of physics.
Remember the ideal of the intelligibility of nature as for-
mulated by Whitehead (see Section I): Every element of
our experience has to be included in a coherent system of
general ideas. Based on this rewriting of the laws of nature,
we can now complete the work pioneered by Boltzmann
more than a century ago.

It is interesting that great mathematicians, such as Emile
Borel, also understood the need to overcome determinism.
Borel noted that considerations of isolated systems, such as
moon-earth, are always idealizations, and that determinism
may fail when we leave this reductionist view.*® That is in-
deed what our own research shows.
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III

Everyone is to some extent familiar with the difference be-
tween stable and unstable systems. Consider a pendulum,
for example. Suppose that it is originally at equilibrium,
where the potential energy is at a minimum. If a small per-
turbation is followed by a return to equilibrium (see Figure
1.2), this system represents a stable equilibrium. In contrast,
if we put a pencil on its head, the smallest perturbation
will cause it to fall to the left or right, giving us a model of
unstable equilibrium.

There is a basic distinction between stable and unstable
motions. In short, stable dynamical systems are those in
which slight changes in the initial conditions produce cor-
respondingly slight effects. But for a large class of dynami-
cal systems, small perturbations in the initial conditions are
amplified over the course of time. Chaotic systems are an
extreme example of unstable motion because trajectories
identified by distinct initial conditions, no matter how
close, diverge exponentially over time. This is known as
“sensitivity to initial conditions.” A classic illustration of
amplification through chaos is the “butterfly effect”; by

Figure 1.2
Stable and Unstable Equilibrium
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just flapping its wings, a butterfly in Amazonia may affect
the weather in the United States. We shall see examples of
chaotic systems later on in Chapters 3 and 4.

The term deterministic chaos has also entered the discus-
sion of chaotic systems. Indeed, the equations of motion
remain deterministic, as is the case in Newtonian dynamics,
even if a particular outcome appears to be random. The
discovery of the important role of instability has led to a re-
vival of classical dynamics, previously considered a closed
subject. In fact, until recently it was thought that all systems
described by Newton’s laws are alike. Of course, everyone
knew that the trajectory of a falling stone was easier to
solve than a “three-body problem,” such as the one involv-
ing the sun, Earth, and Jupiter. But this was considered to
be merely a question of computation. It was only at the end
of the nineteenth century that Poincaré showed that this
was not the case. The problems are fundamentally different
depending on whether or not a dynamical system is stable.

We have mentioned chaotic systems, but there are other
types of instability to be considered. Let us first describe in
qualitative terms in what sense instability leads to an ex-
tension of the laws of dynamics. In classical dynamics, the
initial state is determined by the positions 4 and velocities
v (or momentum p).* Once these are known, we can de-
termine the trajectory by using Newton’s laws (or any
other equivalent formulation of dynamics). We can then
represent the dynamical state by a point ¢,,p, in a space
formed by the coordinates and momenta. This is known as
the phase space (Figure 1.3). Instead of examining a single
system, we can also study a collection of systems—an “en-

*For the purpose of simplification, we have used a single letter even when we

are discussing a system formed by many particles.
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Figure 1.3
Trajectory in Phase Space

The dynamical state is represented by a point in the phase space g, p.
The time evolution is described by a trajectory starting at the initial

point g,, p,.
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semble,” as it has been called since the pioneering work of
Albert Einstein and Josiah Willard Gibbs at the beginning
of this century.

At this point, it would be helpful to reproduce part of
Gibbs’s famous preface to his Elementary Principles in Statis-
tical Mechanics:

We may imagine a great number of systems of the same na-
ture, but differing in the configurations and velocities which
they have at a given instant, and differing not merely infini-
tesimally, but it may be so as to embrace every conceivable
combination of configurations and velocities. And here we
may set the problem, not to follow a particular system
through its succession of configurations, but to determine
how the whole number of systems will be distributed among
the various conceivable configurations and velocities at any
required time, when the distribution has been given for some

one time. . ..
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The laws of thermodynamics, as empirically determined,
express the approximate and probable behavior of systems of a
great number of particles, or, more precisely, they express the
laws of mechanics for such systems as they appear to beings
who have not the fineness of perception to appreciate quan-
tities of the order of magnitude of those which relate to sin-
gle particles, and who cannot repeat their experiments often

enough to obtain any but the most probable results,*’

Gibbs introduced population dynamics into physics by
using an ensemble approach. An ensemble is represented
by a cloud of points in phase space (see Figure 1.4). The
cloud is described by a function p(q,p,f), which has a sim-
ple physical interpretation: the probability of finding at time
t, a point in the small region of phase space around the
point g,p. A trajectory corresponds to a special case in
which p is vanishing everywhere except at the point g,p,.
This situation is described by a special form of p. Func-
tions that have the property of vanishing everywhere ex-
cept at a single point are called Dirac delta functions 6(x).
The function 8(x ~ x,) is vanishing for all points x # x,.
Therefore, for a single trajectory at time zero, the distribu-
tion function p takes the form p = 8(q — ¢,)8(p — p,).* We
shall come back to the properties of delta functions later.

*When we take x = x,, the function 3(x — x,) diverges to infinity. The 8-func-
tion therefore has “abnormal” properties as compared to a continuous function
such as x or sin x. It is called a generalized function or distribution (not to be con-
fused with probability distribution p). Generalized functions are used in con-
junction with test functions @(x), which are continuous functions (.e.,
§ dxp(2)8(x — o) = @(x,)). Also note that at time t we have for a free particle
moving at the speed % the probability p = 8(p — p,)8(q — 4, — %), as the mo-

mentum remains constant and the coordinate varies linearly with time.
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Figure 1.4
Ensembles in Phase Space

Gibbs’s ensemble is represented by a cloud of particles differing ac~
cording to their initial conditions. The shape of the cloud changes
over time.
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As was clearly stated by Gibbs, however, the ensemble
approach was merely a convenient computational tool for
him when exact initial conditions were not available. In his
opinion, probabilities express ignorance, or lack of infor-
mation. Moreover, it has always been accepted that from
the dynamical point of view, individual trajectories and
probability distributions present equivalent problems. We
can start with individual trajectories and then derive the
evolution of probability functions, and vice versa. The
probability p corresponds simply to a superposition of tra-
jectories, and leads to no new properties. The two levels of
description, the individual level (corresponding to single
trajectories) and the statistical level (corresponding to en-
sembles), would be equivalent.

Is this always the case? For simple stable systems, where
we do not expect any irreversibility, this is indeed true.
Gibbs and Einstein were right. The individual point of
view (in terms of trajectories) and the statistical point of
view (in terms of probabilities) are then equivalent. This
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can be easily verified, and we shall come back to this point
in Chapter 5. However, is this also true for unstable sys-
tems? How is it that all theories dealing with irreversible
processes on the molecular level, such as Boltzmann’s
kinetic theory, involve probabilities and not trajectories?
Is this again because of our approximations, our coarse
graining? How can we then explain the success of kinetic
theory, the quantitative predictions of many properties of
dilute gases, such as thermal conductivity and diffusion, all
of which have been verified by experimentation?

Poincaré was so impressed by the success of kinetic the-
ory that he wrote, ‘“Perhaps the kinetic theory of gases will
serve as a model . . . Physical laws will then take on a com-
pletely new form; they will take on a statistical character.”*®
These were indeed prophetic words. In an extraordinarily
daring move, Boltzmann introduced probability as an em-
pirical tool. Now, more than one hundred years later, we
are beginning to understand how probabilistic concepts
emerge when we go from dynamics to thermodynamics.
Instability destroys the equivalence between the individual
and statistical levels of description. Probabilities then ac-
quire an intrinsical dynamical meaning. This knowledge
has led to a new kind of physics, the physics of popula-
tions, which is the basic subject of this book.

By way of explanation, let us consider a simplified ex-
ample of chaos. Suppose that we have two types of motion
denoted as + or — (i.e., motion “up” or “down”) within
the phase space illustrated in Figure 1.4. This leads us to
the two types of situations represented by Figures 1.5 and
1.6. In Figure 1.5, there are two different regions in phase
space, one corresponding to the motion —, the other to the
motion +. If we discard the region close to the boundary,
each — is surrounded by —, and each + by +. This corre-
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Figure 1.5
Stable Dynamical System

The motions denoted as + or — lie in distinct regions of phase space.

sponds to a stable system. Slight changes in the initial con-
ditions do not alter the result.

In Figure 1.6, instead, each + is surrounded by —, and
vice versa. The slightest change in initial conditions is am-
plified, and the system is therefore unstable. A primary re-

Figure 1.6
Unstable Dynamical System

Each motion + is surrounded by — and vice versa.
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sult of this instability is that trajectories now become ideal-
izations. We can no longer prepare a single trajectory, as
this would imply infinite precision. For stable systems, this
is without significance, but for unstable systems, with their
sensitivity to initial conditions, we can only prepare prob-
ability distributions, including various types of motion.

Is this difficulty merely a practical one? Yes, if we con-
sider that trajectories have now become uncomputable.
But there is more: Probability distribution permits us to
incorporate within the framework of the dynamical de-
scription the complex microstructure of the phase space. It
therefore contains additional information that is lacking at
the level of individual trajectories. As we shall see in Chap-
ter 4, this has fundamental consequences. At the level of
distribution functions p, we obtain a new dynamical de-
scription that permits us to predict the future evolution of
the ensemble, including characteristic time scales. This is
impossible at the level of individual trajectories. The
equivalence between the individual and statistical levels is
indeed broken. We obtain new solutions for the probabil-
ity distribution p that are irreducible because they do not
apply to single trajectories. The laws of chaos have to be
formulated at the statistical level. That is what we meant in
the preceding section when we spoke about a generaliza-
tion of dynamics that cannot be expressed in terms of tra-
jectories. This leads to a situation that has never been
encountered in the past. The initial condition is no longer
a point in the phase space but some region described by p
at the initial time ¢ = zero. We thus have a nonlocal descrip-
tion. There are still trajectories, but they are the outcome
of a stochastic, probabilistic process. No matter how pre-
cisely matched our initial conditions are, we obtain differ-
ent trajectories from them. Moreover, as we shall see, time
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symmetry is broken, as past and future play different roles
in the statistical formulation. Of course, for stable systems,
we revert to the usual description in terms of determinis-
tic trajectories.

Why has it taken so long to arrive at a generalization of
the laws of nature that includes irreversibility and proba-
bility? One of the reasons is ideological—the desire to
achieve a quasi-divine point of view in our description of
nature. But there has also been a technical, mathematical
problem involved. Our work is based on recent progress in
functional analysis, a field of mathematics that has come to
the forefront only in recent decades. As we shall see, our
formulation requires an extended functional space. This
new field of mathematics, which uses generalized func-
tions or fractals, as Benoit Mandelbrot called them, is now
playing a critical role in the understanding of the laws of
nature.®® We need a “divine” point of view to retain the
idea of determinism. But no human measurements, no
theoretical predictions, can give us initial conditions with
infinite precision.

It is interesting to contemplate what becomes of the
Laplace demon in the world of deterministic chaos. He
can no longer predict the future unless he knows the initial
conditions with infinite precision. Only then can he con-
tinue to use a trajectory description. But there is an even
more powerful instability that leads to the destruction of
trajectories, whatever the precision of the initial description.
This form of instability is of fundamental importance be-
cause it applies to both classical and quantum mechanics.

Our story actually begins at the end of the nineteenth
century with the work of Jules-Henri Poincaré. According
to Poincaré, a dynamical system is characterized in terms
of the kinetic energy of its particles plus the potential en-
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ergy due to their interaction.*’ A simple example would be
free, noninteracting particles, where there is no potential
energy, and the calculation of trajectories is trivial. Such
systems are by definition integrable. Poincaré then asked
the question: Are all systems integrable? Can we choose
suitable variables to eliminate potential energy? By show-
ing that this was generally impossible, he proved that dy-
namical systems were largely nonintegrable.

It is worthwhile to pause for a moment and reflect on
Poincaré’s conclusions. Suppose he had proved that all dy-
namical systems are integrable. This would mean that all
dynamical motions are isomorphic to free noninteracting
particles. There would be no place for the arrow of time,
for self-organization, or life itself. Integrable systems
describe a static, deterministic world. Poincaré not only
demonstrated nonintegrability, but also identified the rea-
son for it: the existence of resonances between the degrees of free-
dom. As we shall see in greater detail in Chapter 5, there is
a frequency that corresponds to each mode of motion.
The simplest example of this is the harmonic oscillator, in
which a particle and central point are given. The particle is
held by a force proportional to its distance from that point.
If we displace the particle from the center, it will oscillate
with a well-defined frequency. It is through these frequen-
cies that we arrive at the notion of resonance, which is
crucial to Poincaré’s theorem.

We are all more or less familiar with the concept of res-
onance. When we force a spring to deviate from its equi-
librium position, it vibrates with a characteristic frequency.
Now let us subject this spring to an external force with a
frequency that can be varied. When the two frequencies,
that of the spring and that of the external force, have a
simple numerical ratio (that is, when one of the frequen-
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cies is either equal to the other, or two, three, four. ..
times larger), the amplitude of the motion of the spring
increases dramatically The same phenomenon occurs
when we play a note on a musical instrument. We hear the
harmonics. Resonance “couples” sounds.

Now consider the case of a system characterized by two
frequencies. By definition, whenever the sum n, @, + 7,0
= 0, where n, and n, are nonvamshmg integers, we have
resonance. ThlS means that @ = — :ltl, the ratio of the fre-
quencies is then a rational number. As Poincaré has shown,
in dynamics resonances lead to terms with “dangerous”
denominators such as m Whenever there are res-
onances (i.€., points in phase space where n,®, + n,©
zero), these terms diverge. As a result, we encounter obsta-
cles whenever we try to calculate trajectories.

This is the origin of Poincaré’s nonintegrability. The
“problem of small denominators” was already known by
eighteenth-century astronomers, but Poincaré’s theorem
showed that this difficulty, which he called the “general
problem of dynamics,” is shared by the great majority of
dynamical systems. For a considerable length of time, how-
ever, the importance of Poincaré’s findings was overlooked.

Max Born wrote, “It would indeed be remarkable if
Nature had fortified herself against further advances in
knowledge behind the analytical difficulties of the many-
body problem.”*! It was hard to believe that a technical dif-
ficulty (divergences due to resonances) could alter the
conceptual structure of dynamics. We now see this prob-
lem in a different way. For us, Poincaré’s divergences are an
opportunity. Indeed, we can go beyond his negative state-
ment and show that nonintegrability paves the way, as does
chaos, for a new statistical formulation of the laws of dy-
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namics. It took sixty years after Poincaré, through the work
of Andrei N. Kolmogorov, continued by Vladimir Igore-
vich Arnold and Jiirgen Kurt Moser (the so-called KAM
theory), for nonintegrability to be understood not as the
frustrating manifestation of some resistance of nature against
the advances of knowledge, to paraphrase Born, but as a
new starting point for dynamics.*?

The KAM theory deals with the influence of reso-
nances on trajectories. The frequencies @ depend in gen-
eral on the values of dynamic variables such as coordinates
and momenta. They therefore take on different values at
different points in the phase space. The result is that some
points will be characterized by resonances, and others will
not. Again, for chaos this leads to an extraordinary com-
plexity in the phase space. According to the KAM theory,
we observe two types of trajectories: “nice” deterministic
trajectories and “random” trajectories associated with res-
onances, which wander erratically through regions of
phase space.

Another important result of this theory is that when we
increase the value of energy, we increase the regions where
randomness prevails. For some critical value of energy,
chaos appears: over time we observe the exponential di-
vergence of neighboring trajectories. Furthermore, for
fully developed chaos, the cloud of points generated by
a trajectory leads to diffusion. But diffusion is associated
with the approach to uniformity in our future. It is an irre-
versible process that creates entropy (see Section I). Al-
though we started with classical dynamics, we can now
observe the breaking of time symmetry. How this is possi-
ble is the main problem we have to solve in order to over-
come the time paradox.
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Poincaré resonances play a fundamental role in physics.
Emission or absorption of light is due to resonances, as
is the approach to equilibrium in a system of interacting
particles. Interacting fields again lead to resonances. It is
difficult to identify an important problem in classical or
quantum physics where resonances do not play a significant
part. But how can we overcome the divergences associated
with resonances? Here some essential progress has been
made. As in Section III, we have to distinguish the individ-
ual level (trajectories) from the statistical level (ensembles, as
described by the probability distribution p). At the individ-
ual level we have divergences, but these can be solved at
a statistical level (see Chapters 5 and 6), where resonan-
ces produce a coupling of events loosely analogous to the
coupling of sounds by resonance. This leads to new, non-
Newtonian terms that are incompatible with a trajectory descrip-
tion and instead require a statistical, probabilistic description.
This is not astonishing. Resonances are not local events,
inasmuch as they do not occur at a given point or instant.
They imply a nonlocal description and therefore cannot be
included in the trajectory description associated with New-
tonian dynamics. As we shall see, they lead to diffusive mo-
tion. When we start at a point P, in phase space, we can no
longer predict with certainty its position P, after a time pe-
riod T. In short, the initial point P, leads to many possible
points—P,, P,, P,—with well-defined probabilities.

In Figure 1.7, each point in the domain D has a nonva-
nishing or well-defined transition probability of appearing
at time 7. This situation is similar to that of the “random
walk,” or “Brownian motion.” In the simplest case, this
condition may be illustrated by a particle on a one-dimen-
sional lattice that makes a one-step transition at regular time
intervals (see Figure 1.8).
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Figure 1.7
Diffusive Motion

After a time ¢, the system may produce a result at any point, such
as Py, P,, P, in the domain D.

Py
D

At every step, the probability is % that the particle will
go to the left and % that it will go to the right. At every
step, the future is uncertain. From the very beginning, it
is impossible to speak of trajectories. Mathematically,
Brownian motion is described by diffusion-type equations
(the so-called Fokker-Planck equations). Since diffusion is

Figure 1.8

A Random Walk

Brownian motion on a one-dimensional lattice. At every step, the
probability is } that the particle will go to the left and } that it will
go to the nght.
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time oriented, if we start with a cloud of points, all of
which are situated at the same origin, as time goes on the
cloud will disperse. Some particles will be found farther
from the origin, others closer. It is quite remarkable that,
starting with classical dynamics, resonances lead precisely
to diffusive terms, which is to say, resonances introduce
uncertainty even within the framework of classical me-
chanics, and so break time symmetry.

For integrable systems, when these diffusive contribu-
tions are absent, we come back to the trajectory descrip-
tion, but in general the laws of dynamics have to be
formulated at the level of probability distributions. The
basic question is therefore: In which situations can we ex-
pect the diffusive terms to be observable? When this is so,
probability becomes a basic property of nature. This ques-
tion, which involves defining the limits of the validity of
Newtonian dynamics (or the validity of quantum theory,
which we shall consider in the next section), is nothing
short of revolutionary. For centuries, trajectories have
been considered the basic, primitive object of classical
physics. In contrast, we now consider them of limited va-
lidity for resonant systems. We shall return repeatedly to
this question in Chapter 5, and to a parallel question for
quantum mechanics in Chapter 6. For the moment, how-
ever, let us present some provisional answers. For transient
interactions (a beam of particles collides with an obstacle
and escapes), diffusive terms are negligible. But for persis-
tent interactions (a steady flow of particles falls onto the
obstacle), they become dominant. In computer simula-
tions, as in the real world, we can reproduce both situa-
tions and therefore test our predictions. The results show
unambiguously the appearance of diffusive terms for per-
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sistent interactions, and therefore the breakdown of the
Newtonian, as well as the orthodox, quantum mechanical
descriptions. In both these cases, we obtain “irreducible”
probabilistic descriptions, as in deterministic chaos.

But there is yet another situation that is even more re-
markable. Macroscopic systems are generally defined in
terms of the thermodynamic limit, according to which both
the number N of particles and the volume I become
large. We shall study this limit in Chapters 5 and 6. In the
observation of phenomena associated with this limit, the
new properties of matter become obvious.

As long as we consider merely a few particles, we can-
not say if they form a liquid or gas. States of matter as well
as phase transitions are ultimately defined by the thermo-
dynamic limit. The existence of phase transitions shows
that we have to be careful when we adopt a reductionist at-
titude. Phase transitions correspond to emerging proper-
ties. They are meaningful only at the level of populations,
and not of single particles. This contention is somewhat
analogous to that which is based on Poincaré resonances.
Persistent interactions mean that we cannot take a part of
the system and consider it in isolation. It is at this global
level, at the level of populations, that the symmetry be-
tween past and future is broken, and science can recognize
the flow of time. This solves a long-standing puzzle. It is
indeed in macroscopic physics that irreversibility and prob-
ability are the most conspicuous.

Thermodynamics applies to non-integrable systems.
This means that we cannot solve the dynamical problem
in terms of trajectories, but we can solve it in terms of
probabilities. Therefore, as is the case for deterministic
chaos, the new statistical formulation of classical mechanics
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leads to an extension of the mathematical framework. To
some extent, this is reminiscent of general relativity. As Ein-
stein showed, we have to move from Euclidean geometry
to Riemannian geometry to include gravitation. In func-
tional calculus, a special role is played by the so-called
Hilbert space, which extends Euclidean geometry to
situations involving an infinite number of dimensions
(the “function space”). Traditionally, quantum mechanics
and statistical mechanics have utilized Hilbert space. To
obtain our new formulation, which is valid for unstable
systems and the thermodynamic limit, we have to move
from Hilbert space to more general functional spaces. This
observation will be explained in detail in Chapters 4
through 6.

Since the beginning of this century, we have become
used to the idea that classical mechanics has to be extended
when we consider microscopic objects, such as atoms or
elementary particles, or when we deal with astrophysical
dimensions. Surprisingly, instability also requires an exten-
sion of classical mechanics. The situation in quantum me-
chanics, to which we now turn, is quite similar. Instability
driven by resonances plays a fundamental role in changing
the formulation of quantum theory.

IV

In quantum mechanics, we encounter a rather strange sit-
uation. As is well known, this theory has been remarkably
successful in all its predictions. Still, more than sixty years
after its formulation, discussions about its meaning and
scope are as heated as ever. This is unique in the history of
science.* In spite of all its successes, most physicists share
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some feeling of uneasiness. Richard Feynman once re-
marked that nobody really “understands” quantum theory.

Here, the basic quantity is the wave function ¥, which
plays somewhat the role of the trajectory in classical me-
chanics. Indeed, the fundamental equation of quantum
theory, the Schrodinger equation, describes the time evo-
lution of the wave function. It transforms the wave func-
tion W(¢)), as given at the initial time ¢, into the wave
function ‘(f) at time ¢, exactly as trajectories in classical
mechanics lead from one phase point to another.

Like Newton’s equation, Schrédinger’s equation is de-
terministic and time reversible. Again, as in classical
dynamics, there appears a gap between the dynamical de-
scription of quantum mechanics and the evolutionary
description associated with entropy. The physical interpre-
tation of the wave function ¥ is that of a probability ampli-
tude. This implies that the square |¥|2 = py= (¥ has
both a real and imaginary part; ¥* is the complex conju-
gate of V) is a probability, which we shall again denote by
p. There are more general forms of probability corre-
sponding to ensembles obtained by the superimposing of
various wave functions. These are called mixtures, as op-
posed to pure cases that obtain from a single wave func-
tion.

The basic assumption of quantum theory is that every
dynamical problem can be solved at the level of probabil-
ity amplitudes exactly as every dynamical problem in classi-
cal mechanics was traditionally associated with trajectory
dynamics. But strangely, in order to attribute well-defined
properties to matter, we have to go beyond probability am-
plitudes; we need probabilities themselves. To understand
this difficulty, let us consider a simple example. Suppose
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that energy can take on two values, E, and E,. The corre-
sponding wave function is #, or u,. Now consider the lin-
ear superimposition ¥ = ¢u, + ¢,u,. The wave function
then “participates” at both levels. The system is neither at
level 1 nor level 2, but rather in a kind of intermediate
state. Let us now measure the energy associated with W.
According to quantum mechanics, we then find either E,
or E, with probabilities given by the squares of the proba-
bility amplitudes |cl |2 and |c2|2.

Initially we started with a single wave function ¥, but
we still end up with a mixture of two wave functions, u,
and u,. This is often called the “reduction,” or “collapse,”
of the wave function. We need to move from potentialities
described by the wave function ¥ to actualities that we can
measure. In the traditional language of quantum theory,
we move from a pure state (the wave function) to an en-
semble, or mixture. But how is this possible? As mentioned
earlier, Schrodinger’s equation transforms a wave function
into another wave function, and not into an ensemble.
This has often been called the quantum paradox. It has been
suggested that the transition from potentiality to actuality
is due to our own measurements. This is the point of view
expressed by Steven Weinberg in Section I of this chapter
and in a considerable number of textbooks. It is the same
type of explanation as was presented for the time paradox
in classical mechanics. In that case as well, it 1s difficult to
understand how a human action, such as observation,
could be made responsible for the transition from poten-
tialities to actualities. Would the evolution of the universe
be different in the absence of humankind? In his Intro-
duction to The New Physics: A Synthesis, Paul C.W. Davies
writes:
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At rock bottom, quantum mechanics provides a highly suc-
cessful procedure for predicting the results of observations of
microsystems, but when we ask what actually happens when
an observation takes place, we get nonsense! Attempts to
break out of this paradox range from the bizarre, such as the
many universes interpretation of Hugh Everett, to the mysti-
cal ideas of John von Neumann and Eugene Wigner, who in~
voke the observer’s consciousness. After half a century of
argument, the quantum observation debate remains as lively
as ever. The problems of the physics of the very small and the
very large are formidable, but it may be that this frontier—the
interface of mind and matter—will turn out to be the most

challenging legacy of the New Physics.**

This “interface between mind and matter” is also at the
core of the time paradox. If the arrow of time existed only
because our human consciousness interfered with a world
otherwise ruled by time-symmetrical laws, the very acqui-
sition of knowledge would become paradoxical, since any
measure already implies an irreversible process. If we wish to
learn anything at all about a time-reversible object, we
cannot avoid the irreversible processes involved in mea-
surement, whether at the level of an apparatus or of our
own sensory mechanisms. Thus, in classical physics, when
we ask how we can understand “observation” in terms of
fundamental time-reversible laws, we get “nonsense,” as
Davies puts it. In classical physics, this intrusion of irre-
versibility was perceived as a minor problem. The great
success of classical dynamics left no doubt about its objec-
tive character. The situation is quite different in quantum
theory. Here the need to include measurement in our fun-
damental description of nature is explicitly asserted in the
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very structure of the theory. It therefore seems that we
have an irreducible duality: on the one hand, the time-re-
versible Schrodinger equation, and on the other, the col-
lapse of the wave function.

This dualistic nature of quantum mechanics was repeat-
edly emphasized by the great physicist Wolfgang Pauli. In
a letter to Markus Fierz in 1947, he wrote, “Something
only really happens when an observation is made, and in
conjunction with that. .. entropy necessarily increases.
Between observations, nothing at all happens.* Still, the
paper on which we write ages and becomes yellow,
whether or not we observe it.

How can this paradox be solved? There have been many
proposals put forth in addition to the extreme positions
mentioned by Davies, including Niels Bohr’s “Copen-
hagen interpretation.”* Bohr concluded that the measure-
ment apparatus has to be treated classically. It is as if we,
who belong to the macroworld, need an intermediary to
communicate with the microworld, just as in some reli-
gions we need a priest or shaman to communicate with the
other world.

But this hardly solves the problem, as the Copenhagen
interpretation does not lead to any prescription of what
should characterize the physical systems we may use as a
measurement device. Bohr avoids the basic question: What
kind of dynamical processes are responsible for the collapse
of the wave function? Léon Rosenfeld, Bohr’s closest
coworker, was quite conscious of the limitations of the
Copenhagen interpretation. He considered it only a first
step, the next being to give a dynamical interpretation of

*We highly recommend Rae, Quantum Physics, and A. Shimony, “Conceptual
Foundations of Quantum Mechanics,” in Davies” New Physics.
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the role of the apparatus. His conviction led to a number
of publications in common with our own research group,
which anticipated our present approach.*®

Other physicists have proposed identifying the measur-
ing instrument with some “macroscopic” device. In their
minds, the concept of such a device is associated with ap-
proximations. For practical reasons, we would be unable to
measure the quantum properties of the apparatus. Further-
more, it has often been suggested that we should consider
the apparatus as an “open” quantum system connected to
the entire world.#” Contingent perturbations and fluctua-
tions stemming from the environment would be responsi-
ble for our ability to perform measurements. But what is
meant by “environment”? Who makes the distinction be-
tween an object and its environment? This distinction is
only a modified version of the von Neumann proposal,
which states that through our actions and observations, it is
we who produce the collapse of the wave function.

The need to eliminate the subjective element associated
with the observer has been stressed by John Bell in his
excellent book, Speakable and Unspeakable in Quantum Me-
chanics.*® It is also an important consideration in the recent
work of Murray Gell-Mann and James B. Hartle, who
argue that the appeal to an observer becomes even more
obscure in connection with cosmology.*” Who measures
the universe? This is not the place for a detailed discussion
of their approach; nevertheless, a brief description of their
latest findings would seem to be in order.

Gell-Mann and others introduce a coarse-grained de-
scription of the quantum mechanical histories of the uni-
verse that transforms the structure of quantum mechanics,
leading from a theory of probability amplitudes to a theory
of probabilities proper. As an example, let us again con-
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sider the wave function ¥ = ¢,u, + ¢,u, obtained by the su-
perimposition of the wave functions u, and u,. If we then
take the square (for purposes of simplification, we may
suppose ‘P is real) we have W2 = 2 u? + A u?, + 2¢,c,u,1,.
Let us now presume that we can ignore the double
product called the “interference term.” All the mystery of
quantum theory then disappears. The probability W2 is
“simply” the sum of probabilities. There is no longer any
need to speak of the transition from potentiality to actual-
ity, and we can work directly with probabilities. But how is
this possible? Interference terms play a central role in many
applications of quantum theory. Still, suppressing the in-
terference term is precisely what Gell-Mann and his col-
leagues propose. Why then, in some situations, do we need
exact, fine-grained quantum descriptions, including inter-
ference, and in others, coarse-grained ones suppressing
interferences? Again, who actually does the coarse grain-
ing? Is it in any way reasonable to discuss the solution of
fundamental problems in terms of approximations? How is
this consistent with Gell-Mann’s own statement, already
quoted in Section II, that quantum mechanics is the
framework into which all theory must fit?

Still others in the field hope to solve the quantum me-
chanical puzzle by reintroducing the Epicurus clinamen
in a modern form. Indeed, Giancarlo Ghirardi, Emanuele
Rimini, and Tullio Weber suppose that at some time, for
some unknown reason, a spontaneous collapse of the wave
function occurs.”® Here the concept of chance enters the
discussion, but without any deeper justification as a deus ex
machina. Why does this new clinamen apply to some situ-
ations and not to others?

‘What is especially unsatisfactory about all these attempts
to elucidate the conceptual foundations of quantum the-
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ory is that they make no new predictions that can actually
be tested.

Our own conclusion coincides with that of many other
specialists such as Abner Shimony in the United States and
Bernard d’Espagnat in France.’! According to them, radi-
cal innovations have to be made that would preserve all the
achievements of quantum mechanics, but eliminate the
difficulties related to the theory’s dualistic structure. Note
that the measurement problem is not isolated. As empha-
sized by Léon Rosenfeld, measurement is associated with
irreversibility. But in quantum mechanics, there is no place
for irreversible processes, whether or not they are involved
with measurement. The difficulty of introducing ir-
reversibility into quantum theory was already established
decades ago (in the context of ergodic theory) by von Neu-
mann, Pauli, and Fierz.>> As in classical mechanics, they
tried to solve the problem by coarse graining, but their at-
tempts remained unsuccessful. This may be the reason that
von Neumann eventually adopted a dual formulation: the
Schrédinger equation on one side, and the collapse of the
wave function on the other.> But this is hardly satisfactory
as long as the collapse is not described in dynamical terms.
This is precisely what our own theory achieves. The cen-
tral role is again played by instability. However, determin-
istic chaos guided by exponentially diverging trajectories is
not applicable here. In quantum mechanics, there are no
trajectories. Therefore, we have to consider instability in
terms of Poincaré resonances.

We can incorporate Poincaré resonances into a statistical
description and derive diffusive terms that lie outside the
range of quantum mechanics in terms of wave functions.
The description is once again based on the level of proba-
bility p (also called the density matrix in quantum me-
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chanics; see Chapter 6) and no longer on wave functions.
Through Poincaré resonances, we achieve the transition
from probability amplitudes to probability proper without
drawing on any nondynamical assumptions.

As in classical dynamics, the basic question is, When are
these diffusive terms observable? What are the limits
of traditional quantum theory? The answer is similar to
that for classical dynamics (see Section III). In short, it is in
persistent interactions that the diffusive terms become dom-
inant (see Chapter 7). As in classical mechanics, this pre-
diction has been verified by numerical simulations. Only
by going beyond a reductionist description can we give a
realistic interpretation of quantum theory. There is no col-
lapse of the wave function, as the dynamical laws are now
at the level of p, the density matrix, and not of wave func-
tions . Moreover, the observer no longer plays any spe-
cial role. The measurement device has to present a broken
time symmetry. For these systems, there is a privileged di-
rection of time, exactly as there is a privileged direction of
time in our perception of nature. It is this common arrow of
time that is the necessary condition of our communication
with the physical world; it is the basis of our communica-
tion with our fellow human beings.

