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1 Preliminary Concepts

ü 1.1 Large-Scale Characteristics of the Universe

The cosmological principle is the unproven but well-supported assumption that, ignoring local variations (which can be huge),
any place in the universe is no more special than any other place.  This is equivalent to saying that the universe is spatially both
homogeneous (looks the same at each point) and isotropic (looks the same in every direction).  Homogeneity does not imply
isotropy, but universal isotropy does imply homogeneity.  The cosmological principle is obviously not true at the scale of the
solar system, the galaxy, or even galaxy clusters, but, making this assumption for the universe as a whole has profound and
powerful cosmological consequences.

It  would seem that the expansion of the universe violates the cosmological principle, since we appear to be in a privileged
location at the center of the expansion, with expansion rates proportional to distance away from us.  This does not violate the
cosmological principle, though, since an observer at any point in the universe would see the expansion as centered on them with
the same proportionality between recession rate and distance that we see.

The perfect cosmological principle, the idea that the universe is both spatially homogeneous and isotropic as well as homoge-
neous in time, was the basis of the steady-state theory and appears to be almost certainly wrong.

ü 1.2 Redshift, z, and Hubbleʼs Law

The redshift of spectral lines is defined observationally as z = lobs-lem
lem

.  Redshift is related to the magnitude of the recessionary

(radial) velocity of a galaxy, u, as u = z c.  A galaxy’s recessionary velocity is composed of two parts; a radial velocity due to
expansion of the universe and a randomly oriented peculiar velocity due to gravitational perturbations induced by other nearby
matter.   The peculiar  velocity makes Hubble’s Law, v = H0 r,  approximate,  with the approximation being worse for nearby
galaxies.

The  proportionality  constant,  H0,  is  called  the  Hubble  parameter  (or  Hubble  constant,  though  it’s  not  actually  constant
HH = HHtL) over cosmological time).  The zero subscript in this symbol, and other symbols in his document, refers to the value of
that quantity at the present time.  Note that the assumption of isotropy requires that H ¹≠ HHq, fL, and so expansion is purely
radial.  Measurements of H0 are notoriously difficult and their uncertainty is parameterized by h (not to be confused with Plank’s
constant), as:

H0 = 100 h kg ÿsec-1 ÿMpc-1 = h
9.8µ109 yr

= 2.13 h µ 10-33 eV ÿ h-1 with h = 0.72 ± 0.02.

The above expression for H0,  while useful  when thinking of it  as  a measure of the recessionary velocity of  the expanding
universe,  obscures  another,  equally  important  way  of  thinking  about  the  Hubble  parameter.   Changing  the  units  gives,
H0

-1 = 9.77 h-1µ109yrs, called the Hubble time, a crude estimate of the age of the universe - crude because it ignores changes in
the expansionary velocity over the history of the universe.
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ü 1.3 The Scale Factor, a(t)

The time-dependent Hubble “constant” is defined in terms of the scale factor, aHtL, as HHtL ª aÿ HtL
aHtL

.  The scale factor measures how

physical dimensions change with time.  The redshift is a natural consequence of the Doppler effect which stretches wavelengths
as, lobs = lem aHtobsL êaHtemL.  Combining this with the above and relabeling aHtobsL = a0 = 1 gives,

z = 1-aHtemL
aHtemL

 or aHzL = 1
1+z

.

ü 1.4 Comoving Coordinates

Because general relativity (GR) requires that the laws of physics are the same in any coordinate system, including non-inertial
ones, we can choose to work in any convenient coordinate system.  We will often choose to use comoving coordinates, x, that
are carried along with the universal expansion, rather than physical coordinates, r, which define a fixed coordinate system in
which the expansion takes place.  These physical coordinates are those we live in on earth (and anywhere within the galaxy) and
those of any bound system, that are not affected by the expansion of the universe.

The transformation between these coordinate systems is given by, r = aHtL x.  Note that, for objects that are stationary relative to

the observer, x
×
= 0, but r

×
= a

ÿ
HtL x.  Note also that our assumption of isotropy is only true for comoving coordinate systems.

The comoving horizon is defined as the surface of a sphere centered on the observer whose radius is the distance light could have
traveled in the absence of interactions since the origin of the universe.  It defines the observable universe.  Due to the expansion
of the universe, its radius is not simply the age of the universe times the speed of light.

To locate the comoving horizon, we need another concept called the conformal time, h.  In time interval d t, light in an expand-

ing universe with scale factor aHtL will have traveled a distance d h = d x
a
= c d t

a
.  Setting c = 1, we write, h ª Ÿ0

t d t£

aHt£L
.  The confor-

mal time is not any physically meaningful time, but h0 is the time it would take a photon to travel from our current location to the
edge of the observable universe, if the universe were to suddenly stop expanding.  The comoving horizon is at a distance equal to
c times the conformal time.

ü 1.5 Curvature, k

The cosmological principle demands that space must exhibit  the same overall  curvature at  every point.   Local variations in
curvature, just like local variations in mass-energy density, r, are of course, tolerated.  There are only three spatial geometries
that allow constant curvature:  flat  space,  uniformly positively curved (closed)  space,  or uniformly negatively curved (open)
space.  We will address curvature in more detail in the section on GR, but for our purposes now, we can capture what we need of
curvature in a single number, the curvature parameter, k.  Curvature is determined by the mass-energy density of the universe.
There is a particular value of mass-energy density, called the critical density, rc, that must exist for the curvature of spacetime to
be flat.  Universes with r < rc are open, while those with r > rc are closed.

We can force k to take on one of three discrete values: zero for flat space, +1 for closed space and -1 for open space.  Although
we can’t draw 3-dimensional curved spaces, we can get a feel for their behavior by considering curved 2-dimensional surfaces.

For the “flat” (or Euclidean) space we are used to, geometric figures behave the way we were taught in school.  The shortest
distance between two points is a straight line.  Flat universes are infinite, since, if they had an edge, the cosmological principle
would fail there.  No points in flat space are any more “special” than any other point.  

A non-rotating 2-dimensional spherical surface also has no “special” locations.  If its radius is finite, it has no edge, but has a
finite area, 4 p r2.  Geometric figures on a sphere behave strangely, with the angles of a triangle adding up to more than 180È and
the circumference of a circle being less than 2 p r.  “Straight lines” don’t exist on a spherical surface and the shortest distance
between points is the arc of a great circle - a circle that defines a plane that passes through the center of the sphere.  Great circles
in a spherical geometry are examples of the more general concept of a geodesic - the curve that defines the “shortest distance”
between two points in any space, regardless of its curvature.

Negative curvature is usually modeled in 2-dimensional space by a saddle-shaped surface.  This not a perfect analog for the 3-
dimensional version, since it’s not possible to construct a 2-dimensional surface of uniformly constant negative curvature in 3-
dimensional space.  The saddle-shaped surface will only have constant curvature at the center point of the saddle.  Thus, the
center point is unique, meaning that it also violates the cosmological principle.  Nevertheless, the approximation shows that the
angles of a triangle in negatively curved space add up to less than 180È and the circumference of a circle is more than 2 p r.
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ü 1.6 The Energy-momentum Relation

The energy of any particle is given by Einstein’s famous E = m c2 when we understand E to be the particle’s total energy and m
to be its relativistic mass, composed of its rest mass, m0, and the additional mass that results from its velocity.  A more useful
version of this equation, known as the energy-momentum relation, expresses how these two components combine to form the
particle’s total energy by expressing E as a function of the rest mass and the magnitude of the particle’s momentum, p,

E2 = m0
2 c4 + p2 c2.

Important special cases of this relation are:
1) Massless particles  (m0 = 0) such as photons: These relativistic particles have an energy associated only with their

motion, E = c p.  This expression for  radiation energy was extended in the quantum theory as (taking c = 1),  E = h f = h
l
= —w.

Combining these equations gives the de Broglie relation, l = h
p

.

2) Massive relativistic particles: These are particles, such as cosmic rays, that are moving relative to us at speeds, u,
approaching c.   They can never move at exactly the speed of light, since then their momentum, p = g m0 u,  and hence their
energy, would become infinite (g = 1

1-HuêcL2
).  Both terms in their energy-momentum relation are significant contributors to

their total energy. 
3) Non-relativistic particles Hu ` c): The first two terms of the Taylor expansion of the energy-momentum relation for

small u  gives E @ m0 c2 + p2

2m0
;  simply the sum of the particle’s rest mass energy and its classical kinetic energy (recall that

classically p = m0 u, so K.E. = p2

2m0
= 1
2

m0 u2).

ü 1.7 The Fundamental Constituents of the Universe

There are several broad categories of constituents of our universe.

ü 1.7.1 Baryons

Baryons are usually thought of as particles composed of 3 quarks, but cosmologists also lump mesons (composed of 2 quarks)
and electrons (a type of lepton - not quark-based at all) under this heading.  The justification for this seems to be that, of these
particles, only protons and neutrons (both baryons in the traditional sense) contribute in any significant way to the mass of the
universe.  Since charge neutrality arguments mean that there must be the same number of electrons as protons, and protons are
almost 2000 times more massive, the mass of the electrons in the universe is swamped by that of the protons.  All other baryons
are unstable and decay into protons and neutrons, so they also can be ignored.  Thus, when cosmologists say “baryons,” what is
meant is nucleons - protons and neutrons.

In the present universe, baryons are typically moving much less than light speed, so they fall into the non-relativistic category (3)
above.
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In systems that  are at  equilibrium,  some quantity is  exchanged between the elements of the system in such a way that  all
microstates (configurations of its constituents) available to the system are equally probable.  The science of thermodynamics
studies several types of equilibria - each with its own exchanged quantity.  These are shown below.

Equilibrium type Exchanged quantity
thermal energy

mechanical volume
diffusive matter

All of these equilibria are important in cosmology, but we will focus here on thermal equilibrium among photons. Because they
are quantum mechanical particles, photons obey quantum statistics - the study of dense systems in which two or more identical
particles have a reasonable chance of trying to occupy the same single particle state.  Since photons are bosons (integer spin;
spin-1 for photons), an unlimited number of them can occupy the same state.

In most gases with which we are familiar, the inter-particle distance is large compared with the particle’s de Broglie wavelength
(so that the wave functions of the particles in the gas do not overlap), but in the very dense conditions of the early universe, this
simplifying assumption breaks down.  It can be shown that, under these conditions in which quantum effects become important,
the occupancy number of the ith state (average number of bosons in the state) is,

niBE = giíJexpJ ei-m
kB T

N - 1N,  where  gi  is  the  degeneracy  of  the  state,  ei  is  its  energy,  m  is  the  chemical  potential,

kB = 8.6µ10-5 eV ÿK-1 is Boltzmann’s constant and T is the temperature in Kelvins.

Aside on Quantum Statistics
The above expression for niBE  gives the occupation number for bosons that obey Bose-Einstein statistics.
Fermions obey Fermi-Dirac statistics, with an occupation number, n i

FD, that differs only by a +1 in the
denominator rather than the -1.  There is a third distribution (with no accommodation for degeneracy and no
additive constant in the denominator) called the Maxwell-Boltzmann distribution that represents the non-
quantum limit of the other two.  There are no physical situations in which particles behave with exactly a
Maxwell-Boltzmann distribution, but it’s a useful approximation for diffuse gases.  It’s interesting to see
how these distributions (assuming a degeneracy of 1 for BE and FD) look as a function of He - mL êkB T .  As
the exponent gets large, the distributions merge.  The curves are:

Bose-Einstein, niBE

Maxwell-Boltzmann
Fermi-Dirac, niFD

Plot@81 ê Exp@xD, 1 ê HExp@xD - 1L, 1 ê HExp@xD + 1L<, 8x, -1.5, 4<,
AxesLabel Ø 8"He-mLêkBT", n<, PlotStyle Ø 8Blue, Red, Green<D
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The states for photons are their allowed vibratory modes.  With g = 1, e = h f  and m = 0, the occupation number distribution for
photons is

n P = 1ëIeh f êkB T - 1M.
This is known as the Planck distribution.  It was the solution Max Planck offered for the “ultraviolet catastrophe,” the classical
prediction that, with all frequencies allowed, the energy in the electromagnetic field should be infinite.  With the Planck distribu-
tion, the energy contribution of frequencies much greater than kB T êh is exponentially suppressed.