Thus, instability plays a central role in both classical and
quantum mechanics, and as such, obliges us to extend the
scope of both disciplines. In so doing, we have to leave the
field of simple integrable systems. The possibility of a
unified formulation of quantum theory is particularly ex-
citing because this problem has been so hotly debated over
the past decades, but the need for an extension of classical
theory is even more unexpected. We recognize that this
means a break with a rational tradition that harks back to
the very foundations of Western science as conceived by
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Galileo and Newton. But it is no mere coincidence that
the application of recent mathematical methods to unsta-
ble systems leads precisely to the extensions defined in this
book. They allow us to include a description of the evo-
lutionary characteristics of our universe based on a prob-
abilistic description of nature. In a recent article, 1. Ber-
nard Cohen spoke of the probabilistic revolution as a
revolution in applications. He wrote, “Even if the decades
1800-1930 do not show a single revolution in the domain
of probability, they provide evidence of a probabilizing rev-
olution, that is, of a true revolution of fantastic conse-
quences attendant on the introduction of probability and
statistics into areas that have undergone revolutionary
changes as a result”> This “probabilizing revolution” is
still going on.

\Y

We now come to the close of this chapter. We began with
Epicurus and Lucretius, and their invention of the clina-
men to permit the appearance of novelty. After twenty-
five hundred years, we can at last give a precise physical
meaning to this concept, which originates in instabili-
ties identified by the modern theory of dynamical systems.
If the world were formed by stable dynamical systems, it
would be radically different from the one we observe
around us. It would be a static, predictable world, but we
would not be here to make the predictions. In our world,
we discover fluctuations, bifurcations, and instabilities at all
levels. Stable systems leading to certitudes correspond only
to idealizations, or approximations. Curiously, this insight
was anticipated by Poincaré. In discussing the laws of ther-
modynamics he wrote,
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These laws can have only one significance, which is that there
is a property common to all possibilities; but in the deter-
ministic hypothesis there is only a single possibility, and the
laws no longer have any meaning. In the indeterministic hy-
pothesis, on the other hand, they would have meaning, even
if they were taken in an absolute sense; they would appear as
a limitation imposed upon freedom. But these words remind
me that I am digressing and am on the point of leaving the

domains of mathematics and physics.>®

Today we are not afraid of the “indeterministic hypoth-
esis.” It is the natural outcome of the modern theory of
instability and chaos. Once we have an arrow of time, we
understand immediately the two main characteristics of
nature: its unity and its diversity: unity, because the arrow
of time is common to all parts of the universe (your future
is my future; the future of the sun is the future of any other
star); diversity, as in the room where I write, because there
1s air, a mixture of gases that has more or less reached ther-
mal equilibrium and is in a state of molecular disorder, and
there are the beautiful flowers arranged by my wife, which
are objects far from equilibrium, highly organized thanks
to temporal, irreversible, nonequilibrium processes. No
formulation of the laws of nature that does not take into
account this constructive role of time can ever be satisfac~

tory.



Chapter 2

ONLY AN ILLUSION?

|

he results presented in this book have matured slowly.

It is now more than fifty years since I published my
first paper on nonequilibrium thermodynamics, in which
I pointed out the constructive role of irreversibility.! To
my knowledge, this was also the first paper that dealt with
self-organization as associated with distance from equilib-
rium. After so many years, I often wonder why I was fasci-
nated with the problem of time, and why it took so very
long to establish its relationship with dynamics. While this
is not the place to discuss the history of thermodynamics
and statistical mechanics over the past half century, I do
want to explain my own motivations, and indicate some of
the main difficulties I encountered along the way.

I have always considered science to be a dialogue with
nature. As in a real dialogue, the answers are often unex-
pected—and sometimes astonishing.

As an adolescent, I was enchanted with archaeology,

57
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philosophy, and especially music. My mother used to say
that I could read music before reading books. When I en-
tered the university, I spent much more time at the piano
than in lecture halls. In all the subjects I enjoyed, time
played an essential role, whether in the gradual emergence
of civilizations, the ethical problems associated with human
freedom, or the temporal organization of sounds in music.
Then came the threat of war. It seemed more appropriate
to undertake a career in hard sciences, and so I started
to study physics and chemistry at the Free University of
Brussels.

I often questioned my teachers about the meaning of
time, but their answers were conflicting. For the philoso-
phers, this was the most difficult problem of all, closely re-
lated to ethics and the very nature of human existence.
The physicists found my question somewhat naive, as the
answer had already been given by Newton, and later im-
proved upon by Einstein. As a consequence, I felt both as-
tonished and frustrated. In science, time was considered a
mere geometrical parameter. In 1796, more than one
hundred years before Albert Einstein and Hermann
Minkowski, Joseph-Louis Lagrange had called dynamics a
“four-dimensional geometry”? Einstein went on to say,
“Time [as associated with irreversibility] is an illusion.”
With my own background, these statements were impossi~
ble for me to accept. Nevertheless, the tradition of spatial-
ized time is still very much alive today, as witnessed by the
work of scientists such as Stephen W. Hawking.® In his
Brief History of Time, Hawking introduces “imaginary
time” to eliminate any distinction between space and time,
a concept we shall examine in greater depth in Chapter 8.

I am certainly not the first to have felt that the spatial-
ization of time is incompatible with both the evolving
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universe, which we observe around us, and our own
human experience. This was the starting point for the
French philosopher Henri Bergson, for whom “time 1s in-
vention or nothing at all”’* In Chapter 1, I mentioned one
of Bergson’s later articles, “The Possible and the Real,”
published on the occasion of his Nobel Prize in 1930,
where he expressed his feeling that human existence con-~
sists of “the continual creation of unpredictable novelty,”
concluding that time proves that there is indetermination in
nature.’> The universe around us is only one of a number
of possible worlds. Bergson would have been quite amazed
to read Henri Poincaré’s quotation at the end of Chapter
1.6 Curiously, though, their conclusions pointed in the
same direction. I also quoted Alfred North Whitehead
from Process and Reality, for whom the ultimate goal was to
reconcile permanence and change, to conceive of exis-
tence as a process. According to him, classical science,
which originated in the seventeenth century, was an ex-
ample of misplaced concreteness unable to express creativ-
ity as the basic property of nature, “whereby the actual
world has its character of temporal passage to novelty”
Whitehead’s conception of the actual world was obviously
incompatible with any deterministic description.’

I could go on by quoting Martin Heidegger and others,
including Arthur Stanley Eddington, who wrote, “In any
attempt to bridge the domains of experience belonging to
the spiritual and physical sides of our nature, time occupies
the key position.”® But instead of building this bridge, time
has remained a controversial issue from the pre-Socratics to
the present day. As mentioned for classical science, the
problem of time had been solved by Newton and Einstein,
but for most philosophers, this solution was incomplete. In
their opinion, we had to turn to metaphysics.
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My personal conviction was quite different. Abandon-
ing science appeared to be too heavy a price to pay. After
all, science had led to a unique and fruitful dialogue be-
tween mankind and nature. Perhaps classical science could
indeed limit time to a geometrical parameter because it
was dealing only with simple problems. There was no need
to extend the concept of time when we dealt with a
frictionless pendulum, for instance. But once science
encountered complex systems, it would have to modify its
approach to time. An example that often came to mind was
associated with architecture. There is not much difference
between an Iranian brick from the fifth century before
Christ and a neogothic brick from the nineteenth cen-
tury, but the results—the palaces of Persepolis and the
neogothic churches—are in striking contrast. Time would
then be an “emerging” property. But what could be the
roots of time? I became convinced that macroscopic irre-
versibility was the manifestation of the randomness of
probabilistic processes on a microscopic scale. What then
was the origin of this randomness?

With these preoccupations, it was only natural that I
turn to thermodynamics, especially because in Brussels
there was already an established school in the subject
founded by Théophile De Donder (1870-1957).

11

In Chapter 1, we mentioned the classical formulation of
the second law of thermodynamics attributed to Clausius.
This law is based on an inequality: The entropy, S, of an
isolated system increases monotonically until it reaches its
maximum value at thermodynamic equilibrium. We
therefore have dS 2 0 for the change in entropy over the
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course of time. How can we extend this statement to sys-
tems that are not isolated, but which exchange energy and
matter with the outside world? We must then distinguish
two terms in the entropy change, dS: the first, d.S, is the
transfer of entropy across the boundaries of the system; the
second, d.S, is the entropy produced within the system. As
a result, we have dS=dS + d;S. We can now express the
second law by stating that whatever the boundary condi-
tions, the entropy production d.S is positive, that is, d.S >
0. Irreversible processes are creating entropy. De Donder went
even farther: He expressed the production of entropy per
unit time P = 'i}—f in terms of the rates of various irre-
versible processes (chemical reaction rates, diffusion, etc.)
and thermodynamic forces. In fact, he considered only
chemical reactions, but further generalization was easy.’

De Donder himself did not go very far along this road.
He was concerned mainly with equilibrium and the
neighborhood of equilibrium. Limited as it was, his work
represented an important step in the formulation of non-
equilibrium thermodynamics, even if it seemed to lead
nowhere for a considerable length of time. I still remember
the hostility with which De Donder’s work was met. For
the vast majority of scientists, thermodynamics had to be
limited strictly to equilibrium.

That was the opinion of J. Willard Gibbs, as well as of
Gilbert N. Lewis, the most renowned thermodynamicist of
his day. For them, irreversibility associated with unidirec-
tional time was anathema. Lewis went so far as to write,
“We shall see that nearly everywhere the physicist has
purged from his science the use of one-way time . . . alien
to the ideals of physics.”1?

I myself experienced this type of hostility in 1946,
when I organized the first Conference on Statistical
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Mechanics and Thermodynamics under the auspices of
the International Union for Pure and Applied Physics
(IUPAP). These meetings have since been held on a regu-
lar basis and continue to attract large crowds, but at that
time we were a small group of approximately thirty to
forty people. After I had presented my own lecture on ir-
reversible thermodynamics, the greatest expert in the field
of thermodynamics made the following comment: “I am
astonished that this young man is so interested in nonequi-
librium physics. Irreversible processes are transient. Why
not wait and study equilibrium as everyone else does?” I
was so amazed at this response that I did not have the pres-
ence of mind to answer: “But we are all transient. Is it not
natural to be interested in our common human condi-
tion?”

Throughout my entire life I have encountered hostility
to the concept of unidirectional time. It is still the prevail-
ing view that thermodynamics as a discipline should re-
main limited to equilibrium. In Chapter 1, I mentioned
the attempts to banalize the second law that are so much a
part of the credo of a number of famous physicists. I con-
tinue to be astonished by this attitude. Everywhere around
us we see the emergence of structures that bear witness to
the “creativity of nature,” to use Whitehead’s term. I have
always felt that this creativity had to be connected in some
way to the distance from equilibrium, and was thus the re-
sult of irreversible processes.

Compare, for example, a crystal and a town. A crystal is
an equilibrium structure that can be maintained in a vac-
uum, but if we isolated the town, it would die because its
structure depends on its function. Function and structure
are inseparable in that the latter expresses the interactions
of the town with its environment.
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In Erwin Schrédinger’s beautiful book What Is Life? he
discusses the metabolism of a living body in terms of en-
tropy production and entropy flow. If an organism is in a
steady state, its entropy remains constant over time, and
therefore dS = 0. As a result, the entropy production d,S is
compensated by the entropy flow d S+ dS =0, or dS=
d.S < 0. Life, concludes Schrodinger, feeds on a “negative
entropy flow””!! The more important point, however, is
that life is associated with entropy production and there-
fore with irreversible processes.

But how can structure, as in living systems or towns,
emerge in nonequilibrium conditions? Here again, as in
dynamics, the problem of stability plays an essential role. At
thermodynamic equilibrium, entropy has a maximum
value when the system is isolated. For a system maintained
at temperature 1, we have a similar situation. We then in-
troduce “free energy,” F= E — TS, a linear combination of
energy E and entropy S. As shown in all texts on thermo-
dynamics, free energy, E is at its minimum at equilibrium
(see Figure 2.1). Consequently, perturbations or fluctua-
tions have no effect because they are followed by a return
to equilibrium. The situation is not unlike that of the sta-
ble pendulum considered in Chapter 1, Section III.

‘What happens in a steady state corresponding to non-
equilibrium? We saw such an example in a discussion of
thermal diffusion in Chapter 1, Section II. Is a nonequilib-
rium steady state truly stable? In near-equilibrium
situations (known as “linear” nonequilibrium thermody-
namics), the answer is yes. As shown in 1945, the steady
state corresponds to a minimum of entropy production per
unit time P = %9.12 At equilibrium P = 0, entropy produc-
tion vanishes, while in the linear regime around equilib-

rium, P is minimum (see Figure 2.2).13
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Figure 2.1
Minimum of F

Free energy is minimum at equilibrium (A = A,,).
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Again fluctuations die out. But there already appears a
remarkable new characteristic: A nonequilibrium system
may evolve spontaneously to a state of increased complexity.
The ordering we observe is the outcome of irreversible
processes, and could not be achieved at equilibrium. This
is clear in the example of thermal diffusion mentioned in
Chapter 1, where the temperature gradient leads to a par-
tial separation of the compounds. Many other cases have
since been studied in which complexity has consistently
been associated with irreversibility. These results became
the guidelines for our future research.

But can we extrapolate the results of far-from-equilib-
rium situations from those at near-equilibrium? My col-
league Paul Glansdorft and I investigated this problem for
many years,'* and arrived at a surprising conclusion: Con-
trary to what happens at equilibrium, or near equilibrium,
systems far from equilibrium do not conform to any min-
imum principle that is valid for functions of free energy or
entropy production. As a consequence, there is no guaran-
tee that fluctuations are damped. We can only achieve
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Figure 2.2
Minimum of P

Entropy production P = d;S/dt is minimum in a steady state (A = Ay).
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a formulation of sufficient conditions for stability, which
we call the “general evolution criterion.” This requires
specifying the mechanism of irreversible processes. Near-
equilibrium laws of nature are universal, but when they are
far from equilibrium, they become mechanism dependent.
We therefore begin to perceive the origin of the variety in
nature we observe around us. Matter acquires new proper-
ties when far from equilibrium in that fluctuations and in-
stabilities are now the norm. Matter becomes more
“active.” Although there is at present an enormous litera-
ture surrounding this subject,!® for the moment we shall
consider only a simple example. Suppose that we have a
chemical reaction {A} = {X} = {F} in which {A} isa
set of initial products, { X} a set of intermediate ones, and
{F} a set of final ones. At equilibrium, we have a detailed
balance where there are as many transitions from {A} to
{X} as from {X} to {A}, with the same applying to {X}
and {F}. The ratio of initial to final products {A}/{F}
takes on a well-defined value corresponding to maximum
entropy if the system is isolated. Now consider an open
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system, such as a chemical reactor. By controlling the flow
of matter, we may fix the values of both the initial and
final products {A} and {F}. We progressively increase the
ratio {A}/{F}, starting from its equilibrium value. What
will happen to the intermediate products {X} when we
move away from equilibrium?

Chemical reactions are generally described by nonlinear
equations. There are many solutions for the intermediate
concentrations {X} for given values of {A4} and {F}, but
only one corresponds to thermodynamic equilibrium and
maximum entropy. This solution, which we call the “ther-
modynamic branch,” may be extended to the domain of
nonequilibrium. The unexpected result is that this branch
generally becomes unstable at some critical distance from
equilibrium (see Figure 2.3). The point where this occurs
is known as the bifurcation point.

Beyond the bifurcation point, a set of new phenomena
arises; we may have oscillating chemical reactions, non-
equilibrium spatial structures, or chemical waves. We have
given the name dissipative structures to these spatiotemporal
organizations. Thermodynamics leads us to the formula-
tion of two conditions for the occurrence of dissipative
structures in chemistry: (1) far-from-equilibrium situations
defined by a critical distance; and (2) catalytic steps, such as
the production of the intermediate compound Y from
compound X ftogether with the production of X from Y.

It is interesting to note that these conditions are satisfied
in all living systems: Nucleotides code for proteins, which
in turn code for nucleotides.

We were extremely fortunate in that soon after we had
predicted these various possibilities, the experimental re-
sults of the Belousov-Zhabotinski reaction—a spectacular
example of chemical oscillations—became widely known. ¢

I remember our amazement when we saw the reacting so-
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Figure 2.3
Thermodynamic Branch

The two steady-state solutions th and d are functions of the ratio
A/F. At the bifurcation point, the thermodynamic branch th
becomes unstable, and another branch d becomes stable.

\A/F

Equilibrium Point of bifurcation

lution become blue, and then red, and then blue again.
Today, many other oscillatory reactions are known,” but
the Belousov-Zhabotinski reaction remains historic be-
cause it proved that matter far from equilibrium acquires
new properties. Billions of molecules become simultane-
ously blue, and then red. This entails the appearance
of long-range correlations in far-from-equilibrium condi-
tions that are absent in a state of equilibrium. Again, we
can say that matter at equilibrium is “blind,” but far from
equilibrium it begins to “see.” We have observed that at
near equilibrium, dissipation associated with entropy pro-
duction is at a minimum. Far from equilibrium, it is just
the opposite. New processes set in and increase the pro-
duction of entropy.

There has been steady progress in far-from-equilibrium
chemistry. In recent years, nonequilibrium spatial struc-
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tures have been observed.!® These were first predicted by
Alan Mathison Turing in the context of morphogenesis.!’

When we push the system farther into nonequilibrium,
new bifurcations typical of chaotic behavior may arise.
Neighboring trajectories diverge exponentially as in deter-
ministic chaos akin to the dynamical systems we consid-
ered in Chapter 1, Section III

In short, distance from equilibrium becomes an essential
parameter in describing nature much like temperature in
equilibrium thermodynamics. When we lower the tem-
perature, we observe a succession of phase transitions
through various states of matter. But in nonequilibrium
physics, the variety of behaviors is much greater. We have
considered chemustry for the purposes of this discussion,
but similar processes associated with nonequilibrium dissi-
pative structures have been studied in many other fields,
including hydrodynamics, optics, and liquid crystals.

Let us now look more closely at the critical effect of
fluctuations. As we have seen, near-equilibrium fluctua-
tions are harmless, but far from equilibrium, they play a
central role. Not only do we need irreversibility, but we
also have to abandon the deterministic description associ-
ated with dynamics. The system “chooses” one of the pos-
sible branches available when far from equilibrium. But
nothing in the macroscopic equations justifies the prefer-
ence for any one solution. This introduces an irreducible
probabilistic element. One of the simplest bifurcations is
the so-called “pitchfork bifurcation” represented in Figure
2.4, where A =0 corresponds to equilibrium.

The thermodynamic branch is stable from A =0 to
A= 7»(. Beyond A, it becomes unstable, and a symmetrical
pair of new stable solutions emerges. It is the fluctuations
that decide which branch will be selected. If we were to
suppress fluctuations, the system would maintain itself in
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Figure 2.4

Pitchfork Bifurcation

Concentration X is a function of the parameter A, which measures
the distance from equilibrium. At the bifurcation point, the ther-
modynamic branch becomes unstable, and the two new solutions
b, and b, emerge.

X
Stable by
Thermodynamic branch
—————— Unstable
by
A, Multiple solutions A
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an unstable state. Attempts have been made to decrease the
fluctuations so that we can subject the unstable region to
experiment; nevertheless, sooner or later, fluctuations of
internal or external origin take over and bring the system
to one of the branches b, or b,.

Bifurcations are a source of symmetry breaking. In fact,
the solutions of the equation beyond A_generally have a
lower symmetry than the thermodynamic branch.?’ Bifur-
cations are the manifestation of an intrinsic differentiation
between parts of the system itself and the system and its
environment. Once a dissipative structure is formed, the
homogeneity of time (as in oscillatory chemical reactions)
or space (as in nonequilibrium Turing structures), or both,
1s broken.

In general, we have a succession of bifurcations as rep-
resented schematically in Figure 2.5. The temporal de-
scription of such systems involves both deterministic
processes (between bifurcations) and probabilistic processes
(in the choice of the branches). There is also a historical
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dimension involved. If we observe that the system is in
state d,, that means that it has gone through the states b,
and ¢, (see Figure 2.5).

Once we have dissipative structures, we can speak of
self-organization. Even if we know the initial values and
boundary constraints, there are still many states available to
the system among which it “chooses” as a result of fluctu~
ations. Such conclusions are of interest beyond the realms
of physics and chemistry. Indeed, bifurcations can be con-
sidered the source of diversification and innovation.?!
These concepts are now applied to a wide group of prob-
lems in biology, sociology, and economics at interdiscipli-
nary centers throughout the world. In Western Europe
alone, there have been more than fifty centers for nonlin-
ear processes founded over the past ten years.

Freud wrote that the history of science is the history of
alienation. Copernicus showed that the earth is not at the
center of the planetary system, Darwin that we are one
species of animal among many others, and Freud that our

Figure 2.5
Successive Bifurcations with Increasing Distance from
Equilibrium

X
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rational activity is only part of the unconscious. We can
now invert this perspective: We see that human creativity
and innovation can be understood as the amplification of
laws of nature already present in physics or chemistry.

III

The results presented thus far show that the attempts to
trivialize thermodynamics mentioned in Chapter 1 are
necessarily doomed to failure. The arrow of time plays an
essential role in the formation of structures in both the
physical sciences and biology. But we are only at the be-
ginning of our quest. There is still a gap between the most
complex structures we can produce in nonequilibrium sit-
uations in chemistry and the complexity we find in biol-
ogy. This is not only a problem for pure science. In a recent
report to the European Communities, Christof Karl
Biebracher, Grégoire Nicolis, and Peter Schuster wrote,

The maintenance of organization in nature is not—and can-
not be—achieved by central management; order can only be
maintained by self-organization. Self-organizing systems
allow adaptation to the prevailing environment, i.e., they
react to changes in the environment with a thermodynamic
response which makes the systems extraordinarily flexible and
robust against perturbations from outside conditions. We
want to point out the superiority of self-organizing systems
over conventional human technology which carefully avoids
complexity and hierarchically manages nearly all technical
processes. For instance, in synthetic chemistry, different reac-
tion steps are usually carefully separated from each other and
contributions from the diffusion of the reactants are avoided
by stirring reactors. An entirely new technology will have to

be developed to tap the high guidance and regulation poten-
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tial of self-organizing systems for technical processes. The su-
periority of self-organizing systems is illustrated by biological
systems where complex products can be formed with unsur-

passed accuracy, efficiency and speed!”??

The results of nonequilibrium thermodynamics are
close to the views expressed by Bergson and Whitehead.
Nature is indeed related to the creation of unpredictable
novelty, where the possible is richer than the real. Our uni-
verse has followed a path involving a succession of bifurca-
tions. While other universes may have followed other
paths, we are fortunate that ours has led to life, culture, and
the arts.

The dream of my youth was to contribute to the unifi-
cation of science and philosophy by resolving the enigma
of time.* Nonequilibrium physics shows that this is en-
tirely possible. The results described in this chapter gave
me the impetus to explore the concept of time on the mi-
croscopic level. I have emphasized the role of fluctua-
tions—but what is their origin? How can we reconcile
their behavior with the deterministic description based
upon the traditional formulation of the laws of nature?
Were we to do so, we would lose the distinction between
near- and far-from-equilibrium processes. Moreover, we
would be calling into question such unique and marvelous
constructions of the human mind as classical and quantum
mechanics.

I must confess that these thoughts led to many sleepless
nights. Without the support of my colleagues and students,
I would most certainly have given up.

*[ expressed this dream in three short essays written for a student journal as
early as 1937!



Chapter 3

FROM PROBABILITY TO
IRREVERSIBILITY

I

s we saw in Chapter 2, irreversible processes describe

fundamental features of nature leading to nonequi-
librium dissipative structures. Such processes would not be
possible in a world ruled by the time-reversible laws of
classical and quantum mechanics. Dissipative structures re-
quire an arrow of time. Furthermore, there is no hope of
explaining the appearance of such structures through ap-
proximations that would be introduced by these laws.

I have always been convinced that an understanding of
the dynamical origin of dissipative structures, and more
generally of complexity, is one of the most fascinating
conceptual problems of contemporary science. As already
stated in Chapter 1, for unstable systems we have to for-
mulate the laws of dynamics at the statistical level. This

73
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changes our description of nature in a radical way. In such
a formulation, the basic objects of physics are no longer
trajectories or wave functions; they are probabilities. We
have thus come to the end of the “probabilistic revolu-
tion” that could already be found in areas other than
physics by the eighteenth century. However, when faced
with the implications of this radical conclusion, I hesitated
for some time, reaching for less extreme solutions. In From
Being to Becoming, I wrote, “In quantum mechanics, there
are observations whose numerical value cannot be deter-
mined simultaneously, i.e., coordinates and momentum.
(This is the essence of Heisenberg’s uncertainty relations
and Bohr’s complementarity principle.) Here we also have
a complementarity—one between dynamical and thermo-
dynamical descriptions.”! This would have been a much
less extreme approach to the conceptual problem associ-
ated with irreversibility.

In retrospect, I regret this statement in my earlier book.
If there is more than a single description, who would
choose the right one? The existence of the arrow of time
is not a matter of convenience. It is a fact imposed by ob-
servation. However, it is only in recent years that the results
we obtained by studying the dynamics of unstable systems
forced us to reformulate dynamics at the statistical level,
and to conclude that this formulation leads to an extension
of classical and quantum mechanics. In this chapter, I de-
scribe some of the steps involved.

For approximately one hundred years, we have known
that even simple probabilistic processes are time oriented.
In Chapter 1, we mentioned the “random walk.” Another
example is the “urn model” proposed by Paul and Tatiana
Ehrenfest (see Figure 3.1).2

Consider N objects (such as balls) distributed between
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Figure 3.1
The Ehrenfest Urn Model

N balls are distributed between two urns, A and B. At time n,
there are k balls in A and N — k balls in B. At regular time inter-
vals, a ball is removed at random from one urn and placed into

the other.
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two urns A and B. At regular time intervals (for example,
every second) a ball is chosen at random and moved from
one urn to the other. Suppose that at time #n, there are k
balls in A, and therefore N — k in B. At time n + 1 there
can be either k — 1 or k + 1 balls in A. These are well-
defined transition probabilities. But let us go on with the
game, We expect that as a result of the exchange of balls,
we shall reach a situation where there will be approxi-
mately g balls in each urn. However, fluctuations will con~
tinue. We might even end up in the situation at time n
where there are again k balls in urn A. It is at the level of
probability distribution that we see an irreversible approach to
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equilibrium. Whatever the starting point, it can be shown
that the probability p (k) of finding k balls in one urn after
n moves as n — oo tends to the binomial distribution
“v-#®!. This expression has a maximum value of k = g,
but also takes into account fluctuations in distribution. In
the Boltzmann model, the maximum entropy corresponds
precisely to the binomial distribution.

The Ehrenfest model is an example of a “Markov
process” (or “Markov chain”), named after the great Russ-
ian mathematician, Andrei Markov, who was the first to
describe such processes. Once we have a probabilistic de-
scription, it is often possible to derive irreversibility. But
how do we relate these probabilistic processes to dynamics?
That is the fundamental problem.

We have seen that a basic step in this direction was taken
by the fathers of statistical physics, or the physics of popu-
lations. Maxwell, Boltzmann, Gibbs, and Einstein all em-
phasized the role of ensembles described by a probability
distribution p. An important question then is, What is the
form of this distribution function once equilibrium is
reached? Let ¢, . . . ,q, be the coordinates and p,, . . . ,p,
the momenta of the particles forming this system. In
Chapter 1, the phase space was defined by the coordinates
and momenta. We also introduced the probability distrib-
utions p(g, p, f) (see Chapter 1, Section III). We shall now
use the single letter g for all coordinates and p for all mo-
menta. Equilibrium is reached when p becomes time in-
dependent. In every textbook, it is shown that this occurs
when p depends only on the total energy. As mentioned in
Chapter 1, Section III, the total energy is the sum of the
kinetic energy (due to the motion of the particles) and the
potential energy (due to interactions). When expressed in
terms of g and p, this energy, which is called the Hamilton-

ian H (p, q), remains constant over time. This is the princi-
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ple of conservation of energy, the first principle of ther-
modynamics. It is therefore natural that at equilibrium, p is
a function of the Hamiltonian H.

An important exception case is that of ensembles in
which all systems have the same energy E. The distribu-
tion function then vanishes throughout the phase space,
save on the surface H (p, q) = E, where the distribution
function is constant. This is called the “microcanonical en-
semble.” Gibbs showed that such ensembles do indeed sat-
isfy the laws of equilibrium thermodynamics. He also
considered other ensembles such as the “canonical ensem-~
ble,” in which all systems interact with a reservoir at tem-
perature T This leads to a distribution function that
depends exponentially on the Hamiltonian, p now being
proportional to exp (— ,%), where T is the temperature of
the reservoir and k the Boltzmann constant, which makes
the exponent dimensionless.

Once the equilibrium distribution is given, we can cal-
culate all thermodynamic equilibrium properties such as
pressure, specific heat, etc. We can even go beyond macro-
scopic thermodynamics because we are able to include
fluctuations. It is generally accepted that in the vast field of
equilibrium statistical thermodynamics, there are no con-
ceptual difficulties left, only computational ones, which
can be solved largely through numerical simulations. The
application of ensemble theory to equilibrium situations
has undoubtedly been quite successful. Note that the dy-
namical interpretation of equilibrium thermodynamics by
Gibbs is in terms of ensembles, and not in terms of trajec-
tories. It is this approach that we have to extend in order to
include irreversibility.

This is quite natural, as there is no time ordering at the
level of trajectories (or wave functions) because future and
past play the same role in accordance with classical and
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quantum physics. However, what happens at the level of
statistical description, in terms of distribution functions?
Let us look at a glass of water. In this glass, there is a huge
number of molecules, a quantity on the order of 10%.
From the dynamical point of view, this is a nonintegrable
Poincaré system, as defined in Chapter 1, since there are
interactions between the molecules that we cannot elimi-
nate. We may visualize these interactions as leading to col-
lisions between the molecules (the term “collision” will be
defined more precisely in Chapter 5), and describe the
water containing them in terms of the statistical ensemble
p. Is the water aging? Certainly not, if we consider the in-
dividual water molecules, which are stable over geological
time. Still, there is a natural time order in this system from
the point of view of the statistical description. Aging is a
property of populations, exactly as it is in the Darwinian
theory of biological evolution. It is the statistical distribu-
tion that approaches the equilibrium distribution, such as
the canonical distribution defined above. To describe this
approach to equilibrium, we need the idea of correlation.

Consider a probability distribution p(x,, x,) , depend-
ing on two variables x,, x,. If x, and x, are independent,
we have the factorization p(x;, x,)= p,(x,)p,(x,). The
probability p(x,, x,) is then the product of two probabili-
ties. In contrast, if p(x,, x,) cannot be factorized, x, and x,
are correlated. Now let us return to the molecules in the
glass of water. The collisions between these molecules have
two effects: They make the velocity distribution more
symmetrical, and they produce correlations (see Figure
3.2). But two correlated particles will eventually collide
with a third one. Binary correlations are then transformed
into ternary ones, and so on (see Figure 3.3).

We now have a flow of correlations that are ordered in
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Figure 3.2
Collisions and Correlations

The collision of two particles creates a correlation between them
(represented by a wavy line).
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time. A valuable and provocative analogy to this flow
would be human communication. When two people
meet, they converse, and consequently modify their think-
ing to some extent. These modifications are brought to
subsequent meetings, and modified further. The word for
this phenomenon is dissemination. There is a flow of com-
munication in society, just as there is a flow of correlations
in matter. Of course, we may also conceive of inverse
processes that make the velocity distribution less symmet-
rical by destroying correlations (see Figure 3.4).

We therefore need an element that will validate the
processes that make the velocity distribution more sym-
metrical over the course of time. As we shall see, this is
precisely the role of Poincaré resonances. We now begin to
get a glimpse of a statistical description that includes irre-
versibility. This description will be a dynamics of correlations
leading to the equilibrium distribution.

The existence of a flow of correlations ordered in time,
as represented in Figure 3.3, has been verified by computer
simulations.®> We can also reproduce processes such as those
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Figure 3.3
Flow of Correlations
Successive collisions lead to binary, ternary, ... correlations.
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represented in Figure 3.4 through time inversion, where
we invert the velocity of the particles. But we can achieve
this inverted flow of correlations only for brief periods of
time and for a limited number of particles, after which we
again have a directed flow of correlations involving an
ever-increasing number of particles leading the system to
equilibrium.

Figure 3.4
Destruction of Correlations

In (a) the particles (represented by black points) interact with the
obstacle (represented by the circle). Initially all particles have the
same velocity. The collision varies the velocities and creates corre-
lations between the particles and the obstacle. In (b) we represent
the opposite process. We consider the effect of a velocity inver-
sion; as a result of the inverted collision, correlations with the ob-
stacle are destroyed, and the initial velocity is recovered.

Lo o Lo o

._L o — — O ._L

Lo o Lo o
(@ (b)
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These results, which give meaning to irreversibility at
the statistical level, were obtained nearly thirty years ago.*
At that time, however, certain basic questions still re-
mained unanswered: How can irreversibility appear at the
statistical level of description, and not when we describe
dynamics in terms of trajectories? Is this due to our ap-
proximations? Moreover, is the succession of correlations
that we observe, for example in computer experiments,
perhaps the result of the limitations of computer time?
Obviously, a shorter program is required to prepare uncor-
related particles that produce correlations through colli-
sions than to prepare ensembles that could lead to inverse
processes in which correlations are destroyed.