To compute the total EM energy emitted by a radiating body, we must integrate this function over all modes.  For a radiator of
length L, the allowed wavelengths and momenta are,

l = 2 L
n

 and p = e = h
p
= h n
2 L

, where n labels the mode.

Changing the variable of integration from n to the dimensionless variable x = e êKB T = h n ê2 L kB T  and evaluating the integral
over all space and all modes gives the spatial radiation energy density, ie, the relative intensity of the radiation per unit volume as
a function of the photon energy (or frequency, if you change variables again to f = e êh), as,

erad =
8 pHkB TL4

h3 Ÿ0
¶ y3

ey-1
„ y.

The integrand is the famous black-body spectrum:

PlotA9y3 ë HExp@yD - 1L=, 8y, 0, 12<, AxesLabel Ø 9"y=eêkBT", "y3êHey-1L"=E

2 4 6 8 10 12
y=eêkBT

0.2

0.4

0.6

0.8

1.0

1.2

1.4

y3êHey-1L

The area under any segment of this curve from y to y + dy, when multiplied by 8 pHkB TL
4

h3
, gives the energy density within the

corresponding frequency range.  Since this distribution has a strong peak at e = 2.82 kB T , we can take the average photon energy
to be about emean @ 3 kB T  or f @ 3 kB T êh.

Actually performing the integral (see my notes on the derivation of Liddle eqn. (2.10)) and, restoring the c factor, gives a result of

erad =
p2 kB4

15 —3 c3
T4 = 7.565µ10-16 T4 J ÿm-3.
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ü 1.7.3 Neutrinos

Neutrinos are electrically neutral and therefore do not participate in electromagnetic interactions.  They are leptons (particles
with half-integer spin) and therefore not susceptible to the strong force.  They interact only through the weak force and gravity.
Since the weak force is extremely short-range and their mass is so tiny, they are barely detectable.

Liddle entertains the possibility that neutrinos are massless, but experimentally observed neutrino oscillations since the book was
published require them to have a nonzero mass.  The sum of the masses of all 3 types is expected to be less than 0.32 ± 0.081 eV,
a mass less than one millionth that of the electron.  Cosmology predicts a fixed ratio between the numbers of neutrinos and
protons.

WMAP has found evidence for the existence of a cosmic neutrino background, similar to the photons of the CMB.  Neutrinos
made up a much larger part of the mass of the early universe than they do today — perhaps as much as 10% at the time the CMB
was formed, 350,000 years post Big Bang.  Today they constitute less than 1% of universal mass.

ü 1.7.4 Dark matter

A small portion of dark matter may be composed of baryons — so called MACHOs, MAssive Compact Halo Objects, but a study
of neucleosynthesis (Liddle, Chapter 12) requires the vast majority of dark matter to be non-baryonic.  Many possibilities have
been proposed, but the makeup of dark matter is still unknown.

ü 1.7.5 Dark Energy

By far, the bulk of the mass-energy of the universe is dark energy.  There is much speculation about its nature, but little is known
for certain at this point.

ü 1.8 The Density Parameter, W

Each of the constituents notes above contributes to the mass-energy density of the universe.  As we noted in the section on
curvature, it the ratio of the sum of all these densities to the critical density, rc, that determines the overall curvature of space-
time.  The ratio of the density contribution of a particular component to rc  gives a measure of the relative importance of its
contribution to the flatness of the universe that we observe.  We call this ratio the density parameter, W= r ê rc.

The current density parameters are
Component Symbol Ñ W

Baryonic matter W0,bar Ñ 0.049

Dark matter W0,DM Ñ 0.268

Photons + neutrinos W0,rad Ñ 8.24ä10-5

Dark energy WL Ñ 0.683

Because the various densities change over time (except possibly rL) and the critical density, rc, also changes, the various W’s are
also functions of time.
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ü 1.8 The Cosmological Constant, L

Because all matter-energy is gravitationally attractive, there are no solutions in GR that represent a static, homogeneous universe.
What is needed is something that exerts an outward pressure to keep the whole thing from collapsing.  We will see that introduc-
ing a “cosmological constant,” L, that may or may not actually be constant, can offset this collapse and lead to the accelerating
expansion that we see today.  As in the table above, we can define a density parameter associated with L, called WL =

rL
rc

L

3H2
.

Note that, though L may be a constant, WL  is not.  A universe in which WL = 1 is known as a deSitter universe and is the
ultimate fate of our universe.

The mass density, r, is what we usually think of as a density - the amount of a substance contained in a unit volume.  But, since
L is a quality of spacetime and not a substance, rL is somewhat more difficult to visualize.  It is helpful to think of L is as a fluid
that fills spacetime and has an energy density rL and exerts a pressure, pL = -rL c2.  Since rL is a positive constant, the cosmo-
logical constant exerts a constant outward pressure.  It is this pressure that is the source of the current accelerating expansion of
the universe.

2 General Relativity
Liddle, for the most part, avoids GR, relegating it to an “advanced topic” chapter and only covering it there with a broad brush.  I
think that, since cosmology has its roots firmly in the soil of GR, it’s a good idea to dig a bit deeper.  The following is still at a
pretty descriptive level, but may help to establish a few important concepts.

ü 2.1 The Metric Tensor

We are so accustomed to flat space that we automatically think in those terms, where the separation between objects, ds, is given
by  the  Euclidean  metric,  ds2 = dx2 + dy2 + dz2  in  Cartesian  coordinates.   In  the  notation  of  relativity,  this  is  written  as
ds2 = dij dxi dx j.  This simple-looking expression includes four important GR conventions/constructs:

1) Roman letter indices indicate 1, 2, and 3.  (Greek letter indices are used to stand for 0, 1, 2, and 3.)
2) The common spatial axis designations, x, y, and z, are replaced by x1, x2, and x3, summarized as xi or x j.  Note that i

and j are indices, not powers. (When Greek indices are used this correspondence remains, and additionally, x0 stands for time, t,
or more correctly, ct.)

3) Einstein summation applies, in which a sum over repeated indices is assumed.  Since i and j appear twice each on the
right  hand  side,  a  sum  over  them  as  they  run  from  1  to  3  is  implied.   So,  writing  the  metric  in  its  full  expression,
ds2 =⁄i=1

3 ⁄ j=1
3 dij dxi dx j.  (The same summation convention applies to Greek indices, except that they run from 0 to 3.)

4) d is the Kronecker delta; dij = 1 if i = j and dij = 0 otherwise.  In this application, dij  can be thought of as a rank-2 (2
indices) metric tensor, a 3×3 matrix indexed by i and j that specifies coefficients for each of the nine products in the above sums.
Generally the metric tensor is much more complicated, but from the previous definition of dij we can see that in this case it’s just
the identity matrix:

AdijE =

1 0 0
0 1 0
0 0 1

.

In special relativity, (SR), we deal with frames of reference that are stationary or moving at a constant velocity with respect to
each other.  These are called inertial frames or Lorentz frames.  Analysis of these reference frames shows that our intuitive
concept of separate time and space coordinates leads to wrong conclusions at high relative velocities and we must “weld” them
together into the a “spacetime continuum.”  Hence the need for Greek indices that run over the 4 dimensions of space and time.
Now we write the above metric as ds2 = hab dxa dxb, using Greek indices a and b to indicate 4 values for the 4 dimensions.  Here
hab is the Minkowski metric tensor for flat spacetime.  It too is simple:

AhabE =

1 0 0 0
0 -1 0 0
0 0 -1 0
0 0 0 -1

.

Note though, that the time component now has a different sign from the spatial ones, so the Einstein summation could result in a
negative value for ds2.  (The Euclidean metric is always non-negative.)

[Note also that this definition and some of the following equations differ from those in Liddle’s book by a minus sign.  This
difference reflects my preference for the so called “mostly minus metric” in contrast to Liddle’s use of the “mostly plus metric.”
Thus, Liddle would write,

AhabE =

-1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

.

Unfortunately, there is not a single convention for this and it’s one of those annoying complications in physics that just make
already difficult concepts a little bit more confusing.  Sorry about that, but I’m writing this for me, so I get to do it the way I’m
most comfortable!]

In SR, spacetime is always flat — the Minkowski metric always applies.  In GR, though, we no longer have the guarantee of the
comforting normalcy of flat spacetime.  Not surprisingly, this means that the metric tensor can be much more complicated.  Now
we write the metric as, ds2 = gmn dxm dxn.  (We could still use a and b, but m and n are conventional.)  This new metric tensor, gmn,
now stands for any general metric tensor, even ones that apply to curved spacetime.  The cosmological principle, though, allows
us to limit  the ones that  concern us by requiring that,  neglecting local  variations,  spacetime must  have the same  curvature
everywhere.

The simplest of these cases is the Friedmann-Lemaître-Robertson-Walker (FLRW) metric tensor for an expanding, flat space-
time.  As you can probably guess, this is just,

gmn
FLRW =

1 0 0 0
0 -a2 HtL 0 0
0 0 -a2 HtL 0
0 0 0 -a2 HtL

.

So far, we have worked in Cartesian coordinates, but, since we are looking radially outward from earth, spherical spatial coordi-
nates (r, q, f) are more natural.  If we incorporate these and construct a general metric for a curved, expanding spacetime, we get
the Robertson-Walker (RW) metric,

dsRW2 = c2 dt2 - a2HtLB dr2

1-kr2
+ r2Id q2 + sin2 q d f2MF.

The spacetime described by this metric is the most general one that is both homogeneous and isotropic.  The time coordinate,
called cosmic time, is the time of a fundamental observer whose only motion is due to the expansion or contraction of space-
time.  The spatial coordinates (r, q and f) assigned by a fundamental observer are comoving coordinates and, at any specific
cosmic time,  all  fundamental  observers will  be measuring the same 3-dimensional  space-like hypersurface  embedded in 4-
dimensional spacetime.  Each such hypersurface represents all of space at that moment of cosmic time.  It can be thought of in a
3-dimensional analogy as the 2-dimensional surface that is formed by the events corresponding to the same instant in cosmic
time on the diverging world lines of all fundamental observers in expanding spacetime.

We would like to know how such a spacetime evolves, since that will  contain important clues to the evolution of our own
universe.   This evolution is  specified by the field equations  of GR.  So, let’s take a brief detour to understand those field
equations.
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We are so accustomed to flat space that we automatically think in those terms, where the separation between objects, ds, is given
by  the  Euclidean  metric,  ds2 = dx2 + dy2 + dz2  in  Cartesian  coordinates.   In  the  notation  of  relativity,  this  is  written  as
ds2 = dij dxi dx j.  This simple-looking expression includes four important GR conventions/constructs:

1) Roman letter indices indicate 1, 2, and 3.  (Greek letter indices are used to stand for 0, 1, 2, and 3.)
2) The common spatial axis designations, x, y, and z, are replaced by x1, x2, and x3, summarized as xi or x j.  Note that i

and j are indices, not powers. (When Greek indices are used this correspondence remains, and additionally, x0 stands for time, t,
or more correctly, ct.)