But why start at all with probability distributions? Such
distributions describe the behavior of bundles of trajecto-
ries, or ensembles. Do we use ensembles because of our
“ignorance,” or is there, as argued in Chapter 1, a deeper
reason involved? For unstable systems, ensembles indeed
display new properties as compared with individual trajec-
tories. This is what we shall now demonstrate with several

simple examples.

II

In this section, we shall be concerned with deterministic
chaos, as well as an especially simple type of chaos, both
corresponding to chaotic maps. Contrary to what occurs in
ordinary dynamics, time in maps acts only at discrete in-
tervals, as is the case in the Ehrenfest urn model we stud-
ied in Section I. Maps therefore represent a simplified form
of dynamics that makes it easy for us to compare the indi-
vidual level of description (the trajectories) with the statis-
tical description. We shall consider two maps; the first
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charts simple periodic behavior, the second deterministic
chaos.

In the first instance, we shall consider the “equations of
motion” x , , =x + %, modulo 1, which means that we are
dealing only with numbers between O and 1. After two
shifts, 2we gre llaack to the initial point (i.e., x_ = %, x, = %, X,
=3 +3 =3 =37). This situation is represented in Figure 3.5.

Instead of considering individual points located by tra-
jectories, it is worth examining ensembles described by the
probability distribution p(x). A trajectory corresponds to a
specific set of ensembles where the coordinate x takes on a
well-defined value x, and the distribution function p is
then reduced to a single point. As mentioned in Chapter 1,
Section III, this can be written as p (x) = 6(x — x ). (Delta

is a symbol for a function that vanishes for all values of x

Figure 3.5

Periodic Map

There is a simple geometrical construction that moves from the
initial point P, to the next point P, according to the map x,, , | —
x, +1/2. We go from P, to P’, then to P” on the bisector, and from
there to P;. Obviously, if we start with P;, we come back to P,.

X, +1

"
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except x = x,.) By using distribution function p, the map-
ping can be expressed as a relation between p , (x) and
p,(x). We may then write p_, ,(x) = U p (x). Formally,
p, ., is obtained through the operator U, known as the
. . 5 . .
Perron-Frobenius operator, acting on p (x).> At this point,
although its explicit form is not important to us, it is in-
teresting to note that no new element (in addition to the
equation of motion) enters into the construction of U.
Obviously, the ensemble description must allow the trajec-
tory description as a special case; we therefore have 6(x —
x

,+1) = Ud(x — x,). This is simply a way of rewriting the

equation of motion, as x, becomes x__  after one shift.

+
The main question is, however, Is this t}’;e olnly solution, or are
there new solutions for the evolution of ensembles, as described by
the Perron-Frobenius operator, which cannot be expressed in terms
of trajectories? In our example of a periodic map, the answer
is no. There is not any difference between the behavior of
individual trajectories and ensembles for stable systems. It is
this equivalence between the individual point of view
(corresponding to trajectories or wave functions) and the
statistical point of view (corresponding to ensembles) that
is broken for unstable dynamical systems.

The simplest example of a chaotic map is the Bernoulli
map. Here we double the value of a number between 0 and
w1 = 2%,
(modulo 1). This map is represented in Figure 3.6. The

1 every second. The equation of motion is now x

equation of motion is again deterministic in that once we
know x , the number x__, is determined. Here we have an
example of deterministic chaos, so called because if we
follow a trajectory through numerical simulations, we see
that it becomes erratic. As the coordinate x is multiplied by
two at each step, the distance between two trajectories will
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Figure 3.6
Bernoulli Map

In this example of deterministic chaos, we start from point P, and
go to point Py, as the value of x doubles (modulo 1).

be (2") = exp (n log 2), again modulo 1. In terms of con-
tinuous time ¢, this can be written as exp (fA), with A = log
2, where A is called the Lyapunov exponent. This shows
that trajectories diverge exponentially, and it is this diver~
gence that is the signature of deterministic chaos. If we
wait long enough, any arbitrarily selected point between 0
and 1 will eventually be approached by the trajectory (see
Figure 3.7). Here we have a dynamical process leading to
randomness. In the past, this apparent flow in the deter-
ministic universe was repeatedly investigated by great math-
ematicians such as Leopold Kronecker (1884) and
Hermann Weyl (1916). According to Jan von Plato, similar
results had been obtained as early as medieval times, so this
is certainly not a new problem.® What is new, however, is
the statistical formulation of the Bernoulli map, which
links randomness to operator theory.
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Figure 3.7
Numerical Simulations of Trajectories for the
Bernoulli Map

The initial conditions are slightly different for each simulation.
This difference is amplified as time goes on. (These numerical
simulations are the work of Dean Driebe).

X

1}
0.8}
0.6
0.4t

0.2F

0.6
0.4

0.2




86 The End of Certainty

Figure 3.8

Simulation of pn(x) for the Bernoulli Map

Numerical simulation of the evolution of the probability distribu-
tion. In contrast with the trajectory description, the probabilities
rapidly reach the asymptotic uniform distribution. (These numeri-
cal simulations are the work of Dean Driebe.)
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We now turn to the statistical description in terms of
the Perron-Frobenius operator. In Figure 3.8, we see the
effect of the operator U on the distribution function. The
difference from the trajectory description is striking be-
cause the distribution function p, (x) leads rapidly to a con-
stant. We may therefore conclude that there must be a basic
difference between the description in terms of trajectories
on the one hand and in terms of ensembles on the other.
In short, instability at the level of trajectories leads to sta-
bility at the level of statistical descriptions.

How is this possible? The Perron-Frobenius operator
wat) = U (x —
x,), but the unexpected feature is that it also allows new

still admits a trajectory description O(x — x

solutions that are applicable only to statistical ensembles,
and not to individual trajectories. The equivalence be-
tween the individual point of view and the statistical de-
scription is broken.

This remarkable fact leads to a new chapter in mathe-
matics and theoretical physics.” Although the problem of
chaos cannot be solved at the level of individual trajecto-
ries, it can be solved at the level of ensembles. We can now
speak of the laws of chaos.® As we shall see in Chapter 4, we
may even predict the speed at which the distribution p ap-
proaches equilibrium (which for the Bernoulli map is a
constant), and establish the relationship between this speed
and the Lyapunov exponent.

How can we understand the difference between indi-
vidual description and statistical description? We shall ana-
lyze this situation in more detail in Chapter 4, where we
shall see that these new solutions require smoothness in the
distribution functions. This is the reason that such solu-
tions are not applicable to individual trajectories. A trajec-
tory represented by 6(x — x,) is not a smooth function; it is
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different from zero only for x = x , and vanishes if x differs
at all from x .

The description in terms of distribution functions is
therefore richer than that derived from individual trajecto-
ries. This agrees with the conclusions we arrived at in
Chapter 1, Section III. Trajectories are merely special solu-
tions of the Perron-Frobenius equation for unstable maps.
This also applies to systems with Poincaré resonances (see
Chapters 5 and 6). The time-oriented flow of correlations
is an essential element in the new solutions for the proba-
bility distribution, while no time-oriented processes exist
at the level of individual trajectories.

This break in the equivalence between the individual
and the statistical description is the fundamental inspiration
of our approach. In the next chapter, we shall discuss in
greater detail the new solutions that arise in chaotic maps
at the statistical level.

The situation which we now find ourselves in is reminis-
cent of the one we encountered in thermodynamics (Chap-
ter 2). The very success of equilibrium thermodynamics
has retarded the discovery of new properties of matter in
nonequilibrium situations where dissipative structures and
self-organization appear. In parallel, the success of classical
trajectory theory and quantum mechanics has hampered the
extension of dynamics to the statistical level in which irre-
versibility can be incorporated into the basic description of
nature.



Chapter 4

THE LAWS OF CHAOS

I

n the preceding chapter, we formulated the principal

factor that makes it possible for us to extend classical and
quantum mechanics for unstable dynamical systems: the
breaking of the equivalence between the individual de-
scription (in terms of trajectories) and the statistical de-
scription (in terms of ensembles). We now wish to analyze
this inequivalence more closely for simple chaotic maps
and illustrate how this observation relates to recent devel-

! Let us first return to the

opments in mathematics.
Bernoulli map, which we have already introduced as an
example of deterministic chaos.

We see from the equation of motion x_, = 2x (mod 1)
that we may calculate x, for arbitrary n once we know the
initial condition x,- However, an essential element of ran-
domness still appears to be present. An arbitrary number x

between 0 and 1 can be represented in a binary digital sys-

89
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tem: x = % +%+%...,where u,=0or 1 (we are us-
ing the negative indices u_, u_, to introduce the baker
transformation, which we shall study in Section III. Each
number x_ is thus represented by a series of digits. We can
easily verify that the Bernoulli map leads to the shift u' =
u_, (for instance, u' , = u_,) as it moves the numbers u, to
the left. Because the value of each digit in the series u_,,
u_,, ...Is independent of the others, the result of each
successive shift is as random as flipping a coin. This system
is called a “Bernoulli shift,” in memory of the pioneering
work in games of chance done by the great eighteenth-
century mathematician, Jakob Bernoulli. Here we can also
observe a sensitivity to initial conditions: Two numbers
differing only slightly (for example, by u_,, which means
less than 27%°) will differ by % after 40 steps. As we have al-
ready explained, this sensitivity corresponds to a positive
Lyapunov exponent whose value is log 2 as x doubles at
each step (see Chapter 3, Section II).

From the outset, the Bernoulli map introduces an arrow
of time that can only point in one direction. If, instead of
x ., =2x (mod 1), we consider the map x_, = %xn, we
find a single-point attractor at x = 0. The time symmetry is
broken at the level of the equation of motion, which is
thus not invertible. This is in contrast to the dynamical sys-
tems described by Newton, whose equations of motion
are invariant with respect to time inversion.

The most important point to keep in mind at this junc-
ture is that trajectories are inadequate. They are incapable
of describing the time evolution of chaotic systems even if
they are governed by deterministic equations of motion.
As Pierre-Maurice Duhem stated as early as 1906, the no-
tion of trajectory is an adequate mode of representation
only if the trajectory remains more or less the same when
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we slightly modify the initial conditions.? The description
of chaotic systems in terms of trajectories lacks precisely
this robustness. This is the very meaning of sensitivity to
initial conditions: Two trajectories taking off from points
as close together as we can imagine will diverge exponen-
tially over the course of time.

On the contrary, there is no difficulty in describing
chaotic systems at the statistical level. It is therefore at this
level that we have to formulate the laws of chaos. In Chap-
ter 3, we introduced the Perron-Frobenius operator U,
which transforms the probability distribution p (x) into
P,.1(%), leading us to conclude that there exist new solu-
tions that are not applicable to individual trajectories. It is
these novel solutions that we wish to identify in this chap-
ter. The study of the Perron-Frobenius operator, which is
a rapidly growing field, is of special interest here because
chaotic maps are perhaps the simplest systems that display
irreversible processes.

Boltzmann applies his ideas to gases containing an im-
mense number of particles (on the order of 10?*). Here, on
the other hand, we are dealing with only a few indepen-
dent variables (one for the Bernoulli map and two for the
baker map, which we shall consider shortly). Once again,
we shall have to reject the contention that irreversibility
exists only because our measurements are limited to ap-
proximations. But first let us identify the new class of solu-
tions associated with the statistical description.

II

How do we solve a dynamical problem at the statistical
level? First we need to determine the distribution function
pP(x) so that we can observe the recurrence relation p_,,(x)
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= U p,(x). The distribution function p__,(x) after (n + 1)
maps is obtained by the action of the operator U on p, (x),
which is the distribution function after # maps. We shall
meet the same type of problem in classical and quantum
mechanics. For reasons that we shall explain in Chapter 6,
operator formalism was first introduced in quantum the-
ory, and then extended to other fields of physics, most no-
tably statistical mechanics.

An operator is simply a prescription for how to act on a
given function; as such, it may involve multiplication, dif-
ferentiation, or any other mathematical operation. In order
to define the operator, we must also specify its domain. On
what types of functions does the operator act? Are they
continuous or bounded? Do they have other characteristics
as well? These properties define the function space.

In general, an operator U acting on a function f(x)
transforms it into a different function. (For instance, if U is
a derivative operator d%, then Ux?=2x). However, there are
special functions, known as the eigenfunctions of the opera-
tor, which remain invariant when we apply U; they are
multiplied only by a number known as the eigenvalue. In
the above example, ¢ is an eigenfunction to which the
eigenvalue k corresponds. A fundamental theorem in oper-
ator analysis states that we can express an operator in terms
of its eigenfunctions and eigenvalues, both of which de-
pend on the function space. Of particular importance is
the so-called “Hilbert space,” which has been carefully ex-
plored by theoretical physicists working in quantum me-
chanics. It contains “nice functions” such as x or sin x, but
not the singular, generalized functions that we shall need in
order to introduce irreversibility into the statistical descrip-
tion. Every new theory in physics also requires new math-



The Laws of Chaos 93

ematical tools. Here, the basic novelty is our need to go

beyond Hilbert space for unstable dynamical systems.
After these initial considerations, let us once again re-

turn to the Bernoulli map, where we can easily derive the

explicit form of the evolution operator U, thereby obtain-
x + 1

ing p,..,) = Up,(x) =3[p,G) + p,(*5)]. This equation
means that after (n + 1) iterations, the probability p,_, ,(x)

at point x is determined by the values of p (x) at points 5
and L}E As a consequence of the form of U, if p isa
constant equal to @, p, , , is also equal to @, since Ut = 0.
The uniform distribution p = o, which corresponds to
equilibrium, 1s the distribution function reached through
iteration of the shift, for n — .

On the contrary, if p (x) = x, we obtain p, _,(x) = % +3.
In other words, Ux = 31 + 3 where the operator U trans-
forms the function x into a different function, % +5. But
we can easily find the eigenfunctions as defined above, in
which the operator reproduces the same function multi-
plied by a constant. In the example U(x — %) = %(x— %), the
eigenfunction is therefore x —% and the eigenvalue % If we
repeat the Bernoulli map n times, we obtain U'(x — %) =
(%)"(x - %), which moves toward 0 for n — . The contri-
bution (x — %) to p(x) is therefore rapidly damped at a rate
related to the Lyapunov exponent. The function x — % be-
longs to a family of polynomials called the Bernoulli poly-
nomials, denoted as Bn(x), which are eigenfunctions of U
with eigenvalues (%)", where n is the degree of the polyno-
mial.> When p is written as a superposition of Bernoulli
polynomials, the polynomials of a higher degree disappear
first because their damping factor is greater. This is the rea-
son that the distribution function moves rapidly toward a
constant. In the end, only B,(x) = 1 survives.
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We now need to express the distribution function p and
the Perron-Frobenius operator U in terms of Bernoulli
polynomials. Before we describe the result, however, we
should once more emphasize the distinction between
“nice” functions and “singular” functions (also called gen-
eralized functions or distributions, which are not to be
confused with probability distributions), as it plays a crucial
role. The simplest singular function is the delta function
O(x). As we saw in Chapter 1, Section III, &(x — x,
for all values where x # x, and infinite where x = x,,.

0
We have already noted that singular functions have to be

) is zero

used in conjunction with nice functions. For example, if
fix) is a nice continuous function, the integral | dx fx)d(x
— x,) = flx,) has a well-defined meaning. In contrast, the
integral containing a product of singular functions, such as
J dx 8(x — x,)0(x — x,) = 6(0) = =, diverges and is therefore
meaningless.

Our basic mathematical problem is defining the opera-
tor U in terms of its eigenfunctions and eigenvalues. This
is called the spectral representation of the operator U.
Once we have this representation, we can use it to express
U p, that is, the effect of the Perron-Frobenius operator on
the probability distribution p. Here we find a quite re-
markable situation characteristic of deterministic chaos.
We have already found a set of eigenfunctions, B (x), the
Bernoulli polynomials, which are nice functions, but there
is a second set, Bn(x), which is formed by singular functions
related to derivatives of the d-function.* To obtain the
spectral representation of U and therefore U p, we need
both sets of eigenfunctions. As a result, the statistical for-
mulation for the Bernoulli map is applicable only to nice
probability functions p and not to single trajectories
that correspond to singular distribution functions repre-
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sented by d-functions. The spectral decomposition of U
when applied to a d-function contains products of singu-
lar functions that diverge and are meaningless. The equiv-
alence between the individual description (in terms of
trajectories represented by d-functions) and the statistical
description is broken. For continuous distribution p, how-
ever, we obtain consistent results that go beyond trajectory
theory. We can calculate the rate of approach to equilib-
rium and therefore to an explicit dynamical formulation of
irreversible processes that take place in the Bernoulli map.
This outcome confirms the qualitative discussion in Chap-
ter 1, Section III. Probability distribution takes into ac-
count the complex microstructure of the phase space. The
description of deterministic chaos in terms of trajectories
corresponds to an overidealization and is unable to express
the approach to equilibrium.

Here we already encounter some of the most critical is-
sues in modern mathematics. In fact, as we shall see in
Chapters 5 and 6, the determination of eigenfunctions and
eigenvalues is the central problem of statistical and quan-
tum mechanics. The aim there, as well as for chaos, is to
express an operator, such as U, in terms of its eigenfunc-
tions and eigenvalues. When we succeed in doing so, we
obtain the spectral representation of the operator. In quan-
tum mechanics, such a representation has been achieved in
simple situations in terms of nice functions. We may then
use Hilbert space. The association between quantum me-
chanics and operator calculus in Hilbert space is so close
that quantum mechanics is often considered an operator
calculus in Hilbert space. In Chapter 6, we shall see that
this is generally not the case.

Ultimately, to grasp the real world, we must leave
Hilbert space. In the case of chaotic maps, we have to go
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out of Hilbert space because we need both the B (),
which are nice functions, and the Bn(x), which are singular
functions. We can then speak of rigged Hilbert space, or
Gelfand space. In more technical terms, we obtain an irre-
ducible spectral representation of the Perron-Frobenius
operator as it applies exclusively to nice probability distri-
butions, and not to individual trajectories. These features
are fundamental inasmuch as they are typical of unstable
dynamical systems. We shall find them again in our gener-
alization of classical dynamics in Chapter 5 and quantum
mechanics in Chapter 6. The physical reasons for which
we have to leave Hilbert space are related to the problem
of persistent interactions mentioned above, which requires
a holistic, nonlocal description. It is only outside Hilbert
space that the equivalence between individual and statisti-
cal description is irrevocably broken, and irreversibility is
incorporated into the laws of nature.

I11

The Bernoulli map is not an invertible system. We men-
tioned earlier that an arrow of time already exists at the
level of equations of motion. As our main problem is to
describe the emergence of irreversibility in invertible dy-
namical systems, we shall now consider the baker map, or
baker transformation, which is a generalization of the
Bernoulli map. Let us take a square whose sides have length
1. First we flatten the square into a rectangle whose length
is 2; then we cut it in half and build a new square. If we
examine the lower part of the square, we see that after one
iteration of this process (or mapping), it splits into two
bands (see Figure 4.1). Moreover, the transformation is re-
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Figure 4.1
The Baker Transformation

versible: The inverse transformation, which first reshapes
the square into a rectangle with length % and height 2, re-
turns each point to its initial position.

For the Bernoulli map, the equations of motion are
very simple: At each step, the coordinates (x,y) become
2x,3) for0<x<3and 2x— 1,25 fori <x<1. To

obtain the inverse baker transformation, we only have to

permute x and y.

In the baker map, the two coordinates play different
roles. The horizontal coordinate x is the dilating coordi-
nate, which corresponds to the coordinate x in the
Bernoulli map as it is multiplied by 2 (mod 1) at each map-
ping. The area of the square is preserved because we also
have a contracting coordinate y; in the direction of the
vertical coordinate, the points draw closer together while
the square is being flattened into a rectangle. Since the dis-
tance between two points along the horizontal coordinate
x doubles with each transformation, it will be multiplied
by 2" after n transformations. If we rewrite 2" as e"°%2, as
the number n of transformations measures time, the Lya-
punov exponent is log 2, exactly as in the Bernoulli map
considered in Section II. There is also a second Lyapunov
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exponent with the negative value —log 2, which corre-
sponds to the contracting direction y.

The effect of successive iterations in the baker transfor-
mation is worthy of the same attention we gave to them in
the discussion of the Bernoulli maps (see Figure 3.7). Here
we start with points localized in a small portion of the
square (see Figure 4.2), where we can clearly see the
stretching effect of the positive Lyapunov exponent. As
the coordinates x and y are limited to the interval 0 — 1, the
points are reinjected, leading to their uniform distribution
throughout the square. By numerical simulation, we are
also able to verify that if we start with the probability
p (x,y), the distribution moves rapidly toward unifor-

Figure 4.2
Numerical Simulation of the Baker Transformation

The maps are ordered according to the number of iterations,
which represent time. (These numerical simulations are the work
of Dean Driebe.)

BUNTDS
%
1 2 -7 8
3 4 ‘9 .10
.
5 [~ ~ 6 o 12




The Laws of Chaos 99

mity, as in the case of the Bernoulli shift (see Figure 3.8).

We can gain a great deal of insight into the mechanism
of the baker transformation by representing it as a Bernoulli
shift, as we did in Section I. Here we associate with each
point (x,y) of the unit square the doubly infinite sequence
of numbers {u } defined by the binary representation

0

x= 3 Fou,y= 22"

p= —00 n=1

where each u_can take on the values O or 1. Each point x,y

is represented by the series . g Uy Ug, U

which ... u_,, u_,, u, corresponds to the dilating coordi—

M2 1n

nate x and u, u . to the contracting coordinate y. For

S
instance, the point x = %, y =  will be represented by a se-
ries with u_, = 1, u, = 1, with all other u_ being zero. By
inserting these expressions into the equations of motion,
we obtain the shift u '=u__,, which is again the Bernoulli
shift. We see that the information contained in the initial
conditions includes the entire past and future history of
the system (Figure 4.3).

Successive iterations of the baker transformation lead to
fragmentation of the shaded and unshaded areas, produc-
ing an increasing number of disconnected regions. Note
that the digit u, determines whether the representative
phase space point is in the left half (4, = 0) or the right half
(4, = 1) of the unit square. Since the digits u , . . . can be
determined by tossing a coin, the time iterates of u , u' =
et W = U,
This shows that the process by which the point appears in

u will have the same random properties.
the left or right half of the square can be considered a
Bernoulli shift.

The baker transformation also shares an important
property of all dynamical systems, known as recurrence.
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Figure 4.3

Iterations of the Baker Transformation

Starting with the partition O (called the generating partition), we
repeatedly apply the baker transformation. In moving toward the

future, we generate horizontal bands. Similarly, by moving into
the past, we generate vertical bands.

Future

Past

Generating partition

Consider a point (x,y) for which the sequence {u } in the
binary digit representation is finite or infinite but periodic,
and x and y are then rational numbers. Since all u_are
shifted in the same way, every state of this kind will recycle
identically after a certain period of time. The same holds
true for most other states. To illustrate this concept, we shall
consider the binary representation of an irrational point
(x,y), which contains an infinity of nontrivial, nonrepeat-
ing digits. It can be shown that almost all irrationals contain
a finite sequence of digits repeated an infinite number of
times. Thus, a given sequence of 2m digits around position
0, which determines the state of the system to an error of
2-", will reappear an infinite number of times under the
effect of the shift. Since m can be made as large as desired
(although finite), almost every state will arbitrarily ap-
proach any point, including, of course, the initial position,
an infinite number of times. In other words, most of the
trajectories will traverse the entire phase space. This is the

famous Poincaré recurrence theorem, which, together
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with time reversibility, was long advanced as an essential
argument against the existence of genuinely dissipative
processes. However, this view can no longer be sustained.

In summary, the baker transformation is invertible, time
reversible, deterministic, recurrent, and chaotic. Demonstrating
these properties through this example is especially useful,
since these same properties characterize many real-world
dynamical systems. As we shall see, despite these proper-
ties, chaos allows us to establish genuine irreversibility by
setting up a description at the statistical level.

The dynamics of conservative systems involve laws of
motion and initial conditions. Here the laws of motion are
simple, but the concept of initial data demands a more de-
tailed analysis. The initial conditions of a single trajectory
correspond to an infinite set {u } (n =— to + ). But in
the real world, we can only look through a finite window.
This means that we are able to control an arbitrary but lim-
ited number of digits u . Suppose that this window corre-
u

sponds to u_u_ uuu,, all other digits being

Mgty Tttty
unknown (the dot indicates the separation between x and
y digits). The Bernoulli shift ' = u__, implies that at the
next step, the previous series is replaced by u_,u_

u u_

3h2tr
uqu, i, which contains the unknown digit u_,. More pre-

oM
cisely, owing to the existence of a positive Lyapunov ex-
ponent, we need to know the initial position of the point
with an accuracy of N + n digits in order to be able to de-
termine its position with an accuracy of N digits after n it-
erations.

As we saw in Chapter 1, the traditional means of solv-
ing this problem would be to introduce a coarse-grained
probability distribution, which is not defined by single
points, but rather by regions, as originally proposed by
Paul and Tatiana Ehrenfest.> However, two points on an
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expanding manifold, even if not distinguishable by mea-
surements of a given finite precision at time 0, will be sep-
arated, and thus observable, over time. Traditional coarse
graining therefore cannot be applied to the dynamical evo-
lution. This is one of the reasons for which we need a
more sophisticated method.

First, however, we should analyze in more detail what
the approach to equilibrium means in terms of the baker
transformation.® In spite of the fact that this transforma-
tion is invertible, as are all dynamical systems, the evolu-
tions for t = + % and t = — % are different. For t — + o,
we move toward increasingly narrow horizontal bands (see
Figure 4.3). In contrast, for t = — %, we move toward in-
creasingly narrow vertical bands.

We see that for chaotic maps, dynamics lead to two
types of evolutions. We thus obtain two independent de-
scriptions, one characterizing the approach to equilibrium
in our future (for t — + ), and the other in our past (for ¢
— — ). Such dynamical decomposition is possible for
both chaotic maps and nonintegrable classical and quan-
tum systems, as we shall see later on. For a simple dynami-
cal system, whether a harmonic oscillator or a two-body
system, such decomposition does not exist; future and past
cannot be distinguished. Which of the two descriptions for
chaotic maps should we retain? We shall come back re-
peatedly to this question. For the moment, let us take into
account the inherent universality that every irreversible
process has in common. All arrows of time in nature have
the same orientation: They all produce entropy in the
same direction of time, which is by definition the future.
We therefore have to retain the description corresponding
to equilibrium reached in our future, that is, for t — + .
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In Chapter 1, we mentioned the time paradox associ-
ated with the baker map: While the dynamics described by
this map are time reversible, irreversible processes do ap-
pear at the statistical level. As in the Bernoulli map, we can
introduce the Perron-Frobenius operator U defined by
P, . x,y) = Up,(x,). But there is a fundamental differ-
ence. A general theorem states that for invertible dynami-
cal systems there exists a spectral representation, defined on
Hilbert space, which involves only nice functions.” More-
over, in this representation there is no damping, as the
eigenvalues are modulo 1. Such a representation also exists
for the baker transformation, but it is not of interest to us
because it offers no new information regarding trajecto-
ries. We simply come back to o6(x —x, , )0(y —y,,,) =
Ud(x—x)(y — v,), a solution that is equivalent to the tra-
jectory description.®

Exactly as we did for the Bernoulli map, we have to go
out of Hilbert space to obtain additional information. For
spectral representations in generalized space, which have
recently been obtained, the eigenvalues are the same (3)"
as for the Bernoulli map.” Moreover, the eigenfunctions
are singular functions, such as the Bn(x) for the Bernoulli
map. Again, these representations are irreducible in that
they apply only to suitable test functions, obliging us to
limit ourselves to continuous distribution functions. Single
trajectories described by singular §-functions are excluded.
As is the case in the Bernoulli map, the equivalence be-
tween the individual description and the statistical descrip-
tion is broken. Only the statistical description includes the
approach to equilibrium and therefore irreversibility.

For the baker map, there is one important new element
involved, however, in comparison to the Bernoulli map:
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The Perron-Frobenius equation can be applied to both
future and past (p,,, =Up andp, ,=U"'p ; here U'is
the inverse of U). In the realm of Hilbert space spectral
representations, this makes no difference because U1+ "2 =
U U2, whatever the sign of n, and n, (remembering that
the positive sign refers to the future, and the negative to
the past). Hilbert space can be described as a dynamical
group. In contrast, for irreducible spectral representations,
there is an essential difference between future and past.
The eigenvalues of U" are expressed as (3)" = e~ log 2)
This formula corresponds to damping in the future (n >
0), and divergence in the past (n < 0). There now exist two
different spectral representations—one for the future, and
the other for the past. These two time directions, which
are contained in the trajectory description (or Hilbert
space), are now disentangled. The dynamical group is
thereby broken into two semigroups. As previously men-
tioned, in accordance with our view that all irreversible
processes are oriented in the same direction, we have to se-
lect the semigroup in which equilibrium is reached in our
own future. Nature itself is described by a semigroup that
distinguishes between past and future. There is an arrow of
time. As a result, the traditional conflict between dynamics
and thermodynamics is eliminated.

In summary, as long as we are considering trajectories, it
seems paradoxical to speak of laws of chaos because we are
dealing with the negative aspects of chaos, such as the ex-
ponential divergence of trajectories, which lead to un-
computability and apparent lawlessness. The situation
changes drastically when we introduce the probabilistic
description, which remains valid and computable at all
times. It is therefore at the probabilistic level that the laws
of dynamics have to be formulated for chaotic systems. In
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the simple examples studied above, irreversibility is linked
only to Lyapunov time, but our research has recently been
extended to more general maps that include such irre-
versible phenomena such as diffusion and various other

transport processes. '

IV

As mentioned in Chapter 1, the success of the statistical
description when applied to deterministic chaos stems
from the fact that it takes into account the complex mi-
crostructure of phase space. In each finite region of phase
space, there are exponentially diverging trajectories. The
very definition of the Lyapunov exponent involves the
comparison of neighboring trajectories. It is remarkable
that irreversibility already emerges in simple situations in-
volving only a few degrees of freedom. This is, of course,
a blow to the anthropomorphic interpretation of irre-
versibility based on approximations that we ourselves are
supposed to introduce. Unfortunately this interpretation,
which was formulated after the defeat of Boltzmann, con-
tinues to be propagated today.

It is true that there is still a trajectory description if ini-
tial conditions are known with infinite precision. But this
does not correspond to any realistic situation. When-
ever we perform an experiment, whether by computer or
some other means, we are dealing with situations in which
the initial conditions are given with a finite precision and
lead, for chaotic systems, to a breaking of time symmetry.
Similarly, we could imagine infinite velocities, and there-
fore we would no longer need relativity theory, which is
based on the existence of a maximum velocity—the ve-
locity of light ¢ in the vacuum—but the assumption of ve-
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locities greater than ¢ corresponds to no known observable
reality.

Maps are idealized models that cannot capture time’s
true continuity. As we now turn our attention to more re-
alistic situations, of special importance to us will be non-
integrable Poincaré systems, where the break between the
individual description (trajectories or wave functions) and
the statistical description is even more striking. For these
systems, the Laplace demon is powerless, whether his
knowledge of the present is finite or infinite. The future is
no more a given; it becomes a “construction,” to use an
expression of the French poet Paul Valéry.



Chapter 5

BEYOND NEWTON’S LAWS

I

Having analyzed maps that represent simplified models
in Chapter 4, we come to the question at the very
heart of our quest: What is the role of instability and persis-
tent interactions in the framework of classical and quantum
mechanics? Classical mechanics is the science upon which
our belief in a deterministic, time-reversible description of
nature is based. In responding to this question, we must first
grapple with Newton’s laws, the equations that have dom-
inated theoretical physics for the past three centuries.
Quantum mechanics limits the validity of classical me-
chanics when applied to atoms and elementary particles.
Relativity shows that classical mechanics also has to be
modified when dealing with high energies or cosmology.
Whatever the situation, we may introduce either an indi-
vidual description (in terms of trajectories, wave functions,
or fields) or a statistical description. Remarkably, at all lev-
els, instability and nonintegrability break the equivalence

107
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of both descriptions. Consequently, we have to revise the
formulation of the laws of physics in accordance with the
open, evolving universe in which mankind lives.

As stated previously, our position is that classical me-
chanics is incomplete because it does not include irre-
versible processes associated with an increase in entropy. To
include these processes in its formulation, we must incor-
porate instability and nonintegrability. Integrable systems
are the exception. Starting with the three-body problem,
most dynamical systems are nonintegrable. For integrable
systems, the two modes of description—the trajectory
description, based on Newton’s laws, and the statistical de-
scription, based on ensembles—are equivalent. For nonin-
tegrable systems, this is not so. Even in classical dynamics,
then, we have to use the Gibbsian statistical approach (see
Chapter 1, Section III). As we saw in Chapter 3, Section I,
it is this approach that leads to the dynamical interpreta-
tion of equilibrium thermodynamics. It is therefore quite
natural that we also have to employ the statistical descrip-
tion to include irreversible processes driving systems to
equilibrium. In this way we can incorporate irreversibility
into dynamics. As a result, there appear non-Newtonian
contributions that can be consistently included in dynam-
ics at the level of the statistical description. Moreover,
these new contributions break time symmetry. We there-
fore obtain a probabilistic formulation of dynamics by
means of which we can resolve the conflict between
time-reversible dynamics and the time-oriented view of
thermodynamics.