3) Einstein summation applies, in which a sum over repeated indices is assumed.  Since i and j appear twice each on the
right  hand  side,  a  sum  over  them  as  they  run  from  1  to  3  is  implied.   So,  writing  the  metric  in  its  full  expression,
ds2 =⁄i=1

3 ⁄ j=1
3 dij dxi dx j.  (The same summation convention applies to Greek indices, except that they run from 0 to 3.)

4) d is the Kronecker delta; dij = 1 if i = j and dij = 0 otherwise.  In this application, dij  can be thought of as a rank-2 (2
indices) metric tensor, a 3×3 matrix indexed by i and j that specifies coefficients for each of the nine products in the above sums.
Generally the metric tensor is much more complicated, but from the previous definition of dij we can see that in this case it’s just
the identity matrix:

AdijE =
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0 0 1

.

In special relativity, (SR), we deal with frames of reference that are stationary or moving at a constant velocity with respect to
each other.  These are called inertial frames or Lorentz frames.  Analysis of these reference frames shows that our intuitive
concept of separate time and space coordinates leads to wrong conclusions at high relative velocities and we must “weld” them
together into the a “spacetime continuum.”  Hence the need for Greek indices that run over the 4 dimensions of space and time.
Now we write the above metric as ds2 = hab dxa dxb, using Greek indices a and b to indicate 4 values for the 4 dimensions.  Here
hab is the Minkowski metric tensor for flat spacetime.  It too is simple:

AhabE =

1 0 0 0
0 -1 0 0
0 0 -1 0
0 0 0 -1

.

Note though, that the time component now has a different sign from the spatial ones, so the Einstein summation could result in a
negative value for ds2.  (The Euclidean metric is always non-negative.)

[Note also that this definition and some of the following equations differ from those in Liddle’s book by a minus sign.  This
difference reflects my preference for the so called “mostly minus metric” in contrast to Liddle’s use of the “mostly plus metric.”
Thus, Liddle would write,

AhabE =

-1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

.

Unfortunately, there is not a single convention for this and it’s one of those annoying complications in physics that just make
already difficult concepts a little bit more confusing.  Sorry about that, but I’m writing this for me, so I get to do it the way I’m
most comfortable!]

In SR, spacetime is always flat — the Minkowski metric always applies.  In GR, though, we no longer have the guarantee of the
comforting normalcy of flat spacetime.  Not surprisingly, this means that the metric tensor can be much more complicated.  Now
we write the metric as, ds2 = gmn dxm dxn.  (We could still use a and b, but m and n are conventional.)  This new metric tensor, gmn,
now stands for any general metric tensor, even ones that apply to curved spacetime.  The cosmological principle, though, allows
us to limit  the ones that  concern us by requiring that,  neglecting local  variations,  spacetime must  have the same  curvature
everywhere.

The simplest of these cases is the Friedmann-Lemaître-Robertson-Walker (FLRW) metric tensor for an expanding, flat space-
time.  As you can probably guess, this is just,

gmn
FLRW =

1 0 0 0
0 -a2 HtL 0 0
0 0 -a2 HtL 0
0 0 0 -a2 HtL

.

So far, we have worked in Cartesian coordinates, but, since we are looking radially outward from earth, spherical spatial coordi-
nates (r, q, f) are more natural.  If we incorporate these and construct a general metric for a curved, expanding spacetime, we get
the Robertson-Walker (RW) metric,

dsRW2 = c2 dt2 - a2HtLB dr2
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+ r2Id q2 + sin2 q d f2MF.

The spacetime described by this metric is the most general one that is both homogeneous and isotropic.  The time coordinate,
called cosmic time, is the time of a fundamental observer whose only motion is due to the expansion or contraction of space-
time.  The spatial coordinates (r, q and f) assigned by a fundamental observer are comoving coordinates and, at any specific
cosmic time,  all  fundamental  observers will  be measuring the same 3-dimensional  space-like hypersurface  embedded in 4-
dimensional spacetime.  Each such hypersurface represents all of space at that moment of cosmic time.  It can be thought of in a
3-dimensional analogy as the 2-dimensional surface that is formed by the events corresponding to the same instant in cosmic
time on the diverging world lines of all fundamental observers in expanding spacetime.

We would like to know how such a spacetime evolves, since that will  contain important clues to the evolution of our own
universe.   This evolution is  specified by the field equations  of GR.  So, let’s take a brief detour to understand those field
equations.
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We would like to know how such a spacetime evolves, since that will  contain important clues to the evolution of our own
universe.   This evolution is  specified by the field equations  of GR.  So, let’s take a brief detour to understand those field
equations.

ü 2.2 Curvature

We start with some definitions.  We call a smoothly curved space that is everywhere locally flat, a manifold.  The surface of a
sphere, for example is a manifold — small parts of it look flat.  The surface of a cone is not a manifold, since, no matter how
closely you look, its apex is not flat.  The curved spacetime of GR is a manifold, but it’s a manifold with two additional proper-
ties:

1)  It’s  differentiable.   Almost  all  spaces  that  concern  physicists  are  differentiable,  since  that  provides  some vitally
important characteristics and seems, thankfully, to be the way nature operates.

2) Its metric tensor must be symmetric (ie, gmn = gnm).

Such manifolds are called Riemann manifolds.  They were first studied in depth by Bernhard Riemann in the mid 19th-century.
(Actually, the manifolds of GR are pseudo-Riemann manifolds, since they can have, as noted above, a positive, zero or negative
ds2.)  Riemann was able to show that he could capture all curvature information about these manifolds in a rank-4 tensor called
the Riemann curvature tensor, Rbgd

a .  Rbgd
a = 0 implies a flat manifold.

GR doesn’t actually use the full Rbgd
a , but instead uses two other measures of curvature derived from it.  A tensor can have its

rank lowered by a process called contraction that amounts to multiplying it by another tensor with the same index in the opposite
position (up or down).  [Think of turning a vector (a rank-1 tensor) into a scalar (a rank-0 tensor) by forming a dot product with
another vector.]  When the first and last indices of the Riemann curvature tensor are contracted, the result is the rank-2 Ricci
tensor, Rmn.  Another contraction over the remaining two indices results in the Ricci scalar, R = gij Rij.  Einstein then collected

these two entities into one — the Einstein tensor, Gmn = Rmn -
1
2

R gmn.

The Einstein field equations relate the curvature of spacetime to the configuration of mass-energy that causes the curvature.  We
have seen that curvature is captured in the Einstein tensor, but we need a way to describe the energy and momentum of the
collection of particles whose gravity is the source of the curvature.  The answer is T mn, the symmetric, rank-2 energy-momentum
tensor  (sometimes called the “stress-energy tensor”).  Consider a collection of particles moving along their individual world
lines.  Each carries its four-momentum (a combination of energy and momentum) with it, and the collection forms a “river of
four-momentum” flowing through spacetime.  The density and flow of this river is the source of the general relativistic gravita-
tional field and is captured in T mn.

The  Einstein  field  equations  then  relate  Gmn  to  Tmn  in  the  famous  expression,  Gmn = - 8 pG
c4

Tmn.   This  is  often  written  in

“geometrized” units, where 8 p G = c = 1, as the frustratingly obscure Gmn = - Tmn.   This equation relates two symmetric 4×4
matrices, thus representing, at most, 10 independent equations (symmetry requirements eliminate 6 of the 4×4=16 equations).
There are, however, two important special cases that, because of their symmetries, significantly reduce this number.  These are:

1) Dust: Dust is a collection of non-interacting particles at rest with respect to each other in a Lorentz frame.  Dust is a
reasonable approximation to the late stages of a matter-dominated universe.  Since they have no momentum, g = 1 for the dust
particles and, the energy-momentum tensor is the particularly simple expression, 

ATDust
mn

E =

rc2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

, where mass density r = n m, with n being the number density of the particles.

The field equations for dust become a single equation.

2) Perfect fluids: A perfect fluid is best thought of as dust with a pressure that acts with equal magnitude in all directions.
It’s a good model for the universe at times earlier than the ones modeled by dust alone.  Prefect fluids have zero viscosity and
zero heat conductance.  No viscosity implies that the fluid cannot support any sheer stress, so all off-diagonal elements of its Tmn

are zero.  Thus, Tij must be a diagonal matrix.  Because of the cosmological principle, it must be diagonal in all frames, so must
be a scalar multiple of the 3×3 identity matrix.  Because pressure is the result of a force directed perpendicular to the interface
between particles, Tij = dij p, where p is now pressure (not momentum!).  (In the case of a universe dominated by non-exotic
matter, where p ` r, the perfect fluid case reduces to the simple case of dust.)  Thus,

ATPerfect Fluid
mn

E =

rc2 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

.

The field equations for a perfect fluid then become two equations, a scalar one in time and a 3-vector one for the spatial compo-
nents.  Starting with the Robertson-Walker metric and passing through some intermediate steps (involving the covariant deriva-
tive, Christoffel symbols, the Riemann curvature tensor and the Ricci tensor and scalar) which Liddle glosses over and I will too,
it is possible to arrive at the Friedmann equations,

K
aÿ

a
O
2
= 8 pG

3
r - k c2

a2
, (what Liddle calls “the Friedmann equation”) and

aÿÿ

a
= - 4 pG

3
Jr -

3 p
c2
N, (what Liddle calls “the acceleration equation”).

These can be combined to derive the, non-independent, “fluid equation,”

r
ÿ
+ 3 aÿ

a
Jr -

p

c2
N = 0.

Notes on Modern Cosmology.nb   9



We start with some definitions.  We call a smoothly curved space that is everywhere locally flat, a manifold.  The surface of a
sphere, for example is a manifold — small parts of it look flat.  The surface of a cone is not a manifold, since, no matter how
closely you look, its apex is not flat.  The curved spacetime of GR is a manifold, but it’s a manifold with two additional proper-
ties:

1)  It’s  differentiable.   Almost  all  spaces  that  concern  physicists  are  differentiable,  since  that  provides  some vitally
important characteristics and seems, thankfully, to be the way nature operates.

2) Its metric tensor must be symmetric (ie, gmn = gnm).

Such manifolds are called Riemann manifolds.  They were first studied in depth by Bernhard Riemann in the mid 19th-century.
(Actually, the manifolds of GR are pseudo-Riemann manifolds, since they can have, as noted above, a positive, zero or negative
ds2.)  Riemann was able to show that he could capture all curvature information about these manifolds in a rank-4 tensor called
the Riemann curvature tensor, Rbgd

a .  Rbgd
a = 0 implies a flat manifold.

GR doesn’t actually use the full Rbgd
a , but instead uses two other measures of curvature derived from it.  A tensor can have its

rank lowered by a process called contraction that amounts to multiplying it by another tensor with the same index in the opposite
position (up or down).  [Think of turning a vector (a rank-1 tensor) into a scalar (a rank-0 tensor) by forming a dot product with
another vector.]  When the first and last indices of the Riemann curvature tensor are contracted, the result is the rank-2 Ricci
tensor, Rmn.  Another contraction over the remaining two indices results in the Ricci scalar, R = gij Rij.  Einstein then collected

these two entities into one — the Einstein tensor, Gmn = Rmn -
1
2

R gmn.

The Einstein field equations relate the curvature of spacetime to the configuration of mass-energy that causes the curvature.  We
have seen that curvature is captured in the Einstein tensor, but we need a way to describe the energy and momentum of the
collection of particles whose gravity is the source of the curvature.  The answer is T mn, the symmetric, rank-2 energy-momentum
tensor  (sometimes called the “stress-energy tensor”).  Consider a collection of particles moving along their individual world
lines.  Each carries its four-momentum (a combination of energy and momentum) with it, and the collection forms a “river of
four-momentum” flowing through spacetime.  The density and flow of this river is the source of the general relativistic gravita-
tional field and is captured in T mn.