We are well aware that this step represents a radical de-
parture from the past. Trajectories have always been con-
sidered primitive, fundamental tools of the trade. This is
no longer the case. We shall encounter situations where
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trajectories “collapse,” to borrow a term from quantum
mechanics (see Section VII).

In hindsight, it is not surprising that we have had to
abandon the trajectory description. As we saw in Chapter
1, nonintegrability is due to resonances, which express
conditions that must be satisfied by frequencies. They are
not local events that occur at given points in space and at a
given instant in time. As such, they introduce elements that
are quite foreign to the local trajectory description. In-
stead, we need a statistical description to formulate dy-
namics in situations where we expect irreversible processes
and therefore an increase in entropy. Such situations, after
all, are what we see in the world around us.

Indeterminism, as conceived by Whitehead, Bergson,
and Popper, now appears in physics. This is no longer the
result of some a priori metaphysical choice, but rather the
need for a statistical description of unstable dynamical sys-
tems. Over the past decades, many scientists have proposed
reformulations or extensions of quantum theory. But the
fact that we now need to extend classical mechanics as well
is quite unanticipated. Even more unexpected is the real-
ization that this revision of classical mechanics can guide us

in extending quantum theory.

II

Before we begin our revision of Newton’s laws, let us
summarize the fundamental concepts of classical mechan-
ics. Consider the motion of a point of mass m. With the
passage of time, its trajectory is described by its position,
1(1), its velocity, v = dr/dt, and its acceleration, a = d¢/df.
Newton’s basic equation relates acceleration a to force F
through the formula F = ma. This formula includes the



110  The End of Certainty

classical principle of inertia, that is, where there is no
force, there is no acceleration, and the velocity remains
constant. Newton’s equation remains invariant when we
shift from one observer to another who moves at a con-
stant velocity with respect to the first. This is known as the
Galilean invariance, which has been radically altered by
relativity, as we shall see in Chapter 8. Here we are dealing
with Newtonian, nonrelativistic physics.

We see that time takes its place in Newton’s equation
only by means of a second derivative. Newton’s time, so to
speak, is reversible, and future and past assume the same
role. Moreover, Newton’s law is deterministic.

Now consider a more general situation in which a sys-
tem is formed by N particles. In three-dimensional space,

we have the 3N coordinates ¢,, . and the corre-

LI

sponding velocities v,, . . In modern formulations of

v
AN
dynamics, we usually define both the coordinates and ve-

locities (or better, the momenta p,, . . where in sim-

PN
ple cases p = mv) as independent variables. As in Chapter 1,
the state of the dynamical system is then associated with
a point in phase space, and its motion with a trajectory
in this space. The most important quantity in classical
dynamics is the Hamiltonian H, which is defined as the
energy of the system expressed in terms of the variables g
and p. In general, H is the sum of the kinetic energy E,. (p)
and the potential energy V{g), where p and g signify the
entire set of independent variables.

Once we have obtained the Hamiltonian H(p, ), we can
derive the equations of motion that determine the evolu-
tion of coordinates and momenta over the course of time.
This procedure is familiar to all students of mechanics.
Such equations, as derived from the Hamiltonian, are
called the canonical equations of motion. Contrary to
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Newton’s equations, which are of the second order (that
is, they contain the second time derivative), Hamiltonian
equations are of the first order. For a single free particle, H
= é—’;, the momentum p is constant over time, and the co-
ordinate varies linearly when time g = ¢, + 5. By defini-
tion, for integrable systems, the Hamiltonian can be
expressed only in terms of momenta (if necessary, after an
appropriate change of variables). Poincaré studied Hamil-
tonians in the form H = H(p) + A{(g), which is the sum
of an integrable contribution (the “free Hamiltonian” H,)
and a potential energy due to interactions (A is a scaling
factor that will be used later on). He showed that this class
of Hamiltonians is generally not integrable, which is to say
that we cannot eliminate interactions and go back to inde-
pendent units. We already mentioned in Chapter 1 that
nonintegrability is due to diverging denominators associ-
ated with Poincaré resonances, as a result of which we can-
not solve the equations of motion (at least in powers of the
coupling constant A).

In the following pages, we shall concern ourselves pri-
marily with nonintegrable large Poincaré systems (LPS). As
we have seen, Poincaré resonances are associated with fre-
quencies corresponding to various modes of motion. A
frequency @, depends on the wavelength k. (Using light as
an example, ultraviolet has a higher frequency @ and
shorter wavelength k than infrared light.) When we con-
sider nonintegrable systems in which the frequency varies
continuously with the wavelength, we arrive at the very
definition of LPS. This condition is met when the volume
in which the system is located is great enough for surface
effects to be ignored. This is why we call these systems
large Poincaré systems.

A simple example of LPS would be the interaction be-
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tween an oscillator with frequency @, coupled with a
given field. In this century of radio and television, we have
all heard the term electromagnetic waves. The amplitude
of these waves is defined by a field described by a function
@(x,1) of position and time. As was established at the be-
ginning of the century, a field can be thought of as the su-
perposing of oscillations with frequencies @, whose
wavelength k varies from the size of the system itself to the
dimensions of elementary particles. In the oscillator-field
interaction that we are considering, resonances appear
each time a field frequency @, is equal to the oscillator fre-
quency @,. When we try to solve the equations of motion
of the oscillator in interaction with the field, we encounter
Poincaré resonances m, which correspond to diver-
gences whenever @, = @,. In other words, these terms tend
toward infinity and therefore become meaningless. As we
shall see, we can eliminate these divergences in our statisti-
cal description.

Poincaré resonances lead to a form of chaos. Indeed, in-
numerable computer simulations have shown that these
resonances elicit the appearance of random trajectories, as
is the case for deterministic chaos. In this sense, there is a
close analogy between deterministic chaos and Poincaré
nonintegrability.

III

As in previous chapters, we shall consider the probability
distribution p(g, p, f), whose evolution over time can easily
be derived from the canonical equations of motion. We are
now in the same situation as we were for chaotic maps,
where we replaced the equations of motion with statistical
descriptions associated with the Perron-Frobenius opera-
tor. In classical mechanics, we also encounter an evolution
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operator known as the Liouville operator L, which deter-
mines the evolution of p through the equation i %‘% =Lp.
The time change of p is obtained by acting on p with the
operator L. If the distribution function is time indepen-
dent %‘% =0, then Lp = 0. This corresponds to thermody-
namic equilibrium. As we saw in Chapter 3, Section I, p
then depends on only the energy (or the Hamiltonian),
which is an invariant of motion.

The solution of dynamical problems at the statistical
level requires determining the spectral representation of L,
as was explained in Chapter 4 for chaotic systems. We
therefore have to define its eigenfunctions and eigenvalues.
We have seen that spectral representation depends on the
functions which, as used in the past (and still appropriate
for integrable systems), are in Hilbert space, the space of
“nice” functions. According to a fundamental textbook
theorem, operator L has real eigenvalues [ in Hilbert
space. In this case, evolution over time proves to be a su-
perposition of oscillatory terms. In fact, the formal solu-
tion of the Liouville equation is p(f) = exp (—itL)p(0). The
oscillatory term exp(—itl ) = cos tl, — i sin # is associated
with eigenvalue [ , where future and past play the same role.
In order to include irreversibility, we need complex eigen-
values such as [ = @ — i¥’, which lead to exponential
damping e for time evolution. This contribution pro-
gressively diminishes in the future (¢ > 0) but is increased in
the past (¢ < 0), and thus time symmetry is broken.

However, obtaining complex eigenvalues is possible
only when we leave Hilbert space. Our main objective is
now to understand for which physical reasons we have to
do so. This follows from the inescapable fact that there are
persistent interactions in the natural world.! When we con-
sider the room in which we sit, the molecules in the at-
mosphere are constantly colliding. This is quite different
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from transitory interactions, such as a finite number of mol-
ecules in a vacuum. The molecules then interact over a
finite period of time, and eventually may escape into
infinity. The distinction between persistent and transitory
interactions takes on a crucial importance in moving from
classical dynamics to thermodynamics. Classical dynamics
extracts a given number of particles and considers their
motion in isolation; irreversibility occurs when interac-
tions never cease. In short, dynamics corresponds to a re-
ductionist point of view in the sense that we consider
a finite number of molecules in isolation. Irreversibil-
ity emerges from a more holistic approach in which we
consider systems driven by a large number of particles as a
whole. In making this distinction more precise, we shall in-
dicate why we need singular distribution functions and
must therefore leave Hilbert space.

IV

Transient interactions may be described by localized distri-
bution functions. To describe persistent interactions in a
large space such as the atmosphere, we need delocalized
distribution functions. In defining more precisely the
distinction between localized and delocalized distribution
functions p, let us begin with a simple example. In a one-
dimensional system, the coordinate x extends from —eo to
400, Localized distribution functions are concentrated on a
finite section of the line. A special case is a single trajectory
that is localized at a given point and moves along the line
over the course of time. In contrast, delocalized distribu-
tion functions extend over the entire line. These two
classes of functions describe various situations. As an ex-
ample, let us consider scattering. In the usual scattering ex-
periments, we prepare a beam of particles that we shoot at
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an obstacle (the scattering “center”). We then have the
three stages represented in Figure 5.1.

In this experiment, the beam first approaches the scat-
tering center, then interacts with it, and is finally in free
motion again. The important point here is that the inter-
action process is transient. For delocalized distributions, on
the other hand, the beam extends over the entire axis, and
scattering neither starts nor stops. We then have what we
call persistent scattering.

Transient scattering experiments have played a signifi-
cant part in the history of physics by allowing us to study
the interactions between elementary particles such as pro-
tons and electrons. Still, in many situations—particularly in
macroscopic systems such as gases or liquids—we have per-
sistent interactions because collisions never cease. In sum,
transient interactions are related to localized distribution
functions, such as trajectories, while persistent interactions
are related to delocalized distributions, which extend over
the entire system.

Thermodynamic systems are characterized by persistent

Figure 5.1
The Three Stages of Scattering

(2) The beam approaches the scattering center. (b) The beam inter-
sects the scattering center. (¢) The beam is once again in free motion.

~o- ()



116  The End of Certainty

interactions, and must therefore be described by delocal-
ized distributions. In defining these systems, we have to
consider the thermodynamic limit, where the number of par-
ticles N and the volume V are increased, while their ratio,
the concentration N/ remains constant. Although for-
mally we consider the limits N — oo, IV — oo, there are, of
course, no dynamical systems—not even the universe—
where the number of particles is infinite. This limit simply
means that surface effects described by the terms of %, or l,/
can be ignored. The thermodynamic limit plays a central
role in all macroscopic physics. Without this concept, we
could not even define states of matter such as gases, lig-
uids, or solids, or describe the phase transitions between
these states of matter. We would also be unable to distin-
guish between near-equilibrium and far-from-equilibrium
situations, which were discussed in Chapter 2.

We shall now illustrate why the introduction of delocal-
1ized distribution functions forces us to leave the class of
nice functions and therefore Hilbert space. In order to do
so, we have to consider several elementary mathematical
notions. In the first place, every student of mathematics
is familiar with periodic functions such as sin (g%). This
function remains invariant when we add to the coordinate
x the wavelength A, as

2nx . 2W(x + A)
™ — Sin A .

sin A

ST . 2K
Other periodic functions are cos 5, or the more complex

combination

21x

2mx 2 c 2
e =cosTnx + zsanx
Instead of the wavelength A, we often use the wave vector
2 ik s
k =7'. The exponential ¢** is called a plane wave.
In the second place, the classical theory of Fourier series
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(or Fourier integrals) demonstrates that a function of the
coordinate x, which we shall call f{x), can be expressed as
a superposition of periodic functions corresponding to
wave vectors k, or more specifically, as a superposition of
plane waves ¢**. In this superposition, each plane wave is
multiplied by an amplitude @(k), which is a function of k.
This function @(k) is known as the Fourier transform of f{x).

In short, we can go from a function f(x) of coordinate x
to a description (k) in wave vectors k. Of course, the in-
verse transformation is equally possible. It is also important
to note that there is a kind of duality between f(x) and
@(k). If flx) extends over a spatial interval Ax (and vanishes
outside), ¢(k) extends over the “spectral” interval Ak ~ AxL
When the spatial interval Ax increases, the spectral interval
Ak decreases, and vice versa.?

In Chapter 1, Section III and Chapter 3, Section II, we
defined the singular function d(x). As we saw, 0(x) differs
from zero only at x = 0. The spatial interval Ax is therefore
zero, and when Ak ~AXL, the spectral interval is infinite. In-
versely, delocalized functions for which Ax — oo leads to
singular functions in k such as 8(k). Thus, delocalized dis-
tribution functions are an essential element in describing
persistent interactions. At equilibrium, the distribution
function p is a function of the Hamiltonian H (see Chap-
ter 3, Section I). The Hamiltonian contains the kinetic en-
ergy that is a function of the momenta p and not of the
coordinates, and thus includes a delocalized part that has a
singular Fourier transform. It is hardly astonishing that sin-
gular functions play a critical role in our dynamical de-
scription. Indeed, it is our need for these functions that
forces us to leave Hilbert space. Equilibrium distributions
that are functions of the Hamiltonian are already outside
Hilbert space.
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Let us now compare the trajectory description with the
statistical description in terms of the Liouville operator
(see Section III). Here we are in for quite a surprise be-
cause the statistical description introduces completely dif-
ferent concepts. This is obvious even in the simplest case
where we consider the motion of a free particle along a
line. As we saw in Section II, the coordinate ¢ of the par-
ticle varies linearly over time, while the momentum p re-
mains constant. On the contrary, the statistical description
is defined in terms of the wave vectors k, associated with
the Fourier transform of ¢, and the momentum p. We are
used to dealing with wave vectors when we study acousti-
cal or optical problems, but here wave vectors appear in a
problem of dynamics. The reason is that for a free particle,
the Liouville operator L is simply a derivative operator,
where L =2 (% As we noted in Chapter 4, Section I, the
eigenfunctions are then exponentials exp (ikx) and the
eigenvalues %1]5. The eigenfunction exp (ikx) is a periodic
function, or plane wave, since exp (ikx) = cos kx + ¢ sin kx.
It extends over the entire space, in striking contrast with a
trajectory localized at a single point. The solution of the
equation of motion for a free particle is obtained in the
statistical description through a superposition of plane
waves. Of course, in this simple example, the two descrip-
tions are expected to be equivalent. Using the theory of
Fourier transformation, we can reconstruct the trajectory
starting with plane waves (see Figure 5.2). Because the tra-
jectory is concentrated at one point, we have to superpose
plane waves extending over the entire length of the spec-
tral interval (Ak — o).

As a result, for g = ¢, the amplitudes of the plane waves
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Figure 5.2
Superposition of Plane Waves

Trajectories resulting from the superposition of plane waves
through constructive interference lead to a function characterized
by dramatic peaking around ¢ = 0.

flq) fa)

Pl

@) (b)

increase through constructive interference, while for g # g,
they vanish through destructive interference. In integrable
systems, the wave vector k is constant over time. By super-
posing the plane waves, we can reconstruct trajectories at
any moment. But the important point to consider here is
that the trajectory is no longer a primitive concept, but
rather a derived concept as a construct of plane waves. It is
thus conceivable that resonances may threaten the con-
structive interferences leading to a trajectory. This could
not be considered as long as the trajectory was treated as a
primitive, irreducible concept. Given that a trajectory is
represented by a point in phase space, we can see that the
collapse of trajectories would correspond to a situation in
which a point decomposes over time into a multiplicity of
points, exactly as in the diffusion process we analyzed in
Chapter 1. The same initial condition would then lead to
a multiplicity of trajectories, as was also the case in the dif-
fusion process.
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The eigenvalues I—ff of the Liouville operator correspond
to the frequencies appearing in Poincaré resonances. They
depend on both k and p, and not on the coordinates. The
use of wave vector k is therefore a logical starting point for
discussing the role of these resonances. By using plane
waves, we can describe not only trajectories (which corre-
spond to transient interactions), but also delocalized situa-
tions. As we have seen, this leads to singular functions in
the wave vector k. Let us now examine the effect of inter-
actions on the statistical description by employing the lan-
guage of wave vectors.

VI

Suppose that the potential energy I in the Hamiltonian is
the sum of binary interactions. It then follows from well-
established theorems that interactions between particles j
and n modify the two wave vectors k;and k , while their
sum is conserved, giving us the conservation law kj +k =
k'j + k', where Ie'j and k' are the wave vectors after inter-
action.?

We are able to describe dynamical evolution within the
statistical formalism pictorially by considering a succession
of events separated by free motion. At each event, the wave
vectors k and momenta p are modified; between the
events, they remain constant. Let us now examine the na-
ture of these events in more detail.

In Chapter 3, Section I, we introduced the notion of
correlations, which we shall now define with greater pre-
cision. The distribution function p(q, p, f) depends on both
coordinates and momenta. If we integrate this function
over the coordinates, we lose all information about the po-
sition of particles, and thus correlations, in space. We ob-
tain a function P,(p, f), which offers information only
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about momenta. For this reason, p, is known as the vacuum
of correlations. On the other hand, by integrating over all co-
ordinates except the coordinates g, q; of particles i and j,
we retain the information about possible correlations be-
tween particles i and j. This function, p,, is called a binary
correlation. We can define ternary correlations and beyond
in a similar way. In the statistical description, it is important
to replace the coordinates, which depend on the distribu-
tion functions through their Fourier transform, with wave
vectors as they appear in the spectral decomposition of the
Liouville operator.

We shall now take into account the law of conservation
of wave vectors, in which each event is represented by a
point, with two entry lines, kj, k, and two exit lines, Ie'j,
Ie'n, where kj +k, = Ie'j + k'n. Moreover, at each point, the
momenta p of the interacting particles are modified, and a
derivative operator 3, appears. The simplest event of this
kind is illustrated in Figure 5.3.

We call the diagram in Figure 5.3 a propagation event,
or propagation diagram. This corresponds to a modifica-
tion of the binary correlation p, between particles j and .
But we can also start from the vacuum of correlations p,,
in which k, = k, = 0, and produce a binary correlation
Py, with kj+ k =0 to conserve the sum of the wave vec-

Figure 5.3

Propagation Diagram

A dynamical event corresponding to the interaction of two parti-
cles leads from wave vectors k;, k, to k’;, k'y.

K, k
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Figure 5.4
Creation Fragment

A dynamical event transforms the vacuum of correlations into a
binary correlation I, —I.

tors (see Figure 5.4). We then have what is known as a cre-
ation of correlation diagram, or creation fragment. We also
have destruction fragments, as presented in Figure 5.5,
which transform binary correlations into the vacuum of
correlations.*

We now begin to see dynamics as a history of correlations.
Figure 5.6 represents, for example, the emergence of a
five-particle correlation starting from the vacuum of cor-
relations. Events associated with interactions produce cor-
relations.

We can now introduce the effect of Poincaré resonances
into the statistical description of dynamics. These reso-
nances couple dynamical processes exactly as they couple

Figure 5.5
Destruction Fragment

A dynamical event transforms the binary correlation [, ! into the
vacuum of correlations.
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Figure 5.6
Evolution of Correlations

The four events at points Oy, 0, 03, 04 transform the vacuum of
correlations into a five-particle correlation.

ky

ks

ks

harmonics in music. In our description, they couple cre-
ation and destruction fragments (see Figure 5.7), which
leads to new dynamical processes that start from a given
state of correlations (of which the vacuum of correlations
is merely one example) and eventually return to exactly
the same state. In Figure 5.7, these dynamical processes are
depicted as bubbles. While the state of correlations is pre-
served, the distribution of momenta is changed (remem-
bering that each vortex introduces a derivative operator %).

These bubbles correspond to events that must be
considered as a whole. They introduce non—Newtonian ele-
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Figure 5.7
Bubble Due to Poincaré Resonances

Poincaré resonances couple the creation and destruction of corre-
lations, and lead to diffusion.

Destruction of correlations ] Creation of correlations
-l
ments in that no analogue of such processes exists in
trajectory theory. Such new processes have a dramatic ef-
fect on dynamics because they break time symmetry. In-
deed, they lead to the type of diffusion that had always
been postulated in phenomenological theories of irre-
versible processes, including Boltzmann’s kinetic equation.
To mark the parallel with the phenomenological descrip-

tion, we have called the new elements collision operators.
They act on the distribution functions.*

*We saw in Chapter 1, Section III that Poincaré resonances between frequencies
lead to divergences with small denominators. Here the frequency of a particle of
momentum p is kp/m, where k is the wave vector (see Section IV). For LPS, in
which kis a continuous variable, we can avoid the divergences and express the
resonances in terms of 8-functions. This involves a branch of mathematics asso-
ciated with analytical continuation (see the references in the chapter notes). For
a two-body process, the argument of the 8-function is k/m (p, ~ p,), leading to
contributions whenever the frequencies kp, /m and kp,/m are equal, and other-
wise vanishing. The wave vector k = O therefore plays an especially important
role wherein the argument of the 8-function vanishes, remembering that 6(x) =
oo for x = 0 and §(x) = 0 for x # 0. A vanishing wave vector k corresponds to an
infinite wavelength, and thus to a process that is delocalized in space. Hence, Poin-

caré resonances cannot be included in the trajectory description.
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Our approach includes the usual kinetic theory, but
only as a special case. Traditionally this theory, as intro-
duced by Maxwell, was centered around the evolution of
the velocity distribution, where it appeared that only a few
collisions would be sufficient to reestablish equilibrium if
disturbed at the initial time. Our approach, on the con-
trary, takes into account the progressive buildup of higher
and higher correlations involving more and more particles.
This process requires long time scales, in agreement with
the numerical simulations that have been available for
many years.> As a result, irreversibility leads to long mem-
ory effects that profoundly alter macroscopic physics.®

Many new results that go beyond the traditional kinetic
theory have already been obtained. However, it 1s outside
the scope of this book to describe them. They will be cov-
ered in greater detail in a separate monograph.’

Suffice it to say that we are beginning to understand
what irreversibility really means. Let us consider the simple
analogy of the aging process. On our time scale, the atoms
that make up our bodies are immortal. What is changing is
the relation between the atoms and molecules. In this
sense, aging is a property of populations, and not individ-
uals. This is also true of the inanimate world.

VII

Let us now return to our original objective, which is the
solution of the dynamical problem at the statistical level in
terms of the distribution function p. As was the case for
deterministic chaos, this solution involves the spectral rep-
resentation of the evolution operator, which in classical
dynamics is the Liouville operator. First we consider delo-
calized distribution functions associated with persistent in-
teractions that lead to singular functions (see Sections III
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and IV). As a result, we have to leave Hilbert space, which
is limited to localized nice functions. We then introduce
Poincaré resonances, which, as we saw in Section VI, lead
to new dynamical processes connected with diffusion.

Once we have included these two features, we obtain an
irreducible, complex spectral representation. Again, com-
plex means time symmetry is broken, and irreducible means
we cannot return to a trajectory description. The laws of
dynamics now take on new meaning. By incorporating
irreversibility they express not certitudes but possibilities.
Only if we relax our conditions and consider localized
distribution functions associated with a finite number of
particles can we recover the Newtonian trajectory descrip-
tion. But in general diftusion processes dominate.

There are therefore many situations in which we can
expect deviations from Newtonian physics, and where our
predictions have already been verified by extensive com-
puter simulations. In Section IV, we introduced the ther-
modynamic limit, where the number of particles N — oo
and volume V' — oo, while %’ = the concentration that re-
mains constant. In this limit, interactions go on forever,
and only the statistical description applies. It has been
shown by extensive numerical simulations that even if we
start with a trajectory involving an ever-increasing number
of particles, diffusive processes take over, and the trajectory
“collapses” because it is transformed over time into a delo-
calized singular distribution function.®

Our new kinetic theory is of great interest in describing
dissipative processes for all time scales, as observed in the
laboratory or the ecosphere. But this is only one of its
many novel features. Because of Poincaré resonances, the
dynamical processes described in this section lead to long-
range correlations, even if the forces between the particles
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are short range. The only exception is the state of equilib-
rium, where the range of correlations is determined by that
of the forces between the particles. This explains the fact, as
stated in Chapter 2, that nonequilibrium allows for a new
coherence, which is clearly manifested by chemical oscilla-
tions and hydrodynamic flows. We now recognize that
equilibrium physics gave us a false image of matter. Once
again, we are faced with the fact that matter in equilibrium
is “blind,” while in nonequilibrium it begins to “see.”

In sum, we are now able to go beyond Newtonian me-
chanics. The validity of the trajectory description used in
classical mechanics is severely limited. Thermodynamics is
incompatible with trajectory description, as it requires a
statistical approach both at equilibrium and out of equilib-
rium. The fact that the vast majority of the dynamical sys-
tems corresponding to the phenomena that surround us
are LPS is the reason why thermodynamics is universally
valid. Transient dynamical interactions such as scattering are
not representative of the situations that we encounter in
the natural world, where interactions are persistent. The
collision processes that appear in our statistical description
as a result of Poincaré resonances are essential in that they
break time symmetry and lead to evolutionary patterns in
accordance with the thermodynamic description.

The microscopic depiction of nature associated with
thermodynamics has little to do with the comfortable
time-symmetrical description scientists have traditionally
taken from Newtonian principles. Ours is a fluctuating,
noisy, chaotic world more akin to what the Greek atomists
imagined. In Chapter 1, we described Epicurus’ dilemma.
The clinamen he envisaged no longer belongs to a philo-
sophical dream that is foreign to physics. It is the very ex-
pression of dynamical instability.
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Of course, dynamical instability provides only those
conditions necessary to generate evolutionary patterns of
nature. Once we have achieved our statistical description,
we can also formulate the additional factors we need in
order to observe the emergence of complexity—of dissi-
pative structures at the macroscopic level. We now begin to
understand the dynamical roots of organization, the dy-
namics at the root of complexity that are essential for self-
organization and the emergence of life.



Chapter 6

A UNIFIED FORMULATION
OF QUANTUM THEORY

I

here are fundamental differences between classical
Newtonian dynamics and quantum theory. But in
both cases there exist an individual description in terms of
trajectories or wave functions (see Chapter 1, Section IV)
and a statistical description in terms of probability distrib-
utions. As we have already seen, Poincaré resonances appear
in classical as well as quantum theory. We can therefore an-
ticipate that the results obtained in classical mechanics will
also apply to quantum theory. In fact, in both instances we
have achieved a new statistical formulation applicable to LPS
outside Hilbert space. This description includes time-sym-
metry breaking, and is irreducible to the individual descrip-
tion in terms of quantum wave functions.
In spite of quantum theory’s astonishing success, discus-
sions about its conceptual foundations have not abated.
After seventy years, they are as lively as ever.

129
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For example, in his recent book Shadows of the Mind,
Roger Penrose distinguishes between “Z mysteries” (for
quantum puzzles) and “X mysteries”(for the quantum
paradox) in quantum behavior.! Furthermore, the role of
nonlocality seems intensely problematic. Given that local-
ity is a property associated with the Newtonian pointwise
trajectory description, it is not surprising that quantum
theory, which includes the wave aspect of matter, leads to
a form of nonlocality.

The “collapse” of the wave function, which seems to
require a dualistic formulation of quantum theory, repre-
sents a further complication. On the one hand, we have
the basic Schrodinger equation for wave functions, which
is time reversible and deterministic, exactly as is Newton’s
equation; on the other, we have the measurement process
associated with irreversibility and the collapse of the wave
function. This dualistic structure is the basis of John von
Neumann’s argument in his famous book, Mathematical
Foundations of Quantum Mechanics.> This situation is indeed
bizarre because in addition to the basic time-reversible, de-
terministic Schrodinger equation, there would be a second
dynamical law associated with the collapse (or reduction)
of the wave function. Until now, however, no one has
been able to describe the link between these two laws of
quantum theory, nor has anyone succeeded in giving a re-
alistic interpretation of the reduction of the wave func-
tion. This is the quantum paradox.

The quantum paradox, which derives from the dualistic
structure of quantum theory, is closely related to another
problem. Our conclusion is that quantum theory is incom-
plete. Like classical trajectory theory, it is time symmetric,
and therefore cannot describe irreversible processes such as
the approach to thermodynamic equilibrium. This is par-
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ticularly curious because quantum theory began in 1900
with Max Planck’s successful description of black body ra-
diation in equilibrium with matter. Even today, in spite of
the great advances made by Albert Einstein and Paul A. M.
Dirac, we still have no exact quantum theory describing
the approach to equilibrium when radiation interacts with
matter. (As we shall see, this is related to the fact that quan-
tum theory describes integrable systems. We shall come
back to this challenge in Section IV.) We need both equi-
librium and nonequilibrium physics to describe the world
around us. An example of an equilibrium situation is the
famous residual black body radiation at 3°K, which origi-
nated at a time close to the big bang. A large part of
macroscopic physics also deals with equilibrium systems,
whether they are solids, liquids, or gases. There is thus a
gap between quantum theory and thermodynamics as
deep as that between classical theory and thermodynamics.
Remarkably, the same method employed in extending
classical mechanics in Chapter 5 also permits us to unify
quantum theory and thermodynamics. Indeed, our ap-
proach eliminates the dualistic structure of quantum me-
chanics, and thus eliminates the quantum paradox. We
arrive at a realistic interpretation of quantum theory be-
cause the transition from wave functions to ensembles can
now be understood as the result of Poincaré resonances
without the mysterious intervention of an “observer” or
the introduction of other uncontrollable assumptions. In
contrast to other attempts to extend quantum theory, as
noted in Chapter 1, our own approach makes well-defined
predictions that are testable. Thus far, they have been con-
firmed by every numerical simulation performed.*

Our thinking constitutes a return to realism, but em-

phatically not a return to determinism. On the contrary,
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we move even farther away from the deterministic vision
of classical physics. We agree with Popper when he writes,
“My own point of view is that indeterminism is compati-
ble with realism, and that the acceptance of this fact allows
us to adopt a coherent objective epistemology of the
whole of quantum theory, and an objectivist interpretation
of probability”” We shall therefore endeavor to bring into
the realm of physics what Popper called his metaphysical
dream: “It is likely that the world would be just as indeter-
ministic as it is even if there were no observing subjects to
experiment with it, and to interfere with it.”> Thus we will
show that the quantum theory of unstable dynamical sys-
tems with persistent interactions leads, as in classical sys-
tems, to a description that is both statistical and realistic. In
this new formulation, the basic quantity is no longer the
wave function corresponding to a probability amplitude,
but probability itself As in classical physics, probability
emerges from quantum mechanics as a fundamental con-
cept. In this sense, we are on the eve of the triumph of the
“probabilistic revolution,” which has been going on for
centuries. Probability is no longer a state of mind due to
our ignorance, but the result of the laws of nature.

II

The observation that the interaction between atoms and
light leads to well-defined absorption and emission fre-
quencies was the starting point for the formulation of
quantum mechanics. The atom was described by Niels H.
D. Bohr in terms of discrete energy levels. In accordance
with experimental data (the Ritz-Rydberg principle), the
frequency of spectral lines is the difference between two energy
levels. Once these levels are known, we can predict the fre-
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quency of spectral lines. The problems of spectroscopy can
be reduced to the calculation of levels of energy. But how
can we reconcile the existence of well-defined energy lev-
els, which decisively influenced the history of quantum
theory, with the Hamiltonian concept that is so important
to classical theory? The classical Hamiltonian expresses the
energy of a dynamical system in terms of coordinates ¢
and momenta p, and therefore takes on a continuous set of
values. It cannot lead to discrete energy levels. For this rea-
son, the Hamiltonian H is replaced in quantum theory by
the Hamiltonian operator H,.

We have repeatedly used operator formalism (the Perron-
Frobenius operator was introduced in Chapter 4, and the
Liouville operator in Chapter 5), but it was in quantum
theory that operator calculus was first introduced into
physics. In the situations studied in Chapters 4 and 5, we
needed operators to achieve the statistical description.
Here, even the individual level of description correspond-
ing to wave functions requires operator formalism.

The basic problem in quantum mechanics is the deter-

mination of the eigenfunctions u, and the eigenvalues E,
of the Hamilton operator H (we shall omit the subscript op

wherever possible). The eigenvalues E,, which are identi-
fied with the observed values of the energy levels, form the
spectrum of H. We speak of a discrete spectrum when suc-
cessive eigenvalues are separated by finite distances. If the
spacing between levels tends toward zero, we then speak of
a continuous spectrum. For a free particle in a one-dimen-
sional box with a length of L, the spacing of the energy
level is inversely proportional to 2 As a consequence,
when L — oo, this spacing moves toward zero, and we ob-
tain a continuous spectrum. By definition, the word
“large” in large Poincaré systems (LPS) means precisely
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that these systems have a continuous spectrum. As in clas-
sical theory, the Hamiltonian is here a function of coordi-
nates and momenta. However, because the Hamiltonian is
now an operator, these quantities, and therefore all dy-
namical variables, now have to be treated also as operators.

For today’s physicists, the transition from functions to
operators that takes place in quantum theory seems per-
fectly natural. They now manipulate operators with the
ease with which most of us manipulate natural numbers.
Nonetheless, for classical physicists such as the great Dutch
scientist Hendrik Antoon Lorentz, the introduction of op-
erators was barely acceptable, and even repulsive. In any
case, individuals such as Werner Heisenberg, Max Born,
Pascual Jordan, Erwin Schrodinger, and Paul Dirac, who
daringly introduced operator formalism into physics, de-
serve our admiration. They drastically changed our de-
scription of nature in defining the conceptual difference
between a physical quantity (represented by an operator)
and the numerical values this physical quantity may take on
(the eigenvalues of the corresponding operator). This rad-
ical change in outlook has had far-reaching and profound
implications for our conception of reality.

As an example of the sophistication of operator formal-
ism, consider the commutation relations between two op-
erators. These operators commute if the order of their
application to a function is immaterial. They do not com-
mute if the order of their application changes the result.
For instance, multiplying a function f{x) by x and then dif-
ferentiating it with respect to x does not lead to the same
result as first differentiating f{x) and then multiplying it by
x. This can easily be verified. Operators that do not com-
mute exhibit different eigenfunctions; if they do com-
mute, they have common eigenfunctions.
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The famous Heisenberg uncertainty principle follows from
the fact that the coordinate and momentum operators, as
defined in quantum theory, do not commute. In all text-
books on quantum mechanics, it is shown that in the “co-
ordinate representation,” the operator corresponding to a
coordinate 4, has eigenvalues that are the coordinates of
the quantum object. The operator q,, may therefore be
identified with the classical coordinate ¢. In contrast, the
momentum operator p, is defined by the derivative oper-

h 1 o
ator 3 a% which is a derivative in respect to ¢. The two op-

i
erators ¢, and Py, thus do not commute, and have no
common eigenfunctions.® In quantum mechanics, we may
use various representations. In addition to the coordinate
representation, we have the momentum representation,
where the momentum operator is simply p, and coordi-
nates are represented by derivative operators };1;)% What-
ever the representation, the two operators do not
commute.

The fact that 4,y and P, do not commute means that we
cannot define states of a quantum object for which both
the coordinate and the momentum take on well-defined
values. This is the root of Heisenberg’s uncertainty reac-
tion, which forces us to abandon the “naive realism” of
classical physics. We are able to measure the momentum or
the coordinate of a given particle, but we cannot say that
this particle has well-defined values for both its momen-
tum and its coordinates. This conclusion was reached sixty
years ago by Heisenberg and Born, among others. Even so,
discussions about the meaning of uncertainty relations still
go on, and some scientists have not yet given up the hope
of restoring the traditional deterministic realism of classi-
cal mechanics.” This was one of the reasons for Einstein’s
dissatisfaction with quantum theory. We should note that
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Heisenberg’s uncertainty principle is compatible with a
deterministic time-symmetrical description of nature (the
Schrodinger equation).

What do we mean when we say that a quantum system
is in a particular “state”? In classical mechanics, the state is
a point in phase space. Here it is described by a wave func-
tion whose evolution over time is expressed by the
Schrodinger equation ih/21 W (£) /0t = HOP‘I’(t).

This equation identifies the time derivative of the wave
function ¥ with the action of the Hamiltonian operator
on W. It is not derived, but rather is assumed at the start,
and can thus be validated only by experiment. It is the fun-
damental law of nature in quantum theory.* Note the for-
mal analogy with the Liouville equation in Chapter 5,
Section III, where the basic difference is that L (the Liou-
ville operator) acts on distribution functions p, while H,
acts on wave functions.

We have already mentioned that a wave function corre-
sponds to a probability amplitude. The parallel that guided
Erwin Schrodinger in formulating his equation was that of
classical optics. In contrast to the trajectory equations of
classical mechanics, the Schrédinger equation is a wave
equation. It is a partial differential equation because in ad-
dition to the time derivative, there are also derivatives with
respect to coordinates appearing in H, (remembering that
in the coordinate representation, the momentum operator
is a derivative with respect to coordinates). But classical and
quantum equations have an essential element in common:

They both correspond to a deterministic description.

*There are various extensions of the Schrédinger equation and the relativistic
Dirac equation, but they are not necessary to this discussion.
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Once YW is known at some arbitrary time ¢, together with
appropriate boundary conditions (such as ¥ — 0 at infi-
nite distances), we may calculate ¥ for arbitrary times in
the future as well as in the past. In this sense, we reinstitute
the deterministic view of classical mechanics, but it now
applies to wave functions, and not trajectories.

As in the classical equations of motion, the Schrédinger
equation is time reversible. When we replace t by —¢, the
equation remains valid. We only have to replace ¥ with its
complex conjugate W*. As a consequence, if we observe
the transition of ¥ from ¥, to ¥, at time ¢, where ¢, > ¢,
we can also observe a transition from \V*; to y* It is
worth reminding ourselves of Arthur Stanley Eddington’s
remark at an early stage in quantum mechanics to the ef-
fect that quantum probabilities are “obtained by introduc-
ing two symmetrical systems of waves traveling in opposite
directions of time”® Indeed, as we have seen, the
Schrédinger equation is a wave equation describing the
evolution of probability amplitudes. If we now take the
complex conjugate of the Schrodinger equation, that is, if
we replace i by —i, ¥ by W* (supposing that H, is real),
and t by —t, we return to Schrodinger’s equation. As stated
by Eddington, ¥* may therefore be viewed as a wave
function propagating into the past. Furthermore, as men-
tioned in Chapter 1, probability proper is obtained
through multiplying ¥ by its complex conjugate ¥* (that
is, |W¥|?. Since ¥* may be interpreted as ¥ evolving
backward in time, the definition of probability implies the
meeting of two times, one stemming from the past and the
other the future. In quantum theory, probabilities are thus
time symmetric.

We now see that in spite of their fundamental differ-
ences, both classical and quantum mechanics correspond
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to laws of nature that are deterministic and time reversible.
No difference between past and future appears in these
formulations. As we noted in Chapters 1 and 2, this leads
to the time paradox. In quantum mechanics, it also leads to
the quantum paradox, due to the need to introduce a du-
alistic formulation of quantum theory. In both classical
theory and quantum theory, the Hamiltonian plays a cen-
tral role. In quantum theory, its eigenvalues determine the
energy levels, while, according to the Schrédinger equa-
tion, it also determines the time evolution of the wave
function.

As in the preceding chapter, we shall concentrate on
systems in which the Hamiltonian H is the sum of a free
Hamiltonian H,, and a term produced by the interactions
AV, whereby H= H,+ AV The time history of such sys-
tems can then be described by transitions between eigen-
states of H, induced by these interactions.

As long as we remain in Hilbert space, the eigenvalues
E, of H are real (like the Liouville operator, H is also “her-
mitian,” and hermitian operators have real eigenvalues in
Hilbert space). The evolution of the wave function is a su-
perposition of oscillating terms such as exp(—iEf). There
are, however, irreversible processes in quantum mechanics,
such as the quantum leaps in Bohr’s theory, where excited
atoms decay through the emission of photons or unstable
particles (see Figure 6.1) or the decay of unstable particles.

Can these processes be included in Hilbert space within
the framework of traditional quantum theory? Decay
processes occur in large systems. If an excited atom were
kept in a cavity, the emitted electron would bounce back,
and there would be no irreversible process. As we have
seen, the time evolution of the wave function is described
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Figure 6.1
Decay of an Excited Atom
The atom “falls” from the excited state to the ground state with

the emission of a photon.

Excited state

Photon

Ground state

by a superposition, or sum, of oscillatory terms. With the
limit of large systems, this sum becomes an integral, and
acquires new properties. In the case of the decay of excited
atoms as described by Figure 6.1, the probabilities |%¥|?
decay almost exponentially over time. Here the word almost
is essential: As long as we remain in Hilbert space, there are
deviations from the exponential for both very brief times
(the same order as the frequency of oscillations of the elec-
tron around the nucleus ~ 107! seconds) and very long
times (for example, ten to one hundred times the lifetime
of an excited state, which is ~ 107%). However, in spite of a
great number of experimental studies, no deviations from
exponential behavior have yet been detected. This is in-
deed fortunate, because if they did exist, it would raise se-
rious questions about the entire theoretical system of
particle physics.

Suppose that we prepare a beam of unstable particles, let
it decay, and later on prepare a second beam. Imagine the
strange situation of the two beams prepared at different
times having different decay laws. We could then distin-
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guish between them just as we do between older and
younger individuals! This fantasy would be a violation of
the principle of indistinguishability for elementary parti-
cles, which has led to some of the greatest successes of
quantum theory.* The precise exponential behavior ob-
served thus far shows the inadequacy of Hilbert space de-
scription. We shall come back to decay processes in the
next section, but at this point we should note that such
processes ought not to be confused with processes driving
the system to equilibrium. The decay process as repre-
sented in Fig. 6.1 only transfers the energy of the atom to
the photons.

III

As we have seen, the main issue in quantum mechanics is
the solution of the eigenvalue for the Hamiltonian. There
are only a few quantum systems in which this problem has
been solved exactly. In order to do so, we generally need to
use a perturbational approach. As mentioned, we start with
a Hamiltonian in the form H= H, + AV, where H, corre-
sponds to a Hamiltonian operator for which we have
solved the eigenvalue (the “free” Hamiltonian) and V'is a
perturbation coupled with H, through the so-called cou-
pling constant A. We assume that we know the solution of
the eigenvalue Hyu, © = E ©y ©, and that we wish to solve
the equation Hu = E u . The standard procedure, which is
Schrédinger’s perturbational method, is to expand both

*These include the explanation of superfluidity and the quantum theory of

solid state.
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the eigenvalues and eigenfunctions in terms of powers of
the coupling constant A.

The perturbational approach leads to a recurrence pro-
cedure involving equations for each order in A. The solu-
tion of these equations implies the use of terms such as
1/(E® — E, ), which become ill defined when the de-
nominator vanishes. This situation again corresponds to
resonances,* and once more we encounter the divergence
problem that lies at the very center of Poincaré’s definition
of nonintegrable systems.

However, there is an essential difference here. We have
already introduced the distinction between discrete and
continuous spectrums. In quantum mechanics, this differ-
ence becomes crucial. In fact, when the spectrum is dis-
crete, it is generally possible to avoid the divergence
problem through an appropriate choice of the unper-
turbed Hamiltonian.? Since all finite quantum systems
have a discrete spectrum, we can then conclude that they
are integrable.

The situation changes dramatically when we turn to
large quantum systems involving excited atoms, scattering
systems, and so on. In this case, the spectrum is continu-
ous, which brings us back to LPS. The example of a parti-
cle coupled with a field, which we presented in Chapter 5,
Section V, also applies to quantum systems. We then have
resonances whenever the frequency @, associated with the
particle is equal to a frequency ®, associated with the field.

*In quantum mechanics, to each energy E corresponds a frequency ® expressed
as E = (h/2m)®.

1In more technical terms, we first raise the degeneracy by an appropriate trans-

formation.
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The only difference is that in quantum theory, frequencies
are associated with energies. The eigenvalue E, corre-
sponds to the frequency %coa, where h is Planck’s con-
stant.

The example in Figure 6.1, which corresponds to an
LPS, illustrates that we have resonance each time the en-
ergy difference between the two levels is equal to the en-
ergy of the photon that is emitted.

As in the case of deterministic chaos studied in Chapter
4, we can extend the eigenvalue problem to singular func-
tions outside Hilbert space. The formal solution of
the Schrédinger equation is W(f) = U(#)\¥(0), where U(z) =
e"Ht, U(1) is the evolution operator that links the value of
the wave function at time ¢ to that at the initial time ¢ = 0.
Both future and past play the same role, since U(t,)U(t,) =
Ult, + t,), whatever the sign of ¢, and ¢,. This property
defines what is called a dynamical group. Outside Hilbert
space, the dynamical group splits into two semigroups.
There are then two functions corresponding to the excited
atom: The first, ¢,, decays exponentially in the future
(®,~e /%), while the second, @,, decays in the past
(@,~¢ “7). Only one of these two semigroups is realized in
nature. In both cases, there is an exact exponential decay (in
contrast to the approximate one described in the preceding
section). This was the first such example studied, notably
by Arno Bohm and George Sudarshan, who showed that
in order to obtain exact exponential laws and avoid the dif-
ficulties mentioned in Section II, Hilbert space must be
abandoned.’ However, in their approach, the central quan-
tity remains the probability amplitude, and the basic para-
dox of quantum mechanics (the collapse of the wave
function) is not solved. As already mentioned, the decay of
excited atoms or unstable particles corresponds only to a
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transfer of energy from one system (the excited atom) to
the other (the photon). The approach to equilibrium re-
quires a fundamental modification of quantum theory. As
in classical mechanics, we have to go from the individual
description, associated with wave functions, to the statisti-
cal description, associated with ensembles.

IV

In the transition from the individual to the statistical de-
scription, quantum theory introduces certain specific fea-
tures as compared to classical mechanics. There, as we saw
in Chapter 5, the statistical distribution function is a func-
tion of both the coordinates and momenta. A trajectory
corresponds to the delta function (see Chapter 1, Section
III). In quantum mechanics, the quantum state, as associ-
ated with a wave function, is described by a continuous
function of the independent variables. We can either take
the coordinates as independent variables and consider
W(q), or we can take the momenta and consider ‘¥ (p).
Heisenberg’s uncertainty principle prevents us from taking
both. The definition of a quantum state therefore involves
only half of the variables that are used in the definition of
the classical state.

The quantum state ‘¥ represents a probability amplitude
for which the corresponding probability p is given by the
product of the amplitudes W(q) and ‘¥*(g"), and is therefore
a function of two sets of variables, g and ¢' or p and p'. We
can thus write p(q, q") or p(p, p'), where the first expression
corresponds to the coordinate representation, and the sec-
ond to the momentum representation, which will be espe-
cially useful to us. In quantum mechanics, the probability p
is often called the “density matrix” (matrices, as studied
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in algebra, also have two indices). We can easily write the
equation of evolution for p because the equation for ¥
(the Schrodinger equation) is already known. The evolu-
tion equation for p is the quantum Liouville equation,
whose explicit form is ik (%‘%) = Hp — pH, which is the
“commutator” of p with H. This shows that when p is a
function of H, we have an equilibrium situation. Then
dp/dt =0, as H commutes with a function of itself.

Now that we have considered the distribution function
p, which corresponds to a single wave function, we can
also consider situations in which p corresponds to a “mix-
ture” of various wave functions. In both cases, the Liou-
ville equation remains the same.

For integrable systems, the statistical formulation in-
troduces no new features. Suppose that we know the
eigenfunctions ¢ (p) and the eigenvalues E, of H. The
eigenfunctions of L are then the products ¢, (p)@4(p") and
the eigenvalues the differences E, — Eg. The problems in-
volved in deriving the spectral representations of H and L
are thus equivalent.

The eigenvalues E, — E; of L correspond directly to the
frequencies measured in spectroscopy, where the time evo-
lution of the distribution function p is a superposition of
oscillating terms ¢ Fa ~ Eg¥. Again, there is no approach to
equilibrium. Moreover, for those situations in which we
can derive the eigenvalue for the Hamiltonian, eigenfunc-
tions of L, such as ¢ _(p)¢ (p), correspond to zero eigen-
values of the Liouville operator, E, — E, = 0, and are
therefore invariants of motion. As a result the system is
integrable (as is a system of noninteracting particles), and
cannot reach equilibrium. This is a form of the quantum
paradox.

We can now see clearly why it is not sufficient to extend
wave functions beyond Hilbert space. Indeed, as indicated
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in Section III, this leads to complex energies in the form
E,= o, —iY, where ®is the real past and Y, the life span,
which describe the decay of excited atoms or unstable par-
ticles, but this still does not account for irreversible
processes associated with the approach to equilibrium. In
spite of the complex element in E_, all diagonal elements
of p, which are products such as @ _(p) @, (p"), would be in-
variants because the eigenvalue E, — E, again vanishes, and
the system remains integrable and cannot approach equi-
librium.*

The experimental basis of Bohr’s theory of atoms and
the subsequent emergence of quantum theory is based on
the Ritz-Rydberg principle, according to which each fre-
quency v, as measured in spectroscopy, is the difference be-
tween the two numbers E, and Ej which represent two
quantum levels. This, however, can no longer be true for
systems presenting irreversible processes that lead the sys-
tem to equilibrium. Quantum theory must therefore be
fundamentally revised.

Historically, the roots of mechanics lie in two branches
of physics: the thermal equilibrium between matter and
radiation that led Planck to introduce his famous constant
h in 1900, and spectroscopy, which led from the Ritz-
Rydberg principle to Bohr’s atom, and finally, with Heisen-~
berg (1926), to quantum theory. However, the relationship
between these two domains has never been elucidated.
We see that the Ritz-Rydberg principle is incompatible
with the thermal approach to equilibrium described by
Planck’s work. Thus we need a new formulation making
thermal physics and spectroscopy compatible. This can be

*Difficulties arise when E, — Ejg is replaced by E, — E *ﬁ, where E *ﬁ is the com-
lex conjugate of E,. Here, E_ — E* =-2#y, #0, with no equilibrium state.
p ga p o o o q
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achieved at the level of probability distributions from
which we may derive observable frequencies (including
their complex part), but these frequencies are no longer
differences in energy levels for the systems we expect to
approach equilibrium. We have to solve the quantum Liou-
ville eigenvalue problem for LPS in the context of more
general function spaces. As in classical mechanics, this will
involve two basic ingredients: delocalized distribution func-
tions, which lead to singularities, and Poincaré resonances,
which lead to new dynamical processes. As in classical dy-
namics, there then appear new solutions at the statistical
level that cannot be reduced to the traditional wave func-
tion formalism of quantum mechanics, and no longer sat-
isfy the Ritz-Rydberg principle. In this sense, we can truly
speak of a new formulation of quantum theory.

\%

With certain modifications, we can follow the probabilis-
tic formulation for classical systems given in Chapter 5.
The formal solution of the Liouville equation is i(dp/dt) =
Lp, where in quantum theory Lp is the commutator of
the Hamiltonian with p (as we have seen, Lp = Hp — pH).
It can be written as either p(f) = eHp(0)e*™ or p(f) =
e"L'p(0). What is the difference between these equations?
In the first formulation, it appears that we would have two
independent dynamic evolutions: one associated with ¢~F!
and the other with ¢" one moving toward the “future”
and the other toward the “past” (as ¢ is replaced by —f). If
this were so, we could expect no time-symmetry break-
ing, and the statistical description would conserve the
time symmetry of the Schrddinger equation. But this is
no longer the case when we include Poincaré resonances,



A Unified Formulation of Quantum Theory 147

which couple the two time evolutions (¢e7H' and e*'H"),
There is now only one independent time evolution (time
has “one dimension”). In order to study time-symmetry
breaking, we have to begin with the expression p(f) =
e™Lp(0), which describes a single time sequence in the Li-
ouville space. In other words, we have to order dynamical
events according to a single time sequence.* We can then
describe interactions, as we did for classical mechanics, as
a succession of events separated by free motion. In classi-
cal mechanics, these events change the values of the wave
vector k and the momenta p. In Chapter 5, we introduced
various events leading to the creation and destruction of
correlations, where we saw that the decisive factor was the
appearance, for LPS, of new events (the bubbles in Figure
5.7) that couple creation and destruction. As such, they
radically change classical dynamics because they introduce
diffusion, break determinism, and destroy time symmetry.
We can also identify the same events in quantum mechan-
ics. To do so, we need to introduce variables that play the
same role as the wave vector k in classical theory’s Fourier
representation. In classical mechanics, we start with a sta-
tistical formulation in which the distribution functions
p(gq, p) are expressed as functions of the coordinates g and
the momenta p. We then proceed to the Fourier transfor-
mation P,(p) involving the wave vector k and the mo-
menta.

In quantum mechanics, we can follow a similar proce-

dure.'® We start with the density matrix p(p, p') in the mo-

*If this is not done, we have to be very careful. Feynman’s well-known state-
ment that an electron propagates toward the future and a position moves toward
the past refers to time as it appears in the Schrodinger equation before ordering

dynamical events according to a single time sequence.
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mentum representation, which is a function of two sets of
variables, p and p'. We then introduce new variables, k =
p—p'and P=(p + p")/2; we can now write, as in classical
mechanics, p,(P). It can then be shown that k plays the
same role in quantum mechanics as the wave vector does in
classical mechanics. (For example, in interactions, the sum
of the wave vectors is conserved, that is, kj tk = k'j +k'.)
Again as in classical mechanics, Poincaré resonances intro-
duce new dynamical events that couple the creation and
destruction of correlations, and therefore describe quan-
tum diffusive processes.

The formulation of classical and quantum theory for
LPS is more or less parallel. A minor difference appears in
the role of the momentum P, For each event, as introduced
in Chapter 5, the momenta of the interacting particles are
altered. In quantum mechanics, we use the two variables k
and B where the variable P replaces the classical momen-
tum. As these variables interact, the modification of P in-
volves Planck’s constant . For k — 0, however, we come
back to the classical momentum p. But this difference has
no important effect on formal development, and we shall
not attempt to describe it in further detail.

In the previous chapter, we introduced a fundamental
difference between transitory and persistent interactions.
Persistent interactions are especially significant because
they appear in all situations where thermodynamics can be
applied. As in classical mechanics, the distribution function
p corresponding to persistent interactions is described by
singular functions of the variable k. In classical dynamics,
as well as classical and quantum mechanics, persistent scat-
tering is typical of the situations described by statistical
mechanics and cosmology. For example, in the atmo-
sphere, particles collide continuously, are scattered, and
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then recollide. Persistent scattering is described by delocal-
ized distribution functions, which are singular functions in
the wave vector space. As we saw in Chapter 5, the latter
force us to go outside Hilbert space.

By taking into account delocalized singular distribution
functions and Poincaré resonances, we obtain, as in classi-
cal mechanics, complex, irreducible spectral representa-
tions for the Liouville operator L. Again, as in classical
dynamics, irreversibility is associated with the appearance
of higher- and higher-order correlations. As in classical
mechanics, this leads to new features in kinetic theory and
macroscopic physics. The basic conclusions of our formu-
lation of quantum mechanics are as follows:

* The eigenvalues of the Liouville operator are no longer
differences between the eigenvalues of the Hamilton-
ian, which are obtained from the Schrddinger equa-
tion. Therefore, the Ritz-Rydberg principle is violated,
whereby the systems are no longer integrable and the ap-
proach to equilibrium is possible.

* The quantum superposition principle associated with
the linearity of the Schrédinger equation is violated.

* The eigenfunctions of the Liouville operator are not
expressed in terms of probability amplitudes or wave
functions, but rather in terms of probabilities proper.

Our predictions have already been verified in simple situa-
tions where we can follow the collapse of wave functions
outside Hilbert space.!! Moreover, they have led to inter-
esting predictions of the form of spectral lines, and have
allowed us to accurately describe the approach to equi-
librium. We regret that we cannot go into greater detail
about their specific applications, but our objective in this
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book is merely to provide a brief tour of the theoretical
background.

VI

At the Fifth Solvay Conference on Physics that took place
in Brussels in 1927, there was an historic debate between
Einstein and Bohr. In the words of Bohr:

To introduce the discussion on such points, I was asked at the
conference to give a report on the epistemological problems
confronting us in quantum physics and took the opportunity
to center upon the question of an appropriate terminology
and to stress the viewpoint of complementarity. The main ar-
gument was that unambiguous communication of physical
evidence demands that the experimental arrangement as well
as the recording of the observations be expressed in common
language, suitably refined by the vocabulary of classical
physics. 12

But how can we describe an apparatus in classical terms
in a world dominated by quantum laws? This is the weak
point in the so-called Copenhagen interpretation. Never-
theless, there is an important element of truth contained
therein. Measurement is a means of communication. It is
because we are both “actors and spectators,” to use Bohr’s
words, that we can learn something about nature. But
communication requires a common time. The existence of
this common time is one of the basic consequences of our
approach.

The apparatus that performs the measurements, whether
a physical construct or our own sensory perception, must
follow the extended laws of dynamics, including time-
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symmetry breaking. There do exist integrable time-re-
versible systems, but we cannot observe them in isolation.
As emphasized by Bohr, we need an apparatus that breaks
time symmetry. LPS blur this distinction in that they already
break time symmetry and therefore, in a sense, measure
themselves. We do not have to describe an apparatus in clas-
sical terms. Common time emerges at the quantum level
for LPS associated with thermodynamic systems.

The subjective aspect of quantum theory, which attrib-
uted an unreasonable role to the observer, deeply troubled
Einstein. To our way of thinking, through his measure-
ments the observer no longer plays some extravagant role
in the evolution of nature—at least no more so than in
classical physics. We all transform information received
from the outside world into actions on a human scale, but
we are far from being the demiurge, as postulated by quan-
tum physics, who would be responsible for the transition
from nature’s potentiality to actuality.

In this sense, our approach restores sanity. It eliminates
the anthropocentric features implicit in the traditional for-
mulation of quantum theory. Perhaps this would have
made quantum theory more acceptable to Einstein.



Chapter 7

OUR DIALOGUE
WITH NATURE

Science is a dialogue between mankind and nature, the
results of which have been unpredictable. At the be-
ginning of the twentieth century, who would have
dreamed of unstable particles, an expanding universe, self-
organization, and dissipative structures? But what makes
this dialogue possible? A time-reversible world would also
be an unknowable world. Knowledge presupposes that the
world affects us and our instruments, that there is an inter-
action between the knower and the known, and that this
interaction creates a difference between past and future.
Becoming is the sine qua non of science, and indeed, of
knowledge itself.

The attempt to understand nature remains one of the

153
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basic objectives of Western thought. It should not, how-
ever, be identified with the idea of control. The master
who believes he understands his slaves because they obey
his orders would be blind. When we turn to physics, our
expectations are obviously very different, but here as well,
Vladimir Nabokov’s conviction rings true: “What can be
controlled is never completely real; what is real can never
be completely controlled.”! The classical ideal of science, a
world without time, memory, and history, recalls the total-
itarian nightmares described by Aldous Huxley, Milan
Kundera, and George Orwell.

In our recent book, Entre le Temps et I’Eternité, Isabelle
Stengers and [ wrote:

Perhaps we need to start by empbhasizing the almost incon-
ceivable character of dynamic reversibility. The question of
time—of what its flow preserves, creates and destroys—has
always been at the center of human concerns. Much specula-
tion has called the idea of novelty into question and affirmed
the inexorable linkage between cause and effect. Many forms
of mystical teaching have denied the reality of this changing
and uncertain world, and defined an ideal existence permit-
ting escape from life’s afflictions. We know how important
the idea of cyclical time was in antiquity. But, like the rhythm
of the seasons or the generations of man, this eternal return
to the point of origin is itself marked by the arrow of time.
No speculation, no teaching has ever affirmed an equivalence
between what is done and what is undone: between a plant
that sprouts, flowers and dies, and a plant that resuscitates,
grows younger and returns to its original seed; between a
man who grows older and learns, and one who becomes a

child, then an embryo, then a cell.?
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In Chapter 1, we alluded to Epicurus’ dilemma and the
atomistic approach of the ancients. Today, the situation has
changed significantly in the sense that the more we know
about our universe, the more difficult it becomes to be-
lieve in determinism. We live in an evolutionary universe
whose roots, which lie in the fundamental laws of physics,
we are now able to identify through the concept of insta-
bility associated with deterministic chaos and nonintegra-
bility. Chance, or probability, is no longer a convenient
way of accepting ignorance, but rather part of a new, ex-
tended rationality. As we have seen, for these systems, the
equivalence is broken between the individual description
(trajectories and wave functions) and the statistical descrip-
tion (in terms of ensembles). At the statistical level, we can
incorporate instability. The laws of nature, which no
longer deal with certitudes but possibilities, overrule the
age-old dichotomy between being and becoming. They
describe a world of irregular, chaotic motions more akin
to the image of the ancient atomists than to the world of
regular Newtonian orbits. This disorder constitutes the
very foundation of the macroscopic systems to which we
apply an evolutionary description associated with the sec-
ond law, the law of increasing entropy.

We have considered deterministic chaos, and we have
discussed the role of Poincaré resonances in both classical
and quantum mechanics. We have seen that we need two
conditions to obtain our statistical formulations, which go
beyond the usual ones for classical and quantum mechan-
ics: the existence of Poincaré resonances, which lead to
new diffusion-type processes that can be incorporated into
the statistical description, and extended persistent inter-
actions described by delocalized distribution functions.
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These conditions lead to a more general definition of
chaos. As in the case of deterministic chaos, we then ob-
tain new solutions for the statistical equations that cannot
be expressed in terms of trajectories or wave functions. If
these conditions are not satisfied, we return to the usual
formulations. This is the case in many simple examples,
such as two-body motion (for instance, the sun and earth),
and typical scattering experiments, where before and after
scattering, the particles are free. These examples, however,
correspond to idealizations. The sun and earth are part of
the many-body planetary system; scattered particles will
eventually meet other particles, and are therefore never
free.

It is only by isolating a certain number of particles and
studying their dynamics that we obtain the traditional for-
mulations. Conversely, time-symmetry breaking is a global
property encompassing Hamiltonian dynamical systems as
a whole. In the chaotic maps studied in Chapters 3 and 4,
irreversibility occurs even in systems with few degrees of
freedom due to the simplifications used to describe the
equations of motion.

A remarkable feature of our approach is its application
to both classical and quantum systems. All other theoreti-
cal proposals that we are aware of attempt to eliminate the
quantum paradox through an exclusively quantum mecha-
nism. On the contrary, in our view, the quantum paradox
is only one aspect of the time paradox. In the Copenhagen
interpretation, the need to introduce two different types of
time evolution is engendered by the measurement process.
According to Bohr himself, “Every atomic phenomenon is
closed in the sense that its observation is based on a record-
ing obtained by means of suitable amplification devices
with irreversible functions, such as permanent marks on a
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photographic plate/”® It was this measurement problem
that led to the need for a collapse of the wave function,
and forced us to introduce a second type of dynamical
evolution into quantum mechanics. It is therefore not sur-
prising that the time paradox and quantum paradox are so
closely linked. In solving the former, we also solve the lat-
ter. As we have seen for LPS, quantum dynamics can only
be described at the statistical level. Moreover, to learn
something about quantum processes, we again need an
LPS acting as an apparatus. It is thus the second law of
quantum time evolution, which includes irreversibility,
that becomes the general one.

As stated by Alastair Rae, “A pure quantum process (de-
scribed by the Schrédinger equation) occurs only in one
or more parameters that have become detached from the
rest of the universe, and perhaps even from space-time it-
self, and leave no trace of their behavior on the rest of the
universe until a measurement interaction takes place.”
Whatever the process, at some point irreversibility has to
come into the picture. An almost identical statement could
have been made regarding classical mechanics!

It has often been said that in order to make progress in
these difficult areas, we need the inspiration of a truly
crazy idea. Heisenberg was fond of asking what the differ-
ence is between an abstract painter and a good theoretical
physicist. In his opinion, an abstract painter needs to be just
as original as a good theoretical physicist needs to be con-
servative.” We have tried to follow Heisenberg’s advice.
Our line of reasoning in this book is certainly less radical
than most other attempts made in the past to solve the time
or quantum paradox. Perhaps our craziest idea is that tra-
jectories are not primary objects, but rather the result of a
superposition of plane waves. Poincaré resonances destroy
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the coherence of these superpositions, and lead to an irre-
ducible statistical description. Once this is understood, the
generalization to quantum mechanisms becomes easy.

II

Numerous references have been made in this text to the
thermodynamic limit, which is defined by the limit N
(number of particles) — e, and volume I/ — oo, where the
concentration N/ remains finite. This limit simply means
that when the number of particles N is sufficiently large,
terms such as 7/N can be ignored. This is true for the usual
thermodynamic systems where N is typically on the order
of 10%. However, there are no systems that contain an in-
finite number of particles.

The universe itself is highly heterogeneous and far from
equilibrium. This prevents systems from reaching a state of
equilibrium. For example, the flow of energy that origi-
nates in the irreversible nuclear reactions within the sun
maintains our ecosystem far from equilibrium, and has
thus made it possible for life to develop on earth. As we
saw in Chapter 2, nonequilibrium leads to new collective
effects and to a new coherence. It is interesting that these
are precisely the consequences of the dynamical theory
presented in Chapters 5 and 6.

There are two types of effects produced by nonequilib-
rium. If, as in the Bénard instability, we heat a liquid from
below, we produce collective flows of molecules. When
we stop the heating process, the flows disintegrate and re-
turn to the usual thermal motion. In chemistry, the situa-
tion is different; irreversibility leads to the formation of
molecules that cannot be produced in near-equilibrium
conditions. In this sense, irreversibility is inscribed in mat-
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ter. This is likely to be the origin of self-replicating bio-
molecules. While we shall not pursue this question here,
let us merely note that molecules of comparable complex-
ity can indeed be produced, at least through computer
simulations, in nonequilibrium conditions.® In the next
chapter, which discusses cosmology, we argue that matter
itself is the result of irreversible processes.

In nonrelativistic physics, whether classical or quantum,
time is universal, but the flow of time as associated with ir-
reversible processes is not. It is to the fascinating implica-
tions of this distinction that we shall now turn.