The  Einstein  field  equations  then  relate  Gmn  to  Tmn  in  the  famous  expression,  Gmn = - 8 pG
c4

Tmn.   This  is  often  written  in

“geometrized” units, where 8 p G = c = 1, as the frustratingly obscure Gmn = - Tmn.   This equation relates two symmetric 4×4
matrices, thus representing, at most, 10 independent equations (symmetry requirements eliminate 6 of the 4×4=16 equations).
There are, however, two important special cases that, because of their symmetries, significantly reduce this number.  These are:

1) Dust: Dust is a collection of non-interacting particles at rest with respect to each other in a Lorentz frame.  Dust is a
reasonable approximation to the late stages of a matter-dominated universe.  Since they have no momentum, g = 1 for the dust
particles and, the energy-momentum tensor is the particularly simple expression, 

ATDust
mn

E =

rc2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

, where mass density r = n m, with n being the number density of the particles.

The field equations for dust become a single equation.

2) Perfect fluids: A perfect fluid is best thought of as dust with a pressure that acts with equal magnitude in all directions.
It’s a good model for the universe at times earlier than the ones modeled by dust alone.  Prefect fluids have zero viscosity and
zero heat conductance.  No viscosity implies that the fluid cannot support any sheer stress, so all off-diagonal elements of its Tmn

are zero.  Thus, Tij must be a diagonal matrix.  Because of the cosmological principle, it must be diagonal in all frames, so must
be a scalar multiple of the 3×3 identity matrix.  Because pressure is the result of a force directed perpendicular to the interface
between particles, Tij = dij p, where p is now pressure (not momentum!).  (In the case of a universe dominated by non-exotic
matter, where p ` r, the perfect fluid case reduces to the simple case of dust.)  Thus,

ATPerfect Fluid
mn

E =

rc2 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

.

The field equations for a perfect fluid then become two equations, a scalar one in time and a 3-vector one for the spatial compo-
nents.  Starting with the Robertson-Walker metric and passing through some intermediate steps (involving the covariant deriva-
tive, Christoffel symbols, the Riemann curvature tensor and the Ricci tensor and scalar) which Liddle glosses over and I will too,
it is possible to arrive at the Friedmann equations,

K
aÿ

a
O
2
= 8 pG

3
r - k c2

a2
, (what Liddle calls “the Friedmann equation”) and

aÿÿ

a
= - 4 pG

3
Jr -

3 p
c2
N, (what Liddle calls “the acceleration equation”).

These can be combined to derive the, non-independent, “fluid equation,”

r
ÿ
+ 3 aÿ

a
Jr -

p

c2
N = 0.

3 Cosmological Models Without L
The Friedmann equation is the key to understanding how the curvature, k, determines the geometry, and hence the behavior, of
the universe.  We are interested in how the scale factor, aHtL, behaves under these different scenarios.  As Liddle points out, k is
often set to one of only three values, ±1 or 0.  The disadvantage of this approach is that we can no longer set a0 = 1.  This is a
serious limitation.  In this section, though, I will set k to only those values because my purpose is to explore qualitatively the
behavior of open, closed and flat universes rather than to draw any particularly useful quantitative conclusions.

For this we will need the deceleration parameter, q, introduced in section 6.3 of Liddle.  Liddle discusses q only at the present
time, so limits his coverage to the constant q0.   The deceleration parameter, though, can be more generally thought of as a
function of time,

qHtL ª - aÿÿHtL
H2HtL aHtL

=
rHtL
2 rcHtL

,

and we will  be interested in its behavior given various conditions.   Cosmologists have recently learned that the universe is
currently expanding at an accelerating rate, so q0 < 0.  Such an accelerating expansion cannot be accommodated here, since the
universes considered in this section are without a cosmological constant, L.
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ü 3.1 Characteristics of Flat Universes

We first examine the properties of flat matter-dominated and radiation-dominated universes without a cosmological constant
(dark energy), and then tabulate their behavior for other curvatures.

ü 3.1.1 The Flat Non-relativistic Matter-dominated Universe

These are universes that are modeled on the pressureless dust approximation.  This gives an acceleration equation that reads,
aÿÿ

a
+ 4 pG

3
r = 0, or rHtL = 3H2HtL

4 pG
qHtL.

The Friedmann equation,

H2 = K
aÿ

a
O
2
= 8 pG

3
r - k

a2

 then becomes,
 H2 - 2 H2 q = - k

a2
, or k = a2 H2H2 q - 1L.

 Taking k = 0, Ha > 0 and H > 0) this gives q = 1 ê2 and, because at k = 0, r = rc the critical density is,

 rcHtL =
3H2

8 pG
.

 The fluid equation,

 r
ÿ
+ 3 aÿ

a
r = 0

 can be rearranged to give,
 a3 r

ÿ
+ 3 r a

ÿ
a2 = 0.

 The clever mathematicians among us will recognize this as a product rule differentiation,

  „

„t
Ir a3M = r

ÿ
a3 + 3 r a

ÿ
a2 = 0 which implies r µ∝ a-3, or, with initial conditions, rHtL = r0J

a0
aHtL

N
3
µ∝ a-3 .

  Using this in the Friedmann equation, with a0 = 1, gives,

  a
ÿ 2
=
8 pG r0
3 a

.
  Liddle solves this with the clever power law guess that a µ∝ tq,  but this separable differential equation also easily yields to
integration as,

  a
ÿ
µ∝ a-1ê2 Ø a1ê2 d a µ∝ d t Ø Ÿ a1ê2 d a µ∝ Ÿ d t Ø a3ê2 µ∝ t Ø a µ∝ t2ê3 .

  Substituting into the above expression for r gives, rmatter µ∝ t-2 .