III

Let us first consider a chemical model. If we start at time ¢,
with two identical samples of mixtures of two gases, such
as carbon monoxide (CO) and oxygen (O,), a chemical re-
action leading to carbon dioxide (CO,) can be catalyzed by
metallic surfaces. In one of the samples, we introduce such
a catalyst, and in the other, we do not. If we compare the
two samples at a later time ¢, their composition will there-
fore be quite different. The entropy produced in the sam-
ple containing the catalytic surface will be much greater as
a result of the chemical reaction. If we associate the pro-
duction of entropy to the flow of time, time itself will ap-
pear to vary between the two samples. This observation is
in agreement with our dynamical description. The flow of
time is rooted in Poincaré resonances that depend on the
Hamiltonian, that is, on dynamics. The introduction of a
catalyst changes the dynamics, and therefore alters the
microscopic description. In another example, gravitation
again changes the Hamiltonian, and therefore the reso-
nances. We then have a kind of nonrelativistic analogue of
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the twin paradox of relativity, which we shall come back to
in Chapter 8. For the moment, suppose that we send two
twins (who are simply two LPS) into space, leaving the
earth at ¢, and coming back at ¢, (see Figure 7.1). Before
their return, one twin goes through a gravitational field,
and the other does not. The entropy produced (as a result
of Poincaré resonances) will be different, and our twins
will come back with different “ages,” leading us to the
basic conclusion that the flow of time, even in a Newton-
ian universe, may have different effects according to the
processes considered. Our conclusion is in stark contrast
with the Newtonian view, which was based on a universal
flow of time. But what can a flow of time mean in a de-
scription of nature in which past and future play the same
role? It is irreversibility that leads to a flow of time. Time
evolution is no longer described by groups where past and

Figure 7.1
Effect of a Gravitational Field on the Flow of Time

f

Gravitational field
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future play the same role, but rather by semigroups that in-
clude the direction of time. When we introduce a time as-
sociated with the production of entropy (see Chapter 2), as
the sign of entropy production is positive, entropic time
always points in the same direction. This is the case in the
two examples mentioned above even though entropic time
does not keep pace with clock time.

We could introduce an “average™ entropic time for the
entire universe, but this would not have a great deal of
meaning because of the heterogeneity of nature. Irre-
versible geological processes have a time scale distinct from
those of biological processes. Even more important, there
exists a multiplicity of evolutions, which are particularly
evident in the field of biology. As stated by Stephen J.
Gould, bacteria have remained basically the same since the
Precambrian era, while other species have evolved dramat-
ically, often over short time scales.” It would therefore be a
mistake to consider a simple one-dimensional evolution.
Some two hundred million years ago, certain reptiles
started to fly, while others remained on earth. At a later
stage, certain mammals returned to the sea, while others
remained on land. Similarly, certain apes evolved into hu-
manoids, while others did not.

At the conclusion of this chapter, it is appropriate to
cite Gould’s definition of the historical character of life:

To understand the events and generalities of life’s pathway, we
must go beyond principles of evolutionary theory to a pale-
ontological examination of the contingent pattern of life’s
history on our planet—the single actualized version among
millions of plausible alternatives that happened not to occur.

Such a view of life’s history is highly contrary both to con-
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ventional deterministic models of Western science and to the
deepest social traditions and psychological hopes of Western
cultures for a history culminating in humans as life’s highest

expression and intended planetary steward.?

We are in a world of multiple fluctuations, some of
which have evolved, while others have regressed. This is in
complete accord with the results of far-from-equilibrium
thermodynamics obtained in Chapter 2. But we can now
go even farther. These fluctuations are the macroscopic
manifestations of fundamental properties of fluctuations
arising on the microscopic level of unstable dynamical
systems. The difficulties emphasized by Gould are no
longer present in our statistical formulation of the laws of
nature. Irreversibility, and therefore the flow of time, starts
at the dynamical level. It is amplified at the macroscopic
level, then at the level of life, and finally at the level of
human activity. What drove these transitions from one
level to the next remains largely unknown, but at least we
have achieved a noncontradictory description of nature
rooted in dynamical instability. The descriptions of nature
as presented by biology and physics now begin to con-
verge.

Why does a common future exist at all? Why is the
arrow of time always pointed in the same direction? This
can only mean that our universe forms a whole. It has
a common origin that already implied time-symmetry
breaking. Here we encounter cosmological problems. In
dealing with them, we must embrace gravity and enter the
world of Einstein’s theory of relativity.



Chapter &

DOES TIME PRECEDE
EXISTENCE?

I

Several years ago, I delivered a physics colloquium at
Lomonosoft University in Moscow. Afterwards, Profes-
sor Ivanenko, one of the most respected Russian physicists,
asked me to write a short inscription on a particular wall
where there were already many sentiments expressed by fa-
mous scientists such as Dirac and Bohr. I vaguely remember
the sentence chosen by Dirac, which was something like:
“Beauty and truth go together in theoretical physics.” After
some hesitation, I wrote: “Time precedes existence.”

For many physicists, the acceptance of the big bang the-
ory as the origin of our universe means that time must
have a beginning, and perhaps an end. It seems more likely
to me that the birth of our universe was only one event in
the history of the entire cosmos, and that we therefore
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have to ascribe to that so-called “meta-universe” a time
prior to the birth of our own.

We know that we are living in an expanding universe.
The standard model, which dominates the field of cosmol-
ogy today, asserts that if we were to go backward in time,
we would arrive at a singularity, a point that contains the
totality of the energy and matter in the universe. However,
the model does not enable us to describe this singularity
because the laws of physics cannot be applied to a point
corresponding to an infinite density of matter and energy.
It is no wonder that John Archibald Wheeler speaks of the
big bang as confronting us “with the greatest crisis in
physics.”! Can we accept the big bang as a real event, and
how is it possible to reconcile this event with laws of na-
ture that are time reversible and deterministic’ We come
back to the problems of measurement and irreversibility,
but now in the cosmological context.

Since the discovery of the big bang, the scientific com-
munity has reacted to the strange nature of this singularity
by attempting to eliminate the big bang entirely (see the
steady-state theory in Sections I and III), or considering it
as a kind of “illusion” arising from the use of an incorrect
concept of time (see Hawking’s imaginary time in Section
IT), or even viewing it as a sort of miracle akin to the bib-
lical description in Genesis.

As we have already noted, it is impossible to discuss cos-
mology today without referring to the theory of relativity,
“the most beautiful theory in physics,” according to the
celebrated textbook by Lev Davidovich Landau and
Evgeny Mikhailovich Lifschitz.2 In Newtonian physics,
even when extended by quantum theory, space and time
are given once and for all. Moreover, there is a universal
time common to all observers. In relativity, this is no
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longer the case; space and time are now part of the picture.
What consequences does this have for our own interpreta-
tion? In his recent book, About Time, Paul C. W, Davies
comments on the impact of relativity, “The very division
of time into past, present and future seems to be physically
meaningless.”> He repeats Hermann Minkowski’s famous
statement: “Henceforth space by itself, and time by itself,
are doomed to fade away into mere shadows.””*

We have already alluded to Einstein’s celebrated asser-
tion that “for us convinced physicists, the distinction be-
tween past, present and future is an illusion, although a
persistent one.” At the end of his life, however, Einstein
seems to have changed his mind. In 1949, he was offered a
collection of essays that included a contribution by the
great mathematician Kurt Godel, who had taken quite se-
riously Einstein’s statement that time as irreversibility was
only an illusion. When he presented Einstein with a cos-
mological model in which it was possible to return to one’s
own past, Einstein was not enthusiastic. In his answer to
Godel, he wrote that he could not believe that he could
“telegraph back to his own past” He even added that this
impossibility should lead physicists to reconsider the prob-
lem of irreversibility.® That is precisely what we have at-
tempted to do.

In any case, we wish to emphasize that the revolution
brought about by relativity in no way affects our previous
conclusions. Irreversibility, or the flow of time, remains as
“real” as in nonrelativistic physics. Perhaps we could argue
that irreversibility plays an even greater role when we go to
higher and higher energies. It has been suggested, mainly
by Hawking, that in the early universe, space and time lose
their distinction, and time becomes fully “spatialized.” But
no one to our knowledge has devised a mechanism for this
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spatialization of time, or a means by which space and time
could emerge from what is often described as a “foamy
mess.”

Our position is quite different from those stated above
in that we consider the big bang an irreversible process par
excellence. 'We suggest that there would have been an
irreversible phase transition from a preuniverse that we call
the quantum vacuum. This irreversibility would result from
an instability in the preuniverse induced by the interactions
of gravitation and matter. Clearly we are at the edge
of positive knowledge, even dangerously close to science
fiction.

Nevertheless, we argue that irreversible processes associ~
ated with dynamical processes have probably played a deci-
sive role in the birth of our universe. From our perspective,
time is eternal. We have an age, our civilization has an age,
our universe has an age, but time itself has neither a
beginning nor an end. This brings closer two of the
traditional views of cosmology: the steady-state theory
introduced by Hermann Bondi, Thomas Gold, and Fred
Hoyle, which may apply more precisely to the unstable
medium that generates our universe (the meta- or preuni-
verse), and the standard big bang approach.’

Again, speculative elements cannot be avoided, but we
find it interesting that views emphasizing the role of time
and irreversibility can be formulated more precisely than
before, even though the ultimate truth is still far beyond
our reach. We agree entirely with the Indian cosmologist
Jayant Vishnu Narlikar, who wrote, “Astrophysicists of
today who hold the view that the ‘ultimate cosmological
problem’ has been more or less solved may well be in for a
few surprises before this century is out.”®
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I1

As we proceed with our investigation, let us consider Ein-
stein’s special relativity. This theory takes as its starting point
two inertial observers moving at a constant velocity with
respect to one another. In prerelativistic, Galilean physics,
it was accepted that the distance between the two ob-
servers, [ 2 = (x,~x,)* + (yz—yl)2 + (zz—zl)z, would remain
the same as the difference between the two instants, (t, —
t,)*. Spatial distance was defined in terms of Euclidean
geometry. This, however, led to different values of the ve-
locity of light ¢ in the vacuum as measured by the two ob-
servers. In accordance with our experience, if we assume
that both observers measure the same value of the velocity
of light, we must introduce (as did Lorentz, Poincaré, and
)13 Te s

this interval that is conserved when we move from one in-

. . . . 2 —
Einstein) the spatiotemporal interval, 52 = (¢

ertial observer to the other. In contrast to Euclidean geom-
etry, we now have the Minkowski space-time interval. The
transition from one coordinate system, x, §, 2, t, to another,
x',y', 2%, t', is the famous Lorentz transformation that com-
bines space and time. At no point, however, is the distinc-
tion between space and time lost; in the spatiotemporal
interval, the minus sign indicates space dimensions, and
the plus sign indicates time.

This situation is often illustrated by the spatiotemporal
diagram represented in Figure 8.1. On one axis there is
time ¢, and on the other a single geometrical coordinate x.
In relativity, the velocity of light ¢ in the vacuum is the
maximum speed at which signals can be transmitted. We
can therefore distinguish among different regions in the di-

agram.
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In this diagram the observer is situated at O. His future
is included in the “cone” BOA, and his past in the cone
A’O’B’. These cones are determined by the velocity of
light ¢ in that the velocities inside them are smaller than ¢
and outside them are greater, and therefore impossible to
realize. In this diagram, the event C is simultaneous with
O, while event D precedes O. But this conclusion is purely
conventional because a Lorentz transformation would ro-
tate the axis ¢, x, in which case D might appear as simulta-
neous with O, and C posterior to O. Simultaneity is
modified by the Lorentz transformation, but the cone of
light is not. The direction of time is thus invariant. The
problem of ascertaining whether or not the laws of nature
are time symmetric remains essentially the same in relativ-
ity as in prerelativistic physics, but now this question is
even more pertinent. At best, O knows all the events that
occurred in his past, that is, in the cone A’O’B’. As repre-
sented in Figure 8.2, events starting in C or D will reach
him only at later times, ¢, and ¢,, even if they are associated

Figure 8.1
Distinction Between Future and Past in Special Relativity
t
B Absolute A
future
C
’e x
0) +D
4 Absolute B’
past
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Figure 8.2

Events starting at C and D will reach the observer O at future
times t; and f,.

with signals traveling at the velocity of light. As a result, O
can collect only limited data. In an amusing analogy with
deterministic chaos made by Baidyanath Misra and loannis
Antoniou, it is said that a relativistic observer has only a
finite window on the outside world, and here also a de-
terministic description corresponds to an overidealization.’
This gives us yet another reason to proceed to a statistical
description.

There are, of course, most interesting new effects intro-
duced by relativity, such as the famous twin paradox,
where one twin remains on earth at point x = 0, while the
other leaves in a spaceship that changes direction at ¢, (in
the coordinate system in which O is at rest), and comes
back to earth at 2¢. The time interval, as measured by the
moving twin, is greater than 2¢,. This is Einstein’s remark-
able time dilation prediction, which has been verified by



170 The End of Certainty

using unstable particles. The lifetime of these twins there-
fore depends on the path as predicted by relativity. In
Chapter 7, we stated that the flow of time depends on a
history of events, but Newtonian time is universal and in-
dependent of history. Now time itself becomes history de-
pendent.

In his seminal book, The Theory of Space, Time and Gravita-
tion, Vladimir A. Fock emphasizes that we have to be
extremely careful when discussing the twin paradox inas-
much as the effect of acceleration on the clock in the mov-
ing spaceship is neglected.'® He shows that when we
consider a more detailed model in which acceleration is due
to a gravitational field described by general relativity, differ-
ent results are obtained. The sign of time dilation can even
be changed. These predictions of general relativity should
lead to fascinating new experiments to test their validity.

In his Brief History of Time, Hawking introduces imagi-
nary time, T = if, where all four dimensions are “spa-
tialized” in the Minkowski spatiotemporal interval.!!
According to Hawking, real time may well be this imagi-
nary time, whereby the mathematical formula for the
Lorentz interval becomes symmetric. Hawking’s proposi-
tion does indeed go beyond relativity, but it is only one
more attempt to negate the reality of time in describing
the universe as a static, geometrical structure, in contradic-
tion to the role that the flow of time plays at all levels of
observation.

Let us now come back to the crux of our argument and
consider the effect of relativity on the systems described by
classical Hamiltonian dynamics or quantum mechanics.
Dirac, and others who came after him, showed how to
combine the requirements of special relativity with a
Hamiltonian description.!? Relativity dictates that the laws
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Figure 8.3
The Twin Paradox

Observer O is in motion in relation to observer O.

210

of physics remain the same for all inertial systems. In
Chapters 5 and 6, we assumed implicitly that the systems as
a whole are at rest. But according to relativity, a similar de-
scription is valid whether or not the system as a whole is
moving at uniform velocity with respect to some observer.
We have seen that Poincaré resonances destroy the dynam-
ical group in which past and future play the same role,
whereby we obtain semigroups that break time symmetry.
In prerelativistic physics, the groups and semigroups main-
tain the distance /% invariant. In relativistic theory, we can
introduce as well both groups and semigroups which leave
invariant the Minkowski interval. Unfortunately, the proof
is too technical to be given here. In any case, this conclu-
sion shows that the Minkowski space-time interval is no
way in contradiction to irreversible processes. It is not true
that relativity implies the spatialization of time. As stated
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by Minkowski, space and time are no longer independent
entities, but this does not preclude the existence of an
arrow of time.

Such a conclusion could be anticipated. If time-symme-
try breaking occurs in one inertial frame, by the very def-
inition of relativity, it has to appear in all inertial reference
systems. The theory of irreversible processes is thus quite
similar (apart from certain formal changes) in both non-
relativistic and relativistic systems. There is, however, one
basic difference: Interactions are no longer instantaneous;
rather, they propagate at the velocity of light. For charged
particles within the framework of quantum theory, for ex-
ample, interactions are transmitted by photons. This leads
to additional irreversible processes such as radiation damp-
ing, which results from the emission of photons by parti-
cles. In more general terms, in relativistic physics we
consider particles as associated with fields (the photons are
the particles associated with the electromagnetic field), and
irreversibility results from the interaction of these fields.

Until now we have considered the Minkowski space-
time interval as it corresponds to special relativity. In order
to complete our discussion of cosmology, we have to in-
clude gravitation, which first requires a generalization of
the space-time interval.

I

Let us first return to the question of the big bang. As we
mentioned above, by following our expanding universe
backward in time, we come to a singularity in which den-
sity, temperature, and curvature all become infinite. From

the rate of recession of the galaxies as observed today, we
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can estimate that the birth of the universe occurred ap-
proximately fifteen billion years ago. This period of time
that separates us from the big bang is surprisingly short. To
express it in years, we use the rotation of the earth as a
clock. Fifteen billion revolutions is indeed a small number
if we remember that in the hydrogen atom, the electron
rotates some 10,000 billion times per second!

Whatever the time scale, the existence of a primordial
event at the origin of our universe is certainly one of the
most extraordinary suggestions science has ever made.
Physics deals only with classes of phenomena, and the big
bang does not seem to belong to any of these. At first view,
it appears to have no parallel elsewhere in physics.

Many scientists have been willing to explain this singu-
larity in terms of the “hand of God,” or the triumph of
the biblical story of creation, whereby science would re-
construct the existence of an act that transcends physical
rationality. Others have tried to avoid what they see as a
disquieting situation. One remarkable attempt in this sense
is the steady-state universe proposed by Bondi, Gold, and
Hoyle.!? This model is based on the perfect cosmological
principle: Not only is there no privileged place in the uni-
verse, but there is also no privileged time. According to
this principle, every observer, in the past and in the future,
is able to attribute to the universe the same values of para-
meters such as temperature and matter density. The steady-
state universe is characterized by an exponential expansion
compensated by a permanent creation of matter. The syn-
chronization between expansion and creation maintains a
constant density of matter-energy, and thus leads to the
image of an eternal universe in a state of continous cre-
ation. In spite of its appeal, the steady-state model implies
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certain major difficulties. In particular, in order to maintain
the steady state, we need a fine-tuning between cosmolog-
ical evolution (the expansion of the universe) and micro-
scopic events (the creation of matter). As long as no
mechanism for this is proposed, the hypothesis of com-
pensation between expansion and creation is highly ques-
tionable.

It was an experimental result that led the great majority
of cosmologists to reject the steady-state model in favor of
the big bang, which is now considered the standard model.
This occurred in 1965, when Arno Penzias and Robert
Wilson identified the now-famous fossil radiation at 2.7
K.!* The existence of such radiation had been predicted as
early as 1948 by Ralph A. Alpher and Robert Herman,
who reasoned that if the universe was much hotter and
denser in the past than it is today, then it must have been
“opaque,” with photons possessing sufficient energy to
interact strongly with matter. It can be shown that at a
temperature of approximately 3,000 K, the equilibrium
between matter and light is destroyed, and our universe be-
comes transparent as radiation is “detached” from matter.
The only subsequent change in the properties of the pho-
tons that form the thermal radiation is the change in their
wavelength, which increases with the size of the universe.
Alpher and Herman were thus able to predict that if the
photons indeed formed a black body radiation at 3,000 K
at the time when their equilibrium with matter was de-
stroyed (that is, some 300,000 years after the “origin”), the
temperature of this radiation should correspond today to a
temperature of about 3 K. This was a landmark prediction
that anticipated one of the greatest experimental findings
of this century.’

The standard model is very much at the core of present-
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day cosmology, and scientists generally accept that it leads
to a correct description of the universe starting one second
after the big bang singularity. But the state of the universe
during its first second of life still remains an open question.

Why is there something rather than nothing? This ap-
pears to be the ultimate question beyond the range of pos-
itive knowledge. However, this question can be formulated
in physical terms, and thereby linked to the problem of in-
stability and time. One such formulation that has become
quite popular today defines the birth of our universe as a
free lunch. Edward Tryon presented this idea in 1973, but it
seems to hark back to Pascual Jordan. In Tryon’s view, our
universe can be described as having two forms of energy:
one related to attractive gravitational forces, which is neg-
ative, and the other related to mass according to Einstein’s
celebrated formula E = mc, which is positive.!®

It is tempting to speculate that the total energy of the
universe could be zero, as is the energy of an empty uni-
verse. The big bang would thus be associated with fluctua-
tions in the vacuum conserving the energy. This is truly an
appealing idea. The generation of nonequilibrium struc-
tures (such as Bénard vortices or chemical oscillations),
where energy is conserved, also corresponds to a free lunch,
for the price of nonequilibrium structures is entropy, and
not energy. In this context, can we specify the origin of
negative gravitational energy and its transformation into
positive matter-energy? This is the question that we shall
now address.

1A%

Perhaps Einstein’s most profound contribution was to asso-
ciate gravitation with the curvature of space-time. As we
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have seen in special relativity, the Minkowski space-time
interval is ds? = 2d? — dP. In general relativity, the space-
time interval becomes ds? = Xg  dx+dx”, where p, v take on
four values: O (time), and 1, 2, 3 (space). The ten distinct
functions obtained (given that Ly = &) characterize
space-time, or Riemannian geometry. A simple example
that illustrates Riemannian geometry is a sphere consid-
ered as a curved two-dimensional space.

In the Newtonian view, space-time is given once and
for all, independent of the matter it contains. Now we un-
derstand, thanks to the Einsteinian revolution, that the
connection between space-time and matter is expressed by
Einstein’s fundamental field equations, which relate two
objects: On the one hand, we have an expression that de-
scribes the curvature of space-time in terms of the g, and
its derivatives with respect to space and time, and on the
other an expression that defines the material content in
terms of its matter-energy content and pressure. This ma-
terial content is the source of the curvature of space-time.
Einstein applied his equations to the universe as a whole as
early as 1917, and in so doing, set the course of modern
cosmology. To achieve this application, he developed a
timeless static model in accord with his philosophical
views. Baruch Spinoza was Einstein’s favorite philosopher,
and we can recognize his spirit in the choice of the model.

Then came a succession of surprises. Alexander Fried-
mann and Georges-Henri Lemaitre proved that Einstein’s
universe was so unstable, the smallest fluctuation would
destroy it.!” On the experimental side, Edwin Powell
Hubble and his colleagues discovered the expansion of our
universe.!® Then in 1965 came the observation of residual
black body radiation, which led to the present standard
cosmological model.
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In order to go from the basic equations of general rela-
tivity to the field of cosmology, we have to introduce sim-
plifying assumptions. The standard model associated with
Alexander Friedmann, Georges-Henri Lemaitre, Howard
Robertson, and Arthur Walker is founded on the cosmo-
logical principle that the universe, when viewed on a large
scale, may be considered homogeneous and isotropic. The
metrics thus take on the far simpler form ds* = 2d* —
R(9%dP (the so-called Friedmann interval). This expres-
sion differs from Minkowski space-time in two respects:
dP is a spatial element that corresponds to either a zero-
space curvature (as in the Minkowski space) or to a posi-
tive or negative curvature (as in a sphere or hyperboloid).
R(#), which is usually called the radius of the universe,
corresponds to the limit of astronomical observations at
time ¢t Einstein’s equations relate R(f) and the space
curvature to the average density and pressure of the energy-
matter. Einstein’s cosmological evolution is also for-
mulated as conserving entropy, and his equations are con-
sequently time reversible.

It is generally accepted that the standard model permits
us to understand at least qualitatively what happened to
our universe a fraction of a second after its birth. This is an
extraordinary achievement, but we are still left with the
question of what occurred before. When we extrapolate
back to the past, we come to a point of infinite density.
Can we extrapolate beyond this point? To give an idea of
the range of values involved here, it is useful to define
Planck’s scales, which measure the length, time, and
energy obtained by using three universal constants: h,
Planck’s constant; G, the gravitational constant; and ¢, the
velocity of light. We then obtain Planck’s length, I =
(Gh/) ~ 107* cm, Planck’s time on the order of 10~#
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seconds, and Planck’s energy, corresponding to a high tem-
perature on the order of 1032 degrees. It is plausible that
these scales relate to the very early universe characterized
by an extraordinarily brief time, a minuscule geometrical
size, and an enormous energy. In this “Planck era,” quan-
tum effects are likely to play an essential role.!® We have
now arrived at the very limits of modern-day physics,
where we are confronted with the fundamental problem of
the quantization of gravity or, equivalently, of space-time.
A general solution is still far from our grasp, but we may at
least formulate a model that includes the role of Poincaré
resonances and irreversibility at the very beginning of our
universe. Let us now describe some of the steps that led us
to this model.

We have noted that the Friedmann space-time interval
can be written (when we consider the case of Euclidean
three-dimensional geometry) as ds? = Q(1) (d*~ dI?), where
t is the conformal time. This is the Minkowski space-time
interval multiplied by the function Q2, which is called the
conformal factor. Such conformal space-time intervals have
remarkable features, including their conservation of the
cone of light, for which ds?> = 0. As Narlikar and others
have stated, they are the natural starting point for quantum
cosmology because they include the Friedmann universe as
a special case.?’

The conformal factor as a function of space-time relates
to a field in the same way as do other fields such as the
electromagnetic field. (Remember that a field is a dynam-
ical system characterized by a well-defined energy and
therefore a Hamiltonian). As shown by Robert Brout and
his coworkers, this factor has a unique quality in that it
corresponds to a negative energy (that is, its energy is un-
bounded from below), while the energy of any given mat-
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ter field is positive. As a result, the gravitational field de-
scribed by the conformal factor may play the role of a
reservoir of negative energy from which the energy to cre-
ate matter is extracted.’! '

This is the theoretical basis of the “free lunch” model,
where the total energy (gravitational field plus matter) is
conserved, while the gravitational energy is transformed
into matter. Brout and his colleagues have proposed a
mechanism for this extraction of positive energy. In addi-
tion to the conformal field, they have introduced a matter
field, and demonstrated that Einsteins equations lead to
a cooperative process involving the simultaneous appear-
ance of matter and a curved space-time starting from the
Minkowski space-time (containing zero gravitational and
mass energy). Their model shows that such a cooperative
process causes the exponential growth of the radius of the
universe over the course of time. (This is known as the de
Sitter universe.)

These conclusions are intriguing inasmuch as they indi-
cate the possibility of an irreversible process transforming
gravitation into matter. They also focus our attention on
the preuniverse stage, the Minkowski vacuum, which is
the starting point for irreversible transformations. It is im~
portant to note that this model does not describe creation
ex nihilo. The quantum vacuum is already endorsed by the
universal constants, and it is assumed that we can ascribe to
them the values they have today.

The birth of our universe is no longer associated with a
singularity, but rather with an instability that is analogous
to a phase transition or bifurcation. However, this theory
still presents a number of vexing problems. Brout et al.
have used a semiclassical approximation in which the mat-
ter field is quantized while the conformal field is treated
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classically. This situation is highly unlikely in Planck’ era,
where quantum effects play an essential role.

Edgar Gunzig and Pasquale Nardone have asked why
this process does not occur on a continuous basis if the
quantum vacuum associated with a flat geometrical back-
ground is indeed unstable in the presence of gravitational
interactions. They have demonstrated that in this semiclas-
sical approximation, we need an initial fluctuation of a
cloud of heavy particles of mass on the order of 50 Planck
masses (~50.107%¢) in order to start the process.*

These results can be incorporated into a macroscopic
thermodynamic approach, where the universe has to be
treated as an open system. Thus, we can observe matter
and energy being created at the expense of gravitational
energy (see Figure 8.4). This compels us to make a number
of modifications to the first law of thermodynamics,
where there is now a source of matter-energy leading to a
change in the definition of quantities such as pressure.*
Since entropy is specifically associated with matter, the
transformation of space-time into matter corresponds to a
dissipative, irreversible process producing entropy. The in-
verse process, which would transform matter into space-
time, is impossible. The birth of our universe would thus
be the result of a burst of entropy.

The interaction of the gravitational and matter fields
leads to divergences arising from brief times and short dis-
tances that correspond in quantum theory to high values of
energy and momentum. These so-called “ultraviolet”
divergences are the object of a number of interesting in-

*The “creation” pressure is negative. Therefore, an often-quoted theorem of
Hawking and Penrose showing that the universe starts with a singularity and in-

volves positive pressure is not applicable.
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Figure 8.4
Matter Is Created at the Expense of the Gravitational Field
In this simple model, the universe would have no stable ground state.

T ~@—— Creation of matter

Unstable ground state

l ~a——— Gravitation

vestigations that have led to a procedure known as the
renormalization program, which has proved to be quite
successful. Still, certain difficulties remain. There is a strik-
ing analogy between field theory and the thermodynamic
situation discussed in earlier chapters. Here again, we are
dealing with persistent interactions that neither start nor
stop, and we therefore have to go beyond Hilbert space.
Although this new field theory is still in the making, its
main conclusion is reasonable: There may be no stable
ground state at the cosmological level, since the conformal
factor reaches lower energies as it creates matter. While this
line of research continues to be pursued, the two concepts
emphasized in this book, irreversibility and probability,
clearly form an important part of this approach. Universes
appear at sites where the amplitudes of the gravitational
and matter fields have high values. The places and the
times where this occurs have only a statistical meaning, as
they are associated with quantum fluctuations of the fields.
This description applies not only to our universe, but also
to the meta-universe, the medium in which individual
universes are born. In our view, here again we have an ex~
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ample of Poincaré resonances similar to that of the decay
of an excited atom. In this case, however, the decay process
creates not photons but universes! Even before our universe
was created, there was an arrow of time, and this arrow
will go on forever.

Of course, thus far we have only a simplified model.
Einstein’s dream of a unified theory that would include all
interactions remains alive today.23 Nonetheless, such a the-
ory would have to take into account the time-oriented
character of the universe as associated with its birth and
subsequent evolution. This can be achieved only if certain
fields (such as gravitation) play different roles from others
(such as matter). In other words, unification is not enough.
We need a more dialectical view of nature.

Questions concerning the origins of time will probably
always be with us. But the idea that time has no begin-
ning—that indeed time precedes the existence of our uni-

verse—is becoming more and more plausible.



Chapter 9

A NARROW PATH

|

t has often been suggested that irreversibility has a cos-

mological origin associated with the birth of our uni-
verse. It is true that cosmology is needed to explain why
the arrow of time is universal, but irreversible processes did
not cease with the creation of our universe; they still go on
today, on all levels including geological and biological evo-
lution. Although the dissipative structures introduced in
Chapter 2 are routinely observed in the laboratory as well
as in large-scale processes occurring in the biosphere, irre-
versibility can be fully understood only in terms of a mi-
croscopic description that was traditionally identified with
classical and quantum mechanics. This requires a new for-
mulation of the laws of nature that is no longer based on
certitudes, but rather possibilities. In accepting that the fu-
ture is not determined, we come to the end of certainty. Is
this an admission of defeat for the human mind? On the
contrary, we believe that the opposite is true.

183
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The Italian author Italo Calvino has written a delightful
collection of stories, Cosmocomics, in which individuals liv-
ing in a very early stage of our universe gather together to
remember the terrible time when the universe was so small
that their bodies filled it completely.! What would have
been the history of physics if Newton had been a member
of this community? He would have observed the birth and
decay of particles, the mutual annihilation of matter and
antimatter. From the start, the universe would have ap-
peared as a thermodynamic system far from equilibrium,
with instabilities and bifurcations.

It is true that today we can isolate simple dynamical sys-
tems and verify the laws of classical and quantum mechan-
ics. Still, they correspond to idealizations applicable to
stable dynamical systems within a universe that is a giant
thermodynamic system far from equilibrium, where we
find fluctuations, instabilities, and evolutionary patterns at
all levels. On the other hand, certainty has long been asso-
ciated with a denial of time and creativity. It is interesting
to consider this conundrum in its historical context.

I1

How can we reach certainty? This is the question that
lies at the heart of the work of René Descartes. In his
thought-provoking book Cosmopolis, Stephen Toulmin at-
tempts to clarify the circumstances that led Descartes on
this quest.? He describes the tragic situation of the seven-
teenth century, a time of political instability and war be-
tween Catholics and Protestants in the name of religious
dogma. It was in the midst of this strife that Descartes
began his search for a different kind of certainty that all
humans, independent of their religions, could share. This
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led him to his famous cogito, the foundation of his philoso-
phy, as well as his conviction that science based on mathe-
matics was the only way to reach such certainty. Descartes’
views, which proved to be immensely successful, influ-
enced Leibniz’s concept of the laws of nature discussed in
Chapter 1. (Leibniz also wanted to create a language that
would heal the divisions among religions and bring about
the end of religious wars.) Descartes’ pursuit of certainty
found its concrete realization in Newton’s work, which has
remained the model for physics for three centuries.

Toulmin’s analysis reveals a remarkable parallel between
the historical circumstances surrounding Descartes’ quest
for certainty and those of Einstein’s. For Einstein as well,
science was a means of avoiding the turmoil of everyday
existence. He compared scientific activity to the “longing
that irresistibly pulls the town-dweller away from his noisy,
cramped quarters and toward the silent high mountains.”?

Einstein’s view of the human condition was profoundly
pessimistic. He had lived through a particularly tragic pe-
riod in human history spanning the rise of fascism and
anti-Semitism and two world wars. His vision of physics
has been defined as the ultimate triumph of human reason
over a violent world, separating objective knowledge from
the domain of the uncertain and the subjective.

But is science as conceived by Einstein—an escape from
the vagaries of human existence—still the science of today?
We cannot desert the polluted towns and cities for the high
mountains. We have to participate in the building of to-
morrow’s society. In the words of Peter Scott, “The world,
our world, tries ceaselessly to extend the frontiers of the
knowable and the valuable, to transcend the givenness of
things, to imagine a new and better world.”*

Science began with the Promethean affirmation of the
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power of reason, but it seemed to end in alienation—a
negation of everything that gives meaning to human life.
Our belief is that our own age can be seen as one of a
quest for a new type of unity in our vision of the world,
and that science must play an important role in defining
this new coherence.

As we mentioned in Chapter 8, at the end of his life,
Einstein was offered a collection of essays that included a
contribution by the great mathematician Kurt Gédel. In
his answer to Godel, he rejected his idea of a possible
equivalence between past and future. For Einstein, no mat-
ter how great the temptation of the eternal, accepting the
idea of traveling back in time was a denial of the real
world. He could not endorse Gddel’s radical interpretation
of his very own views.’

As Carl Rubino has noted, Homer’s Iliad revolves
around the problem of time as Achilles embarks on a

search for something permanent and immutable:

The wisdom of the Iliad, a bitter lesson that Achilles, its hero,
learns too late, is that such perfection can be gained only at
the cost of one’s humanity: he must lose his life in order to
gain this new degree of glory. For human men and women,
for us, immutability, freedom from change, total security, im-
munity from life’s maddening ups and downs, will come only
when we depart this life, by dying, or becoming gods: the
gods, Horace tells us, are the only living beings who lead se-

cure lives, free from anxiety and change.®

Homers Odyssey appears as the dialectical counterpart
to the Iliad. Odysseus is fortunate enough to be given the
choice between immortality, by remaining forever the
lover of Calypso, and a return to humanity and ultimately
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old age and death. In the end, he chooses time over eter-
nity, human fate over the fate of the gods.

Since Homer, time has been the central theme of liter-
ature. We find a reaction quite similar to that of Einstein in
an essay by the great writer Jorge Luis Borges entitled
“A New Refutation of Time.” After describing the doc-
trines that make time an illusion, he concludes: “And yet,
and yet . . . denying temporal succession, denying the self,
denying the astronomical universe, are apparent despera-
tions and secret consolations. . . . Time is the substance I
am made of. Time is a river which sweeps me along, but I
am the river; it is the tiger which destroys me, but I am the
tiger; it is a fire which consumes me; but I am the fire. The
world, unfortunately, is real; I, unfortunately, am Borges.””’
Time and reality are irreducibly linked. Denying time may
either be a consolation or a triumph of human reason. It is
always a negation of reality.

The denial of time was a temptation for both Einstein
the scientist and Borges the poet. Einstein repeatedly stated
that he had learned more from Fyodor Dostoyevsky than
from any physicist. In a letter to Max Born in 1924, he
wrote that if he were forced to abandon strict causality, he
“would rather be a cobbler, or even an employee in a gam-
ing house, than a physicist.”® In order to be of any value at
all, physics had to satisfy his need to escape the tragedy of
the human condition. “And yet, and yet,” when con-
fronted by Godel with the extreme consequences of his
quest, the denial of the very reality that physicists endeavor
to describe, Einstein recoiled.

We can certainly understand Einstein’s refusing chance
as the only answer to our questions. What we have tried to
follow 1s indeed a narrow path between two conceptions
that both lead to alienation: a world ruled by deterministic
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laws, which leaves no place for novelty, and a world ruled
by a dice-playing God, where everything is absurd, acausal,
and incomprehensible.

We have attempted to make this book a journey along
the narrow path, and thereby illustrate the role of human
creativity in science. Strangely enough, this creativity is
often undervalued. We all realize that if Shakespeare,
Beethoven, or van Gogh had died soon after birth, no one
else would ever have achieved what they did. Is this also
true for scientists? Would someone else not have discov-
ered the classical laws of motion if there had been no
Newton? Did the formulation of the second law of ther-
modynamics depend entirely on Clausius? There is some
truth in the contrast between artistic and scientific cre-
ativity. Science is a collective enterprise. In order to be ac-
ceptable, the solution to a scientific problem must satisfy
exacting criteria and demands. These constraints, however,
do not eliminate creativity. They provoke it.

The formulation of the time paradox is itself an extra-
ordinary feat of human creativity and imagination. If sci-
ence had been restricted to empirical facts, how could it
ever have dreamed of denying the arrow of time? The
elaboration of time-symmetrical laws was not achieved
merely by introducing arbitrary simplifications. It com-~
bined empirical observations with the creation of theoret-
ical structures. This is why the resolution of the time
paradox could not be accomplished by a simple appeal to
common sense or ad hoc modifications of the laws of dy-
namics. It was not even a matter of simply identifying the
weaknesses in the classical edifice. In order to make funda-
mental progress, we needed to introduce new physical
concepts, such as deterministic chaos and Poincaré reso-
nances, and new mathematical tools to turn these weak-
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nesses into strengths. In our dialogue with nature, we
transform what first appear as obstacles into original con-
ceptual structures providing fresh insights into the relation-
ship between the knower and the known.

What is now emerging is an “intermediate” description
that lies somewhere between the two alienating images of a
deterministic world and an arbitrary world of pure chance.
Physical laws lead to a new form of intelligibility as ex-
pressed by irreducible probabilistic representations. When
associated with instability, whether on the microscopic or
macroscopic level, the new laws of nature deal with the-
possibility of events, but do not reduce these events to
deductible, predictable consequences. This delimitation of
what can and cannot be predicted and controlled may well
have satisfied Einstein’s quest for intelligibility.

As we follow along the narrow path that avoids the dra-
matic alternatives of blind laws and arbitrary events, we
discover that a large part of the concrete world around us
has until now “slipped through the meshes of the scientific
net,” to use Alfred North Whitehead’s expression.” We
face new horizons at this privileged moment in the history
of science, and it is our hope that we have been able to
communicate this conviction to our readers.
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GLOSSARY

anthropic principle The idea that the conditions of the universe
are explained by the fact that we are here to observe them.

bifurcation The branching of a solution into multiple solutions as
a system parameter is varied.

big bang The initial event of our universe, described as an explo-
sive creation of matter and energy from a point.

chaos The behavior of systems in which close trajectories separate
exponentially in time.

clinamen The idea, due to Epicurus, that an element of chance is
needed to account for the deviation of material motion from rigid
predetermined evolution.

coarse graining The averaging of dynamics over finite regions of
phase space.

collapse of the wave function The extradynamical element
needed in orthodox quantum theory for the wave function, repre-
senting potentialities, to yield an actual state.

degrees of freedom The number of independent variables
needed to specify the configurational state of a system. A single par-
ticle in three-dimensional space has three degrees of freedom.

determinism The viewpoint that evolution is governed by a set of
rules that, from any particular initial state, can generate one and
only one sequence of future states.
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deterministic chaos Chaotic behavior arising from an entirely
deterministic evolution law.

Dirac delta function The mathematical object, introduced by
Dirac, which may be considered a function defined as infinity at
one point and zero everywhere else.

dissipative structure Spatiotemporal structures that appear in far-
from-equilibrium conditions, such as oscillating chemical reactions
or regular spatial structures.

eigenstate A state that when acted on by a given operator yields
the same state multiplied by a number.

eigenvalue The number that an eigenstate is multiplied by after it
is acted upon by the corresponding operator.

ensemble An imagined collection of identical systems with differ-
ent initial conditions.

entropy A function of the state of the system that increases mo-
notonically for isolated systems and reaches a maximum at thermo-
dynamic equilibrium.

fractal The term coined by Benoit Mandelbrot for mathematical
objects of noninteger dimension. For example, the length of the ir-
regular coastline of a country increases as the scale used to measure
it decreases, and so the coastline has a dimension between one and
two.

Friedmann universe A cosmological model of an expanding uni-
verse based on the assumption of homogeneity and isotropy of the
universe on large scales.

Gelfand space The function space containing both the general-
ized functions and the well-behaved functions they act on.

generalized function The class of mathematical objects to which
the Dirac delta function belongs. A generalized function is not a reg-
ular mathematical function but is defined by how it acts on regular
functions.
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H-theorem Boltzmann’s finding that a function (the H-function)
involving the one-particle distribution function appears unidirec-
tional in time behavior under evolution of a dilute gas of interact-
ing particles.

Hamiltonian The energy of a dynamical system expressed in
terms of its coordinates and momenta.

Heisenberg uncertainty principle The product of the accura-
cies by which the position and momentum of a quantum particle
may be determined as limited by Planck’s constant. Complete accu-
racy of either the position or the momentum implies complete in-
determinacy of the other one.

Hilbert space The space of functions for which the integral of the
square of the functions is well defined and finite. This is the func-
tion space that was used as the setting for orthodox quantum me-
chanics. It has been subsequently applied to classical mechanics and
statistical mechanics.

KAM theory Describes the dynamical behavior of classes of non-
integrable systems. As the energy of a system is increased, chaotic
behavior becomes more prevalent.

kinetic theory The study of the thermodynamic and transport
properties of fluid and gas systems in terms of interparticle interac-
tions.

large Poincaré system (LPS) A nonintegrable system due to
Poincaré resonances taken in the thermodynamic limit so that its
energy spectrum is continuous.

Laplace demon The entity imagined by Laplace that would be
able, given the exact initial conditions, to calculate the precise fu-
ture evolution of our universe.

Loschmidt’s reversal paradox The argument, raised against the
conclusions of Boltzmann, that since the equations of motion in
an interacting particle system are reversible, one can consider re-
versing all the velocities in a system so that any time-oriented
functions of the state of the system would then behave in an op-
posite manner.
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Lyapunov exponent The rate of exponential separation of nearby
trajectories in a chaotic system.

map A discrete-time dynamical process.

Markov process A process wherein the future evolution of a state
depends only on the present state. For a continuous time system this
means that the process is local in time, that is, there are no memory
effects.

Newtonian dynamics The rules of evolution that form the core
of classical physics and that, in pre-quantum era determinism, were
believed to underlie all physical reality.

nonintegrable system An interacting system that cannot be trans-
formed to noninteracting parts. If such a transformation can be per-
formed, the system is integrable and the equations of motion can
be trivially solved.

Perron-Frobenius operator The time evolution operator for
probability distributions in discrete-time systems (maps).

phase space The abstract space of points in which the coordinates
are the positions and velocities of the particles in an evolving sys-
tem.

Planck era The universe just after the big bang characterized by
the Planck scales, involving three fundamental constants of nature,

h, ¢, and G.

Poincaré recurrence theorem The finding that the state of a
closed system, as defined by the values of the positions and veloci-
ties of all the particles, will recur arbitrarily closely under time evo-
lution of the system.

Poincaré resonances Coupling of degrees of freedom that lead to
divergent expressions due to small denominators if there is reso-
nance between them. The resonances may prohibit the solution of
the equations of motion.

probability distribution function The function representing the
relative weights of the systems or initial conditions distributed in an
ensemble.
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resonance The constructive interference that appears when two
frequencies in a system are rationally related.

Ritz-Rydberg principle The frequency of spectral lines repre-
senting the difference between two energy levels.

second law of thermodynamics The principle that the entropy
of an isolated system may only increase or remain constant under
time evolution.

self-organization The choice between solutions appearing at
a bifurcation point, determined by probabilistic laws. Far-from-
equilibrium self-organization leads to increased complexity.

spectral decomposition The expression of an operator in terms
of its eigenstates and eigenvalues in a given function space.

steady-state universe A cosmological model wherein the expan-
sion of the universe is compensated by a continuous creation of
matter.

thermodynamic limit The procedure of considering the number
N of particles and the size I/ of a system becoming arbitrarily large
while the concentration, ¢ = N/V/ remains finite and constant.

thermodynamics The study of the macroscopic properties of a sys-
tem and their relations without regard to the underlying dynamics.

Turing structures Patterns in chemical systems arising from an in-
terplay of reaction and diffusion processes; these are an example of
dissipative structure.



INDEX

aging, 78, 125

Alper, Ralph A, 174

anthropic principle, 15-16

Antoniou, loannis, 169

approximation: dissipative struc-
tures not explained by, 73; evo-
lution as due to, 23, 24-25;
fundamental problems solved in
terms of, 52; irreversibility as
due to, 23, 24, 81, 91, 105

architecture, 60

Arnold, Vladimir Igorevich, 41

arrow of time: all having same ori-
entation, 102, 162; Bernoulli
maps introducing, 90, 96; con-
structive role of, 3; for dealing
with intelligent life, 15; denial
of, 1-2; dissipative structures re-
quiring, 73; entropy as, 19; as
eternal, 182; in evolving uni-
verse, 4; as fact imposed by ob-
servation, 74; hostility to
concept of, 61-62; in macro-
scopic processes, 18; in non-
equilibrium physics, 3;
nonintegrable systems required
for, 39; physics’ denial of, 2; in
realistic interpretation of quan-
tum mechanics, 54; relegated to

phenomenology, 2, 3; as source
of order, 26; space-time as con-
sistent with, 172; in structure
formation, 71; subjective inter-
pretation of, 49

atomism, 9-10, 127

atoms, Bohr’s theory of, 132-33,
145

bacteria, 161

baker transformations (maps),
96-105, 97; approach to equi-
librium in terms of, 102; and
Bernoulli map, 90, 91; Bernoulli
map compared with, 97-98,
103—4; Bernoulli shift for repre-
senting, 99; as chaotic and de-
terministic, 101; eigenfunctions
and eigenvalues for, 103; equiva-
lence of individual and statistical
description broken with, 103; as
invertible, 101, 102; numerical
simulation of, 98; Perron-
Frobenius operator with, 103;
recurrence in, 99-101; spectral
representation in, 103; successive
iterations of, 98-99, 100; time
paradox associated with, 103; as
time reversible, 101, 103
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becoming, 10

Bell, John, 51

Belousov-Zhabotinski reaction,
66—67

Bénard instability, 158, 175

Bergson, Henri, 13, 14, 59, 72

Bernoulli maps, 83-88, 84, arrow
of time introduced in, 90, 96;
baker transformation as general-
ization of, 96; baker transforma-
tion compared with, 97-98,
103—4; as describing chaotic sys-
tems, 89-90; evolution operator,
93; as not invertible, 96; simula-
tion of distribution function for,
86; simulation of trajectories
for, 85

Bernoulli polynomials, 93-94

Bernoulli shift, 90, 99, 101

Biebracher, C. K., 71

bifurcation point, 66, 67, 69

bifurcations: in chaotic behavior,
68; our universe involving suc-
cessive, 72; pitchfork bifurca-
tion, 68, 69; as source of
diversification and innovation,
70; as source of symmetry
breaking, 69; successive, 6970,
70

big bang, 172-75; as beginning of
the universe, 6, 163—64; birth of
the universe as a free lunch, 175,
179; first second after, 175; in-
stability associated with, 6; as ir-
reversible, 166; as occurring
fifteen billion years ago, 173;
residual black body radiation,
131, 174, 176

binary correlations, 121, 122,
122

biology: arrow of time in structure
formation in, 71; Darwinian
evolution, 19, 20, 183; multi-

plicity of evolutions in, 161-62;
self-replicating biomolecules,
159. See also life

black body radiation, 131, 145,
174, 176

Bohm, Arno, 142

Bohr, Niels: atom described in
terms of energy levels, 132, 145;
complementarity principle, 74,
150; Copenhagen interpretation
of quantum mechanics, 50, 150,
156-57; on quantum leaps, 138;
on vocabulary for quantum
physics, 150

Boltzmann, Ludwig: on ensembles,
76; evolutionary approach to
physics, 2, 19-21; H-function
and H-theorem, 20; on irre-
versibility and dynamical sys-
tems, 27; on irreversibility as
illusory, 2, 19, 21; on second
law of thermodynamics as prob-
abilistic, 20, 22; two-compart-
ment model, 22-23, 76, 91

Bondi, Hermann, 166, 173

Borel, Emile, 29

Borges, Jorge Luis, 187

Born, Max, 26, 40, 134, 135, 187

Brief History of Time (Hawking), 7,
15, 170

Bronowski, Jacob, 7

Brout, Robert, 178, 179

Brownian motion, 42, 43, 43

butterfly effect, 30-31

Calvino, Italo, 184

canonical ensemble, 77

canonical equations of motion,
110-11, 112

causality, 4, 187

certainty: coming to end of, 183;
denial of time and creativity as-
sociated with, 184; Descartes’



quest for, 184-85; resonances
introducing uncertainty, 44

chance. See probabilities

chaos: baker transformation as
chaotic, 101; bifurcations associ-
ated with, 68; chaotic systems,
30-31; in classical physics, 4;
conditions for general definition
of, 156; indeterminism as due
to, 56; and limits of physical
concepts, 29; in nonequilibrium
physics, 3; probabilistic laws of

dynamics for, 104; problem of as

solvable at ensemble level, 87;
resonances’ influence on, 41;
resonances leading to, 112; sim-

plified example of, 35-37; statis-

tical nature of laws of, 37; time
symmetry broken in, 105; tra-
jectories as inadequate for de-
scribing, 90-91, 105. See also
deterministic chaos; laws of
chaos

chaotic maps, 81-88; two types of
evolutions with, 102. See also
baker transformations; Bernoulli
maps

chemical reactions: at equilibrium,
65—-66; flow of time varying in,
159; irreversibility in, 158-59,
183; nonlinear equations for de-
scribing, 66; oscillating reac-
tions, 66, 127, 175; synthetic
chemistry, 71; time directional-
ity in, 18

chemistry, nonequilibrium, 26, 27,
6768

classical physics: chaos included in,
4; as deterministic, 136-37; ex-
tending to unstable systems, 89;
extensions of, 46, 109; funda-
mental concepts of, 109-10;
Hamiltonian H in, 133; as in-
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complete, 108; instability in, 4,
54, 107; irreversibility in, 49;
laws of nature in, 4, 138, 184;
naive realism of, 135; pre-
dictability in, 4; probabilities in,
5; quantum mechanics limiting
validity of, 107; as reductionist,
114; relativity showing limits of,
107; resonances introducing un-
certainty into, 44; statistical de-
scriptions in, 108; time in, 59,
60; time-reversible processes in,
28. See also Newtonian physics;
trajectories

Clausius, Rudolf Julius, 18-19

clinamen, 10-11, 52, 55, 127

coarse graining, 24, 51, 52, 53,
1012

Cohen, 1. Bernard, 55

collapse of wave function. See re-
duction (collapse) of wave func-
tion

collision operators, 124

collisions: in Boltzmann’s H-
theorem, 20; and correlations,
78, 79, 80; of molecules, 78; in
persistent interactions, 115

communication: correlations and
human, 79; measurement as
means of, 150

complementarity principle, 74,
150

complexity: of biological and
chemical structures, 71; emer-
gence of, 128; evolving in non-~
equilibrium systems, 64;
irreversibility associated with, 64

Conference on Statistical Mechan-
ics and Thermodynamics, 61-62

conformal factor, 178-79, 181

conformal time, 178

conservation of energy, principle
of, 76-77
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conservation of wave vectors, law nial of, 184; democracy as based
of, 121 on, 17; and determinism, 6; and
conservative systems, dynamics of, distance from equilibrium, 62;
101 of nature, 62; in science, 188
constructive interference, 119 crystals, 62
continuous spectrum, 133-34, 141
contracting coordinate, 97, 99 Darwin, Chatles, 2, 19-21
control, 154 Davies, Paul C. W., 48—49,
Copenhagen interpretation, 50, 165
150, 15657 decay processes: in beams of unsta-
correlations: binary correlations, ble particles, 139—40; of excited

121, 122, 122; and collision, 78,
79, 80; communication com-
pared with, 79; creation of, 122,
147; defined, 78, 120-21; de-
struction of, 79, 80, 122, 147,
dynamics as a history of, 122;
dynamics of, 79; evolution of,
123; flow of, 78-80, 80, 88;
vacuum of correlations, 121,
122, 122, 123, 123
cosmological principle, 177
cosmology: anthropic principle,
15—16; birth of universe associ-
ated with instability, 179; birth
of universe resulting from burst
of entropy, 180; cosmological
principle, 177; in Einstein, 176,
177; a meta-universe, 164, 181;
observer in, 51; original uni-
verse as highly organized, 28;
possible worlds, 59, 72; standard
model, 164, 174-75, 177, suc-
cession of bifurcations in our
universe, 72; the universe as
evolutionary, 4, 155; why is
there something rather than
nothing, 175. See also big bang;
steady-state theory

atoms, 138-39, 139; exponen-
tial decay, 139, 142; radioactive
decay, 17, 18; universes created
from, 182

deconstruction, 14

De Donder, Théophile, 60, 61

delocalized distribution functions:
defined, 114; and going outside
Hilbert space, 116, 117; for per-
sistent interactions, 114, 115,
117, 125, 148, 155-56; persis-
tent scattering described by, 149;
in quantum physics, 146

delta functions, 33, 94-95, 117,
124n, 143

democracy, science as conflicting
with, 17

Democritus, 9

De Moivre, Abraham, 5

denominators, problem of small,
40

density matrix, 47, 53-54, 143-44,
147-48

Descartes, René, 16, 184-85

description: as idealized in tradi-
tional laws of physics, 26; inter-
mediate description of nature,
189; nonlocal, 37, 42, 96. See

coupling constant, 140 also statistical level of descrip-
creation fragments, 122, 122, 124 tion; individual level of descrip-
creativity: as amplification of laws tion

of nature, 71; certainty and de- de Sitter universe, 179



destruction fragments, 122, 122,
124

destructive interference, 119

determinism: baker transformation
as deterministic, 101; as based
on idealizations, 29; in classical
and quantum physics, 136-37;
creativity and ethics and, 6;
dilemma of, 1, 6, 14; divine
viewpoint required for, 38; as
mathematizable, 14; moving
away from, 131-32; Newton’s
relation of acceleration and
force as deterministic, 110; in
pre-Socratic philosophy, 9-10;
in Western philosophy, 11

deterministic chaos: Bernoulli map
for, 83—88; in equations of mo-
tion, 31; exponential divergence
as signature of, 84; as inapplica-
ble in quantum mechanics, 53;
individual and statistical descrip-
tions not equivalent in, 94-95;
irreducible probabilistic descrip-
tions for, 45; Laplace demon in
world of, 38; and Poincaré non-
integrability, 112; statistical de-
scription of, 105

deterministic trajectories, 41

diffusion: diffusive term in persis-
tent interactions, 44—45, 54; dif-
fusive terms in quantum
mechanics, 53-54; entropy asso-
ciated with, 41; as irreversible,
3, 105; resonances leading to,
4244, 43, 126, 155; thermal
diffusion, 26, 27, 35, 64; trajec-
tories leading to in chaos, 41

dilating coordinate, 97, 99

dilemma of determinism, 1, 6,
14

“Dilemma of Determinism”
(James), 14
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Dirac, Paul, 134, 163

Dirac delta functions, 33, 94-95,
117, 124n, 143

discrete spectrum, 133, 141

disorder, as constituting foundation
of microscopic systems, 155

dissemination, 79

dissipative structures: arrow of
time required by, 73; defined,
66; emergence of, 128; and
equilibrium, 67; homogeneity
of space and time broken by, 69;
and irreversibility, 73, 183; new
kinetic theory for describing,
126; in nonequilibrium physics,
3, 27, and Poincaré’s recurrence
theorem, 101; self~organization
in, 70

distribution functions: additional
information provided by, 37;
and Bernoulli maps, 86, 87-88;
as density matrices, 143—44; en-
sembles represented by, 33; at
equilibrium, 76-77, 117; evolu-
tion over time, 112; integrating,
120-21; Liouville operator de-
termining evolution of, 113; lo-
calized, 114, 115; microstructure
of phase space accounted for in,
95; and Perron-Frobenius oper-
ator, 87-88, 91, 94; in quantum
state representation, 143—44;
smoothness in solutions of,
87-88; in statistical description
of dynamical problems, 91-96,
125-28; uniform distribution,
93; written as Bernoulli polyno-
mials, 93-94. See also delocalized
distribution functions

distributions. See generalized func-
tions

domain of validity,
29
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dualism: of Descartes, 16; in quan-
tum mechanics, 50, 53, 130,
131; Weinberg on, 15

Duhem, Pierre-Maurice, 90

dynamical decomposition, 102

dynamical groups, 104, 142,
171

dynamical systems: dynamics as
history of correlations, 122;
general problem of dynamics,
40; instability in, 55, 127-28;
integrable systems, 39, 44, 54,
108, 131, 144; and irreversibil-
ity, 27-28, 126; as largely non-
integrable, 39; majority as
nonintegrable large Poincaré
systems, 127; past and future in,
102; phase space representation,
31, 32, 110; Poincaré on,
38—41; recurrence in, 99-101;
returning to initial state in im-
measurable time, 23; solving
problems at statistical level,
91-96, 113, 125-28; stable,
30-31, 36, 55; within a thermo-
dynamic system, 184. See also
nonintegrable systems; unstable
systems

Eddington, Arthur Stanley, 19, 59,
137

Ehrenfest, Paul and Tatiana, 74,
81, 101

eigenfunctions: with baker trans-
formation, 103; as central in sta-
tistical and quantum mechanics,
95; defined, 92; of evolution
operator, 93; of Hamiltonian
operator, 133; of Liouville oper-
ator, 113, 118; of operators,
134-35; in spectral representa-
tion of an operator, 94-95; in
statistical formulation of quan-
tum physics, 144

eigenvalues: with baker transfor-
mation, 103; as central in statis-
tical and quantum mechanics,
95; defined, 92; of evolution
operator, 93; of Hamiltonian
operator, 133, 138, 140-42; of
Liouville operator, 113, 118,
120, 149; in spectral representa-
tion of an operator, 94-95; in
statistical formulation of quan-
tum physics, 144

Einstein, Albert: cosmology of,
176, 177; on ensembles, 32, 34,
76; on freedom, 13; fundamen-
tal field equations, 176; general
relativity, 46; on Godel’s cosmo-
logical model, 165, 186, 187; on
gravitation as curvature of
space-time, 175-76; mass-
energy equation, 175; on quan-
tum mechanics, 5, 135, 151; on
science, 185; on scientific deter-
minism, 11; special relativity,
167; and Spinoza, 176; on time
as an illusion, 1, 58, 165, 187;
time dilation prediction, 169;
and unified theory, 182; on
unity of nature, 16

electromagnetic waves, 112

elementary particles, 115, 140

Empire of Chance, The (Gigerenzer
etal), 4

energy: chaos arising at critical
value of, 41; conservation of,
76—77; Einstein’s mass-energy
equation, 175; free energy in
equilibrium conditions, 63, 64;
gravitational energy transformed
into matter, 174, 179; total en-
ergy, 76, 175

energy levels: in Bohr description
of the atom, 132-33, 145;
eigenvalues determining,
138



ensembles: canonical ensemble, 77;

chaos problem solved at level of,
87, defined, 31-32; distribution
function at equilibrium, 7677,
representation in phase space,
33, 34; trajectories compared
with, 82, 83, 87; transition from
wave functions to, 131; for un-
stable systems, 81
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with matter, 131, 145, 174; in
Boltzmann’s two-compartment
model, 22-23; calculating rate
of approach to, 95; and correla-
tion, 78, 80; creativity and dis-
tance from, 62; and dissipation,
67; distance from as parameter
for describing nature, 68; distri-
bution function of ensembles at,

Entre le Témps et I’Eternité (Pri-
gogine and Stengers), 154

entropic time, 161

entropy: as the arrow of time, 19;

7677, distribution functions at,
117; free energy and, 63, 64,
limiting thermodynamics to,
61-62; matter acquiring new

birth of universe resulting from
burst of, 180; in Boltzmann
model, 76; diffusion associated
with, 41; entropic time, 161;
flow of time correlated with,
159; and information, 24; and
irreversibility, 17, 18~19; irre-
versible processes as creating, 61;
life as feeding on negative en-
tropy flow, 63; matter associated
with, 180; in nonrelativistic
twin paradox, 160; observation
increasing, 50; ordering coming
from, 26; in second law of ther-
modynamics, 18-19, 60

Epicurus: atomism of, 9-10; clina-

men concept, 10~11, 52, 55,
127; on human freedom, 10
equations of motion: Bernoulli
maps for, 83-90; canonical
equations of motion, 110-11,
112; as deterministic, 31; for
free particle, 118; Newton’s law
relating force and acceleration,
11, 109-10; of oscillator inter-
action with field, 112; periodic
maps for, 82-83; time-reversible
processes described by, 18
equilibrium: approach to with
baker transformation, 102; black
body radiation in equilibrium

properties when far from, 65,
67; matter as blind in, 127; sta-
ble and unstable, 30, 30~31; in
system of particles, 20; thermo-
dynamic equilibrium, 60, 63,
66, 77, 113, 130; uniform distri-
bution corresponding to, 93; the
universe as far from, 158. See
also nonequilibrium processes

equilibrium statistical thermody-
namics, 77

equilibrium thermodynamics, 88,
108

Espagnat, Bernard, 53

ethics: and determinism, 6; time
associated with, 58

events, 5

Everett, Hugh, 49

evolution: approximation as re-
sponsible for, 23, 24-25; Boltz-
mann’s evolutionary approach to
physics, 2, 19-21; of correla-
tions, 123; Darwinian, 19, 20,
183; described in terms of prob-
abilities, 55; of distribution func-
tions, 112; dynamical instability
as condition of, 128; as multiple
in biology, 161-62; in reformu-
lated laws of physics, 16; two
types with chaotic maps, 102;
the universe as evolutionary, 155
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evolution operator, 93, 125-26,
142

excited atoms, decay of, 138-39,
139, 142-43

exponential decay, 139, 142

Feynman, Richard, 47, 147n

Fierz, Markus, 50, 53

Fifth Solvay Conference on
Physics, 150

first law of thermodynamics, 180

flow of time: depending on history
of events, 170; as global prop-
erty, 20; gravitational fields af-
fecting, 15960, 160;
introduced in quantum physics,
5; in nonrelativistic physics, 159;
progressing up levels of organi-
zation, 162; resonances as source
of, 159; as universal in Newton-
ian physics, 160, 164, 170; as
varying, 159

fluctuations: in big bang, 175, 180;
in equilibrium conditions, 63; as
multiple, 162; in nonequilib-
rium systems, 64, 68—70; origin
of, 72; in urn model, 75, 76

Fock, Vladimir A., 170

Fokker-Planck equations, 43

Fourier series, 116—17

Fourier transform, 117, 118, 147

fractals, 38

freedom: democracy as based on,
17; and determinism in Western
tradition, 6; Einstein’s denial of,
13; Epicurus on, 10; time asso-
ciated with, 58

free energy, in equilibrium condi-
tions, 63, 64

free Hamiltonians, 111, 138, 140

“free lunch” model, 175, 179

free particle, motion of, 111, 118,
156

Freud, Sigmund, 70

Friedmann, Alexander, 176, 177

Friedmann space-time interval,
177, 178

From Being to Becoming (Prigogine),
27,74

function, and structure, 62

functional analysis, 38

functional spaces, 38, 46, 92

future: in chaotic and simple dy-
namical systems, 102, 104; the
common future, 162; as a con-
struction, 106; in formal solu-
tion of Schrédinger equation,
142; interaction between
knower and known creating,
153; in Newton’s relation of ac-
celeration and force, 110; as not
determined, 183; as orientation
of arrows of time in nature,
102; and past as asymmetrical in
irreversible processes, 28; and
past meeting in probabilities,
137; and past not distinguished
in physics, 2, 138; predicting in
classical science, 4; in special rel-
ativity, 168

Galilean invariance, 110

Galilean physics, 1, 167

gases, kinetic theory of. See kinetic
theory of gases

Gelfand space, 96

Gell-Mann, Murray, 24, 28-29,
51, 52

general evolution criterion, 65

generalized functions, 33n; Dirac
delta functions, 33, 94-95, 117,
124n, 143; in functional analysis,
38; and going outside Hilbert
space, 117; nice functions con-
trasted with, 94; as not included
in Hilbert space, 92



general problem of dynamics,
40

general relativity: extension of
classical mechanics in, 46; going
to cosmology from equations of,
177, space-time interval in, 176

geological processes, time scale of,
161

Ghirardi, Giancarlo, 52

Gibbs, Josiah Willard, 32-34, 61,
76

Gigerenzer, Gerd, 4

Glansdorft, Paul, 64

God: and the big bang, 173; dice
playing by, 188; divine view-
point required for determinism,
38; as governing the universe
deterministically, 11, 12; science
as reading the mind of, 7

Godel, Kurt, 165, 186, 187

Gold, Thomas, 166, 173

Gould, Stephen J., 161

gravitation: as curvature of space-
time, 175-76; quantization of,
178

gravitational fields: matter as cre-
ated at expense of, 179, 180,
181; time flow affected by,
159-60, 160

groups, dynamical, 104, 142, 171

Gunzig, Edgar, 180

Hamiltonian H: in classical physics,
133; defined, 110; distribution
function as function of, 7677,
117; equations of motion de-
rived from, 110-11; flow of
time dependent on, 159; as her-
mitian, 138; potential energy in
as sum of binary interactions,
120; in quantum physics, 138;
special relativity and description
by, 170-72
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Hamiltonian operator H: eigenval-
ues of, 133, 138, 140—42; in
quantum theory, 133; and
Schrédinger equation, 136; in
statistical formulation of quan-
tum physics, 144

harmonic oscillators, 39, 102

harmonics, 40, 123

Hartle, James B., 51

Hawking, Stephen W.: on an-
thropic principle, 15-16; on fu-
ture of science, 7; on imaginary
time, 58, 164, 170; on spatializa-
tion of time, 165; on universe
starting with a singularity, 180n

Hegel, Georg Wilhelm Friedrich,
13

Heidegger, Martin, 10, 13, 14

Heisenberg, Werner, 134, 157

Heisenberg uncertainty principle,
74, 135-36, 143

Heraclitus, 10

Herman, Robert, 174

hermitian operators, 138

H-function of Boltzmann, 20

Hilbert space: as dynamical group,
104; dynamical groups outside,
142; eigenvalues of Hamiltonian
in, 138; eigenvalues of Liouville
operator in, 113; equivalence of
individual and statistical descrip-
tion breaking down outside, 96;
extending wave functions be-
yond, 144—45; in functional cal-
culus, 46; generalized functions
not included in, 92; going be-
yond, 93, 95-96, 114, 116, 117,
126, 181; quanturn mechanics as
operator calculus in, 95; rigged
Hilbert space, 96; and spectral
representation with baker trans-
formation, 103, 104

Homer, 186-87
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Hoyle, Fred, 166, 173

H-theorem of Boltzmann,
20

Hubble, Edwin Powell, 176

Husserl, Edmund, 13

Iliad (Homer), 186

imaginary time, 58, 164, 170

indeterminism: as anthropomor-
phic, 14; as compatible with re-
alism, 132; as due to instability
and chaos, 56; in fundamental
laws of physics, 16; statistical de-
scription of unstable systems re-
quiring, 109

indistinguishability of elementary
particles, 140

individual level of description:
breaking equivalence with statis-
tical description, 35, 83, 87, 89,
94-95, 96, 103, 106, 155; in
classical and quantum physics,
129; for integrable systems, 108;
operators required for, 133; sta-
tistical description in terms of
Liouville operators compared
with, 118—19; statistical level as
equivalent to, 34-35, 42, 81,
108; thermodynamics as incom-
patible with, 127; transition to
statistical level in quantum
physics, 143—46; validity as lim-
ited, 127

inertia, 110

infinite velocities, 105—6

information: and entropy, 24;
probabilities as expressing lack
of, 34; probability distributions
providing additional, 37; second
law of thermodynamics as due
to lack of, 25-26

initial conditions, sensitivity to, 30,

37,90

instability: big bang associated
with, 6; birth of the universe as-
sociated with, 179; and classical
dynamics’ revival, 31; in classical
physics, 4, 54, 107; classical
physics requiring extension for,
46; and distance from equilib-
rium, 66; in dynamical systems,
55, 127-28; equivalence of indi-
vidual and statistical descriptions
destroyed by, 35; indeterminism
as due to, 56; in laws of nature,
4, 155, 189; and limits of physi-
cal concepts, 29; in quantum
physics, 4, 53-54, 107; at statis-
tical level of description, 155;
time linked to, 175; time sym-~
metry broken by, 5, 37-38; at
trajectory level leading to stabil-
ity at statistical level, 87. See also
unstable systems

integrable systems, 39, 44, 54, 108,
131, 144

interactions: defined, 147; between
knower and known, 153; in rel-
ativistic systems, 172; statistical
description affected by, 120-25.
See also persistent interactions;
transient interactions

interference, constructive and de-
structive, 119

interference terms, 52

inverse Fourier transform, 117

irreversibility: all processes ori-
ented in same direction, 102,
104--5; as appearance only in
immeasurably long time, 23; ap-
proximation as responsible for,
23, 24, 81, 91, 105; big bang as
irreversible, 166; and birth of
the universe, 181, 183; in chem-
ical reactions, 158-59, 183; con-
structive role of, 3, 26, 27, 57,



and dissipative structures, 73,
183; and dynamical systems,
27-28, 126; emergence of,

96, 105; and entropy, 17, 18-
19; entropy created by, 61;
gravitation-energy transforma-
tion as irreversible, 179; as illu-
sory, 2, 19, 21, 165; in laws of
nature, 38, 96; leading to long
memory effects, 125; life associ-
ated with, 63; and Lyapunov
time, 105; in macroscopic
physics, 45; matter as result of,
159; in measurement, 49, 53; in
nature, 18; in nonequilibrium
physics, 3; novel phenomena
following from, 3; and the ob-
server, 5; order and disorder in,
26; past and future as asymmet-
rical in, 28; in persistent interac-
tions, 114; probabilities for
describing, 35; progressing up
levels of organization, 162; in
quantum physics, 53, 138; real-
ity of, 3, 25, 27, 165; and sec-~
ond law of thermodynamics, 21;
statistical description for, 81,
108, 109; thermodynamics as
science of, 17; as transient, 62

James, William, 1, 13, 14
Jordan, Pascual, 134, 175

KAM theory, 41

Kant, Immanuel, 4, 10

kinetic theory of gases: Boltz-
mann’s two-compartment
model, 22-23, 76, 91; Poincaré
on, 35; probability in, 35; as
special case of new approach,
125

Kolmogorov, Andrei N., 41

Kronecker, Leopold, 84
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Lagrange, Joseph-Louis, 28, 58

Landau, Lev Davidovich, 164

Laplace, Pierre-Simon de, 11, 14,
25, 38, 106

large Poincaré systems. See nonin-
tegrable large Poincaré systems

law of conservation of wave vec-
tors, 121

laws of chaos, 89—106; possibility
of speaking of, 87, 104

laws of nature: in classical physics,
4, 138, 184; creativity as ampli-
fication of, 71; eighteenth-
century laws as deterministic
and time reversible, 11; funda-
mental law of quantum physics,
136; idealized world described
by, 26, 184; and instability, 4,
155, 189; irreversibility in, 38,
96; Poincaré on laws of thermo-
dynamics, 55-56; probabilities
in, 5, 29, 35, 38, 44, 132, 189,
in quantum physics, 4, 138, 184;
within the range of low ener-
gies, 6; reformulating fundamen-
tal laws of physics, 16-17, 108;
statistical formulation of, 162;
time’s constructive role for, 56;
when far from equilibrium, 65

Leclerc, Yvor, 7

Leibniz, Gottfried von, 12, 185

Lemaitre, Georges-Henri, 176, 177

Lewis, Gilbert N., 61

life: and dissipative structures, 66;
duality in accounting for, 15;
dynamical instability required
for, 128; as feeding on negative
entropy flow, 63; historical char-
acter of, 161-62; irreversibility
associated with, 3, 63; nonequi-
librium processes required for, 3,
26-27; nonintegrable systems
required for, 39
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Lifschitz, Evgeny Mikhailovich,
164

light, velocity of, 1056, 167-68

linear nonequilibrium thermody-
namics, 63

Liouville equation, 113, 136, 144,
146

Liouville operator: defined, 113;
eigenvalues of, 113, 118, 120,
149; for free particle, 118;
Hamiltonian operator compared
with, 136; spectral representa-
tion of, 113, 125, 149; statistical
description in terms of, 118—-19

literature, time as theme of, 187

localized distribution functions:
defined, 114; for transient inter-
actions, 114, 115

Lorentz, Hendrik Antoon, 134

Lorentz transformation, 167, 168

Loschmidt, Joseph, 21, 23

LPS. See nonintegrable large Poin-
caré systems

Lucretius, 10, 55

Lyapunov exponent: in baker
transformation, 97-98, 101; in
Bernoulli map, 84, 87, 90, 93;
comparison of neighboring tra-
jectories in, 105

Lyapunov time, 105

macroscopic systems, 6, 45, 115,
128, 162

macrostates, 24

Mandelbrot, Benoit, 38

Markov process, 76

matter: black body radiation in
equilibrium with, 131, 145,
174; as blind in equilibrium,
127; as blind without arrow of
time, 3; as created at expense of
gravitational fields, 179, 180,
181; entropy associated with,
180; mind and, 16, 49; new

properties acquired when far
from equilibrium, 65, 67; per-
manent creation in steady-state
theory, 173; phase transitions,
45, 116; probabilities required to
understand properties of, 47—48;
as result of irreversibility, 159;
and space-time for Einstein,
176; states of matter, 45, 116;
transformation of space-time
into, 180

Maxwell, James Clerk: on ensem-
bles, 76; and kinetic theory, 125;
on new kind of knowledge, 4, 5

Maxwell-Boltzmann distribution,
20

measurement: as actualizing poten-
tiality, 48; in Copenhagen inter-
pretation, 156~57; in
fundamental description of na-
ture, 49; irreversibility in, 49,
53; as means of communication,
150; as probabilistic, 15

measuring instruments, 51, 54,
150-51

Meneceus, 10

meta-universe, 164, 181

microcanonical ensemble, 77

microstates, 24

mind and matter, 16, 49

Minkowski, Hermann, 165

Minkowski space-time interval,
167,171, 172, 176, 177, 178

Minkowski vacuum, 179

Misra, B., 169

mixtures of wave functions, 47,
48, 144

morphogenesis, 68

Moser, Jiirgen Kurt, 41

motion, equations of. See equa-
tions of motion

Nabokov, Vladimir, 154
Nardone, Pasquale, 180



Narlikar, Jayant Vishnu, 166, 178

nature: as automaton, 12, 17; Chi-
nese and Japanese view of,
12—-13; creativity of, 62; dialecti~
cal view of required, 182; dis-
tance from equilibrium as
parameter in describing, 68; du-
ality in, 15, 16; intelligibility of,
17, 29; intermediate description
of, 189; mankind’s position in,
9; measurement included in fun-
damental description of, 49; mi-
croscopic depiction of, 127;
nineteenth-century views on as
conflicting, 17, 19; probability
as property of, 44; reversible and
irreversible processes in, 18; sci-
ence as dialogue with, 57, 60,
153; as semigroup that distin-
guishes future and past, 104;
unity and diversity of, 56; un-
predictable novelty in, 72. See
also laws of nature

Needham, Joseph, 12

New Physics, The: A Synthesis
(Davies), 48

“New Refutation of Time, A”
(Borges), 187

Newtonian physics: as absolute, 2,
28; deviations from, 126; equa-
tions of motion invariant with
respect to time inversion, 90;
flow of time as universal in, 160,
164, 170; going beyond, 127;
law relating force and accelera-
tion, 11, 109-10; limits of valid-
ity of, 44, 107-8; quantum
physics compared with, 129; as
realization of Descartes’ quest
for certainty, 185; space and
time as given once and for all,
164, 176; unidirectional time
denied in, 2. See also classical
physics
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nice functions, 92, 94, 95, 96

Nicolis, Grégoire, 71

Nietzsche, Friedrich, 14

nonequilibrium chemistry, 26, 27,
67-68

nonequilibrium processes: com-
plexity evolving in, 64; effects
produced by, 158-59; fluctua-
tions in nonequilibrium systems,
64, 68—70; generation of as free
lunch, 175; irreversibility as
constructive in, 26—27; non-
equilibrium physics required to
describe the world, 131; struc-
ture in nonequilibrium condi-
tions, 63; unidirectional time in,
3

nonequilibrium thermodynamics:
De Donder’s work on, 61; linear
nonequilibrium thermodynam-
ics, 63; and views of Bergson
and Whitehead, 72

nonintegrable large Poincaré sys-
tems (LPS): continuous spectra
in, 133-34; defined, 111; and
deterministic chaos, 112; exam-
ple of, 111-12; formulation in
quantum mechanics, 148; indi-
vidual and statistical description
not equivalent for, 106; majority
of dynamical systems as, 127; as
measuring themselves, 151; res-
onances in, 141-42

nonintegrable systems, 39—41;
arrow of time requiring, 39; dy-
namical decomposition in, 102;
glass of water as, 78; KAM the-
ory of, 41; resonances as reason
for, 39—40, 109, 111; as rule not
exception, 108; thermodynamic
limit corresponding to, 45. See
also nonintegrable large Poincaré
systems

nonlocal description, 37, 42, 96
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nonlocality, in quantum theory,
130

observer: in cosmology, 51; en-
tropy increasing with observa-
tion, 50; indeterminism as
independent of, 132; macro-
scopic character of observation,
23; in quantum physics, 5,
48-55, 131, 151; second law of
thermodynamics based on igno-
rance of, 25; in special relativity,
167, 169

Odyssey (Homer), 186

Open Universe, The: An Argument for
Indeterminism (Popper), 1, 14

operator formalism, 92, 133, 134

operators: collision operators, 124;
description requiring, 133;
eigenfunctions of, 134-35; evo-
lution operator, 93, 125-26,
142; hermitian operators, 138;
introduction into physics, 134;
operator formalism, 92, 133,
134; quantum physics as opera-
tor calculus in Hilbert space, 95.
See also Hamiltonian operator
H; Liouville operator; Perron-
Frobenius operator; spectral rep-
resentation of an operator

order: arrow of time as source of,
26; disorder as constituting
foundation of microscopic sys-
tems, 155; entropy and, 26; self-
organization maintaining,
71=72. See also entropy; self-
organization

oscillating chemical reactions, 66,
127,175

oscillators, harmonic, 39, 102

Parmenides, 10
past: in chaotic and simple dynam-
ical systems, 102, 104; complex

conjugate of wave functions
propagating into, 137; in formal
solution of Schrédinger equa-
tion, 142; and future as asym-
metrical in irreversible processes,
28; and future meeting in prob-
abilities, 137; and future not dis-~
tinguished in physics, 2, 138;
interaction between knower and
known creating, 153; in New-
ton’s relation of acceleration and
force, 110; retrodicting in classi-
cal science, 4; in special relativ-
ity, 168

Pauli, Wolfgang, 50, 53

pendulum, 30

Penrose, Roger, 16, 130, 180n

Penzias, Arno, 174

periodic functions, 116, 117

periodic maps, 82, 82—-83

Perron-Frobenius equation, 88,
104

Perron-Frobenius operator: in
baker transformations, 103; in
Bernoulli maps, 83, 87-88, 91,
94, 96

persistent interactions, 113—14; de-
localized distribution functions
for describing, 114, 115, 117,
125, 148, 155-56; diffusive
terms in, 44—45, 54; leaving
Hilbert space due to, 96, 114; in
macroscopic systems, 115; per-
sistent scattering, 148—49; in
thermodynamic systems,
115-16, 148

perturbational approach to solving
for eigenvalues, 140—42

phase space: defined, 31; distribu-
tion functions accounting for
microstructure of, 95; dynamical
state represented in, 31, 32, 110;
ensembles represented in, 33,
34, 76, resonances’ influence



on, 41; state of a classical system
in, 136; statistical description ac-
counting for microstructure of,
105

phase transitions, 45, 116

phenomenology, arrow of time
relegated to, 2, 3

philosophy: science as separated
from, 7, 14, 72; as time cen-
tered, 13; time for, 58; unhappy
history of Western, 11

photons, 172, 174

physics: Boltzmann’s evolutionary
approach to, 2, 19-21; domain
of validity, 29; Galilean physics,
1, 167; idealized world de-
scribed by, 26; operator formal-
ism in, 92; probabilities as basic
objects of, 74; reformulating
fundamental laws of, 16—17,
108; resonance playing funda-
mental role in, 42; statistical me-
chanics, 46, 92, 95; time for, 58.
See also classical physics; cosmol-
ogy; Newtonian physics; quan-
tum physics; relativity;
thermodynamics

physics of populations, 35

pitchfork bifurcation, 68,
69

Planck, Max, 131, 145

Planck era, 178

Planck’s constant, 142, 145, 148,
177

Planck’s energy, 178

Planck’s length, 177

Planck’s scales, 177-78

Planck’s time, 177

plane waves: defined, 116; super-
position of, 117, 118-19, 119,
157-58; trajectory as construct
of, 119

Plato, 11

Plato, Jan von, 84
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Poincaré, Henri: on distinguishing
between dynamical systems, 31;
on dynamical systems, 38—41;
on explaining irreversibility in
terms of trajectories, 21; on free
Hamiltonians, 111; on general
problem of dynamics, 40; on ki-
netic theory of gases, 35; on
laws of thermodynamics, 55-56

Poincaré resonances. See reso-
nances

Poincaré’s recurrence theorem, 23,
39, 100-101

Popper, Karl, 1, 6, 14, 132

population dynamics, 33

populations: aging as property of,
78, 125; Boltzmann and Darwin
studying, 20; phase transitions
meaningful only at level of, 45;
physics of, 35

possibilities, 5, 29

“Possible and the Real, The”
(Bergson), 14, 59

possible worlds, 59, 72

postmodern philosophy, 14

predictability: in classical science,
4, 11; with deterministic chaos,
38; predictive success of quan-
tum theory, 46; unpredictable
novelty in nature, 72

pre-Socratics, 9-10, 17

principle of conservation of en-
ergy, 76-77

principle of indistinguishability of
elementary particles, 140

probabilities: as basic objects of
physics, 74; as basic property of
nature, 44; and birth of the uni-
verse, 181; for diffusive motions,
42, 43; evolutionary characteris-
tics described in terms of, 55; as
expressing ignorance, 34; as ex-
tended form of rationality, 155;
in fundamental laws of physics,
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probabilities (cont.)
16—17; in laws of nature, 5, 29,
35, 38, 44, 132, 189; in macro-
scopic physics, 45; in measure-
ment, 15; in nonequilibrium
systems, 68; past and future
meeting in, 137; probability am-
plitudes giving way to, 54, 132,
149; the probabilizing revolu-
tion, 55, 74, 132; in quantum
physics, 5, 51-52, 54, 132, 149;
second law of thermodynamics
as probabilistic, 20, 22; subjec-
tive interpretation of, 4, 16; as
time symmetric, 137; trajecto-
ries and, 34; transition probabili-
ties, 75; for unstable systems, 35.
See also statistical level of de-
scription

probability amplitudes: dynamical
problems solved in terms of, 47,
giving way to probabilities, 54,
132, 149; in physical interpreta-
tion of wave function, 47; quan-
tum state representing, 143;
Schrodinger equation describ-
ing, 137; wave function corre-
sponding to, 136

probability distributions. See distri-
bution functions

problem of small denominators, 40

propagation event (diagram), 121,
121

quantum leaps, of excited atoms,
138-39, 139

quantum paradox, 48, 130; and
statistical formulation of quan-
tum physics, 144; time paradox
and, 5, 48, 138, 156, 157

quantum physics: as absolute,
28-29; anthropomorphic fea-
tures of traditional, 151; basic

assumption of, 47; basic conclu-
sions of, 149; basic problem of,
133, 140; chaos introduced in,
4; classical mechanics limited by,
107; clinamen concept intro-
duced into, 52; complementar-
ity principle, 74, 150;
Copenhagen interpretation, 50,
150, 156—-57; as deterministic,
136—37; discrete and continuous
spectrums in, 133, 141; dualism
in, 50, 53, 130, 131; eigenfunc-
tions and eigenvalues in, 95,
133; extending to unstable sys-
tems, 89, 131; Feynman on no-
body really understanding, 47;
fundamental law of nature in,
136; Hamiltonian in, 138;
Heisenberg uncertainty princi-
ple, 74, 13536, 143; as incom-
plete, 130-31; instability in, 4,
53-54, 107; irreversibility in,
53, 138; laws of nature in, 4,
136, 138, 184; limits of validity
of, 44, 54; meaning and scope
debated, 46-47, 129-30; mi-
crostates and macrostates, 24;
Newtonian dynamics compared
with, 129; nonlocality in, 130;
observer’s role in, 5, 4855, 131,
151; as operator calculus in
Hilbert space, 95; operator for~
malism in, 92, 133, 134; predic-
tive success of, 46; probabilities
in, 5, 51-52, 54, 132, 149; real-
istic interpretation of, 54, 131;
reformulating, 46-55, 129-51;
resonances in, 53-54, 146, 148;
state of a quantum system, 136,
143; and thermodynamics, 131;
time flow introduced in, 5;
time-reversible processes in, 28;
transition from individual to sta-



tistical description in, 143-46;
unidirectional time denied in, 2.
See also quantum paradox; wave
functions

quantum vacuum, 175, 179, 180

radiation: black body, 131, 145,
174, 176, solar, 18

radiation damping, 172

radioactive decay, 17, 18

Rae, Alastair, 157

random trajectories, 41

random walk, 42, 43, 74

realism: indeterminism as compati-
ble with, 132; naive realism of
classical physics, 135; realistic in-
terpretation of quantum theory,
54, 131; realistic interpretation
of reduction of wave function,
130; time and change as crux of,
14

recurrence: in baker transforma-
tion, 99-101; Poincaré’s recur-
rence theorem, 23, 39, 100-101

recurrence relation, 91-92

reduction (collapse) of wave func-
tion: with clinamen version of
quantum mechanics, 52; de-
fined, 48; measurement problem
leading to, 157; and quantum
paradox, 130; in realistic inter-
pretation of quantum mechan-
ics, 54

relativity: classical mechanics’ limits
shown by, 107; and infinite ve-
locities, 105; time for, 164—66;
unidirectional time denied in, 2.
See also general relativity; special
relativity

resonances, 39—44; bubbles due to,
123-24, 124; in classical and
quantum physics, 129; construc-
tive interference threatened by,
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119; coupling creation and de-
struction of correlations, 124;
and diffusive motion, 42—44, 43,
126, 155; dynamical groups af-
fected by, 171; expressing in
terms of delta functions, 124n;
flow of time rooted in, 159;
fundamental role in physics, 42;
leading to chaos, 112; leading to
terms with dangerous denomi-
nators, 40, 124n; in LPS,
141-42; and nonintegrability,
39-40, 109, 111; as nonlocal,
42; in oscillator interaction with
field, 112; and perturbational
approach, 141; in quantum
physics, 53—54, 146, 148; sounds
coupled by, 40; statistical de-
scription affected by, 122-25;
superpositions of plane waves
affected by, 157-58; time sym-
metry broken by, 41, 44, 146—47;
trajectories influenced by, 41; in
transition from wave functions
to ensembles, 131; and velocity
distribution over time, 79

retrodiction, 4

reversible processes. See time-
reversible processes

Riemannian geometry, 176

rigged Hilbert space, 96

Rimini, Emanuele, 52

Ritz-Rydberg principle, 132, 145,
146, 149

Robertson, Howard, 177

Rosenfeld, Léon, 29, 50, 53

Rubino, Carl, 186

scattering, 11415, 115; as not
representative of natural world,
127, persistent scattering,
148—-49; typical experiments as
idealizations, 156
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scattering center, 115, 115
Schrédinger, Erwin, 63, 134
Schrédinger equation: complex

order maintained by, 71-72;
technology compared with,
71-72; time orientation re-

conjugate of, 137; as determin~
istic and time reversible, 12, 15,
47, 137, 146; formal solution of,
142; as partial differential equa-
tion, 136; probability amplitudes
described by, 137; and reduction
of the wave function, 48, 130;
trajectories compared with, 47;
wave function evolution de-
scribed by, 15, 47, 136
Schrédinger’s perturbational
method, 14041

Schuster, Peter, 71
science: classical ideal of, 154; cre-

ativity in, 188; democracy as
conflicting with, 17; Descartes
on, 185; as dialogue with nature,
57, 60, 153; Einstein on, 185;
Freud on history of, 70; Hawk-
ing on future of, 7; as not
monolithic, 17; philosophy as
separated from, 7, 14, 72. See
also biology; laws of nature;
physics

quired for, 128

self-replicating biomolecules, 159

semigroups, 104, 142, 171

sensitivity to initial conditions, 30,
37, 90

Shimony, Abner, 53

simultaneity, 168

singular functions. See generalized
functions

small denominators, problem of,
40

Smoluchowski, Roman, 23

smoothness, statistical descriptions
requiring, 87-88

Snow, C. P, 17

solar radiation, 18

space-time: arrow of time consis-
tent with, 172; conformal inter-
vals in, 178; Friedmann
space-time interval, 177, 178;
gravitation associated with cur-
vature of, 175-76; and matter
for Einstein, 176; Minkowski
space-time interval, 167, 171,

scientific laws. See laws of nature

Scott, Peter, 185

Searle, John R, 14

second law of thermodynamics,
19; classical formulation of, 19,
60; entropy associated with,
18-19, 60; and irreversibility,
21; observer’s ignorance as basis
of, 25-26; as probabilistic, 20,
22; for systems that are not iso~
lated, 61

self-organization: in dissipative
structures, 70; and distance from
equilibrium, 57; in nonequilib-
rium physics, 3, 27; noninte-
grable systems required for, 39;

172, 176, 177, 178; quantization
of, 178; Riemannian geometry
as characterizing, 176; in special
relativity, 167; transformed into
matter, 180

spatialized time, 58-59, 165—-66,

171-72

special relativity, 167-72; future

and past in, 768; and Hamilton-
ian description, 170~72; spatial-
ized time not implied by,
171-72; time dilation, 169, 170;
twin paradox, 169-70, 171

spectral interval, 117
spectral representation of an opera-

tor: of evolution operator,



125-26; of Liouville operator,
113, 125, 149; of Perron-
Frobenius operator, 94-95, 96,
103, 104

spectroscopy, 133, 144, 145

spectrums, continuous and dis-
crete, 133, 141

Spinoza, Baruch, 16, 176

stability: instability at trajectory
level leading to at statistical level,
87; stable dynamical systems,
30-31, 36, 55; and structure in
nonequilibrium conditions, 63

standard model (cosmology), 164,
174-75, 177

state of a dynamical system, 31, 32

state of a quantum system, 136,
143

states of matter, 45, 116

statistical level of description:
breaking equivalence with indi-
vidual description, 35, 83, 87,
89, 94-95, 96, 103, 106, 155;
for chaotic systems, 104; in clas-
sical and quantum physics, 129;
in classical dynamics, 108; for
deterministic chaos, 105; dy-
namical problems solved at,
91-96, 113, 125-28; individual
level as equivalent to, 34-35, 42,
81, 108; instability at, 155; in-
teractions’ effect on, 120-25; ir-
reversibility given meaning at,
81; for irreversible processes, 81,
108, 109; of laws of nature, 162;
of molecules in glass of water,
78; operators required for, 133;
replacing coordinates with wave
vectors, 121; resonances’ effect
on, 122-25; in terms of Perron-
Frobenius operator, 87-88; ther-
modynamics requiring, 127,
trajectory description compared
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with, 118—19; transition to in
quantum physics, 143—46; for
unstable systems, 109

statistical mechanics, 46, 92, 95

steady-state theory, 173-74; diffi-
culties with, 174; as unifted with
big bang, 166

Stengers, Isabelle, 154

structure: arrow of time in forma-
tion of, 71; and function, 62; in
nonequilibrium conditions, 63.
See also dissipative structures

Sudarshan, George, 142

superimposition, 48, 52

superposition: of periodic func-
tions, 116; of plane waves,
118-19, 119, 157-58,; principle
of, 149; of wave functions,
138-39

symmetry breaking. See time sym-
metry

synthetic chemistry, 71

Tagore, Rabindranath, 13

Tarnas, Richard, 7

technology, self-organization com-
pared with, 71-72

ternary correlations, 121

test functions, 33n

thermal diffusion, 26, 27, 35, 64

thermodynamic branch: beyond
bifurcation point, 66, 67; de-
fined, 66; in pitchfork bifurca-
tion, 68, 69

thermodynamic equilibrium, 60,
63, 66, 77, 113, 130

thermodynamic limit, 45, 116,
126, 158

thermodynamics: equilibrium sta-
tistical thermodynamics, 77;
equilibrium thermodynamics,
88, 108; first law of, 180; as in-
compatible with trajectory
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description, 127; limiting to
equilibrium conditions, 61-62;
nonequilibrium thermodynam-
ics, 61, 63, 72; Poincaré on laws
of, 55-56; and quantum theory,
131; as science of the irre-
versible, 17; traditional conflict
with dynamics eliminated, 104.
See also entropy; second law of

also arrow of time; evolution;
flow of time; future; past; space-
time; time paradox; time sym-
metry

time dilation, 169, 170
time paradox: and baker transfor-

mation, 103; defined, 2; formu-
lation as creative act, 188;
mind-matter interface at core of,
49; quantum paradox solved

thermodynamics along with, 5, 48, 138, 156, 157
thermodynamic systems, 115-16, time-reversible processes: as almost
148, 158, 184 inconceivable, 154; baker trans-

three-body problem, 31, 108
time: as basic existential dimen-

formation as, 101, 103; in classi-
cal and quantum mechanics, 28;

sion, 13; beginning of, 6,
163—64; certainty and denial of,
184; in classical science, 59, 60;
communication requiring com-
mon, 150; constructive role of,
56; as crux of realism, 14; and
dilemma of determinism, 1; as
emerging property, 60; entropic
time, 161; as eternal, 166; ethics
associated with, 58; freedom as-
sociated with, 58; geological
time scale, 161; as history de-
pendent, 170; as illusory, 1, 58,
165, 187; imaginary time, 58,
164, 170; instability linked to,
175; as literary theme, 187; in
maps, 81; of a meta-universe,
164; in Newton’s relation of ac-
celeration and force, 110;
philosophers on, 58; philosophy
becoming time centered, 13;
physicists on, 58; as preceding
existence, 163, 182; and reality
as linked, 187; in relativity the-
ory, 164-66; simultaneity, 168;
spatialized time, 58-59, 16566,

171-72; as universal in Newton-

ian physics, 160, 164, 170. See

classical physics as basis of belief
in, 107; and entropy, 18-19; ir-
reversibility required for study-
ing, 49; irreversible processes
compared with, 17—-18; of
physics versus time-centered
philosophy, 14; Schrédinger
equation as, 137; time-reversible
world as unknowable, 153; tra-
jectory as, 21; wave function
satisfying time-reversible equa-
tion, 5

time symmetry: Bernoulli maps as

breaking, 90; breaking as global
property, 156; chaotic systems
breaking, 105; complex spectral
representation as breaking, 126;
dissipative structures breaking,
69; instability breaking, 5,
37-38; measuring device as
breaking, 54, 150-51; non-
Newtonian processes breaking,
108, 124, 129; probabilities as
time symmetric, 137; resonances
breaking, 41, 44, 146—47; semi-
groups breaking, 171

total energy, 76, 175
Toulmin, Stephen, 184-85



towns, 62

trajectories: and Bernoulli maps,
83-88, 835; collapse of, 109,
119, 126; as construct of plane
waves, 119, 157-58; and delta
functions, 33, 143; ensembles
compared with, 82, 83, 87; as
idealizations, 37; as inadequate
for describing chaotic systems,

90-91, 105; laws of chaos para-
doxical with, 104; limited valid-

ity of, 44; in Lyapunov

exponent definition, 105; as not

smooth, 87-88; as primitive,
108; and probability distribu-~
tions, 34; resonances’ influence
on, 41; second law of thermo-
dynamics and individual, 20; as
special solutions of Perron-
Frobenius equation, 88; three-
body problem compared with,
31; as time reversible, 21; wave
function compared with,

47

trajectory description. See individ-

ual level of description

transient interactions: defined, 114;

diffusive terms as negligible in,
44; localized distribution func-
tions for describing, 114, 115;

scattering as, 115, 127; as unrep-

resentative of nature, 127
transition probabilities, 75
transport processes, 18, 105
Tryon, Edward, 175
Turing, Alan Mathison, 68, 69
twin paradox, 169-70, 171; non-

relativistic analogue of, 160
two-body motion, 102, 156

“ultraviolet” divergences, 180-81

uncertainty, resonances introducing

into classical mechanics, 44

Index 227

unidirectional time. See arrow of
time

unified theory, 182

uniform distribution, 93

universe, the. See cosmology

unstable systems: contradiction be-
tween reversible and irreversible
processes overcome in, 28; dy-
namics formulated at statistical
level for, 73-74; ensembles de-
ploying new properties for, 81;
extending classical and quantum
mechanics to, 89; going beyond
Hilbert space for, 93, 95-96,
114; as probabilistic, 35, 37;
quantum theory of, 132; sensi-
tivity to initial conditions in, 37;
statistical description of, 109;
and unidirectional time, 2-3;
unstable equilibrium, 30, 30. See
also instability

urn model, 74-76, 75, 81

vacuum of correlations, 121, 122,
122, 123, 123

Valéry, Paul, 106

velocities, infinite, 105—6

velocity inversion, 80

velocity of light, 105-6, 167-68

velocity-reversal paradox, 21, 23

viscosity, 3, 17-18

von Neumann, John, 49, 51, 53,
130

Wahl, Jean, 11

Walker, Arthur, 177

wave functions: as deterministic
and probabilistic, 15; determin-
istic, time-reversible equation
satisfied by, 5; evolution as su-
perposition of oscillating terms,
138-39; extending beyond
Hilbert space, 144-45; mixture
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of, 47, 48, 144; operator for-
malism required for description
of, 133; physical interpretation
of, 47; and probability ampli-
tudes, 136; resonances intro-
duced in terms of, 53-54; state
of quantum system described by,
136, 143; trajectory compared
with, 47; transition to ensem-
bles, 131. See also reduction
(collapse) of wave function;
Schrodinger equation; superpo-
sition

wave vectors: defined, 116; and

Fourier transform, 117; and in-
teractions’ effect on statistical
description, 120-25; law of
conservation of, 121; quantum
mechanical counterpart for, 147,
148; replacing coordinates

with, 121; in statistical descrip-
tion of free particle motion,

118; vanishing wave vector,
124n

Weber, Tullio, 52

Weinberg, Steven, 15, 48

Weyl, Hermann, 84

Wheeler, John Archibald, 164

Whitehead, Alfred North: com-
promise between science and
freedom, 10; on creativity of
nature, 62; on existence as
process, 59; on intelligibility of
nature, 17, 29; and nonequilib-
rium thermodynamics, 72; phi-
losophy as time centered, 13; on
slipping through the scientific
net, 189

Wigner, Eugene, 49

Wilson, Robert, 174

X mysteries, 130

Zermelo, Ernst, 23
Z mysteries, 130
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