  The conformal time is given by,

  h ª Ÿ0
t d t£

aHt£L
= Ÿ0

t
I
t 0
t£
M
2ê3 d t£ µ∝ t1ê3 Ø h µ∝ a1ê2

ü 3.1.2 The Flat Radiation-dominated Universe

These universes are modeled with the perfect fluid, p =
r

3
, approximation.  Virtually identical analysis to the above gives,

rHtL = r0J
a0
aHtL

N
4
µ∝ a-4  ; a µ∝ t1ê2  ; rrad µ∝ t-2  and h µ∝ a .

It should be noted that the rate at which density decreases as a function of a is faster for a radiation-dominated universe than for a
matter-dominated universe and therefore, regardless of how small a component of matter is present in the early universe, it will
eventually come to dominate.  Radiation-dominance is an unstable condition.  As a universe transitions from radiation-domi-
nance to matter-dominance, the expansion rate will speed up from a

ÿ
µ∝ t-1ê2 to a

ÿ
µ∝ t-1ê3.
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nance to matter-dominance, the expansion rate will speed up from a
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ü 3.2 Specific Solutions Based on Curvature

The following tables give the evolution of the scale factor for matter- and radiation-dominated universes for each of the three
canonical curvatures, k = 0, ±1.  Because our universe appears to be flat to a high degree of certainty and dominated by a
cosmological constant, none of these solutions is of more than theoretical interest, so I will just tabulate the results rather than
derive them.

Matter-dominated Universes
Characteristics for all h for small h
k q0 a t a HhL t a HtL

0 = 1 ê 2 H6 p G r0L
1ê3 t2ê3 - - - µ∝ t2ê3

+1 > 1 ê 2 J
q0

2 q0-1
N H1 - cos hL J

q0
2 q0-1

N Hh - sin hL µ∝ h2 µ∝ h3 µ∝ t2ê3

-1 < 1 ê 2 J
q0

1-2 q0
N Hcosh h - 1L J

q0
1-2 q0

N Hsinh h - hL µ∝ h2 µ∝ h3 µ∝ t2ê3

Radiation-dominated Universes
Characteristics for all h for small h
k q0 a t a HhL t a HtL

0 = 1 ê 2 I
32 p G r0

3
M
1ê4

t1ê2 - - - µ∝ t1ê2

+1 > 1 ê 2 2 q0
2 q0-1

Hsin hL
2 q0
2 q0-1

H1 - cos hL µ∝ h µ∝ h2 µ∝ t1ê2

-1 < 1 ê 2 2 q0
1-2 q0

Hsinh hL
2 q0

1-2 q0
Hcosh h - hL µ∝ h µ∝ h2 µ∝ t1ê2

ü 3.3 Particle Number Density

We have been concerned so far with mass-energy density, r, but another useful density, number density, n, simply counts the
number of particles of a particular type in a unit volume.  It’s useful because a system at thermal equilibrium will statistically
preserve the number of each type of particle, since, by definition, equilibrium reactions that produce or destroy particles run at
the same rate in both directions.  Number density will change in an expanding universe, though, because expansion changes the
volume, so, n µ∝ a-3.

This relation is exactly what we would expect for non-relativistic matter (rmatter µ∝ a-3), but we have seen that radiation energy
density falls off more quickly (rrad µ∝ a-4).  The extra factor of a-1  is due to the loss of energy by the photons as their wave-
lengths are stretched in the expansion.  So, even though energy densities of matter and radiation evolve differently in an expand-
ing universe, their number densities evolve in exactly the same way, n µ∝ a-3.

4 Cosmological Models With L

ü 4.1 The Cosmological Constant

Einstein quickly realized that, if the energy sources in the energy-momentum tensor are only matter Hpmat = 0) and radiation
Iprad = rrad c2 ë3), there are no solutions to the field equations of GR that describe a static, homogeneous universe.  To remedy
this situation and bring GR into alignment with the astronomical thinking of the day, he proposed including a “cosmological
constant,” L, HpL = -rL) so that his field equations now read Rmn -

1
2

R gmn + L gmn = - 8 pG
c4

Tmn.  The Friedmann equation that

results from this includes another term that incorporates L,

K
aÿ

a
O
2
= 8 pG

3
r - k c2

a2
+ L

3
.

Such an equation admits a static HHHtL = 0), homogeneous solution with positive matter density and curvature.  Unfortunately, it
wasn’t long after he proposed this idea that Einstein realized that such a universe was also unstable (See Liddle problem 7.2).

The acceleration equation makes the effect of the inclusion of L explicit,
aÿÿ

a
= - 4 pG

3
Jr -

3 p
c2
N + L

3
.

Thus, a positive L makes a positive contribution to a
ÿÿ
, effectively creating a repulsive force.  If  L > 4 p GJr -

3 p
c2
N, it results in an

accelerating expansion.
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ü 4.2 Characteristics of Universes with L ¹≠ 0

The inclusion of L changes the simple conclusions about the behavior of universes based only on their curvature.  A cosmologi-
cal constant allows for the possibility that a closed universe may not collapse or that an open one expands forever.   The various
possibilities are best parameterized using a graph of WL versus W0 shown in Liddle as Figures 7.1 and A2.4.  For an accelerating,
flat, pressureless universe with a cosmological constant,  WL > 1 ê3.  In a universe like ours, with W0 § 1, a future re-collapse
depends on the sign of L; L ¥ 1 implies endless expansion.

Our universe has had/will have 3 different epochs in its history:
radiation domination (0 - 104yrs),
matter domination (104 - 1010yrs), and
dark energy domination ( > 1010yrs).

During the first two, expansion was at a sub-linear rate (slowing rate of expansion), that becomes exponential during the third.

ü 4.3 The Mysteries of L

ü 4.3.1 Zero-point Energy of the Vacuum

Today, we see the cosmological constant, Einstein’s “greatest blunder,” as a masterful stroke of genius that allows us to both
accommodate  a  required non-zero vacuum energy and explain  the  observed accelerating expansion of  the  universe.   If  the
vacuum is to be Lorentz invariant, its energy-momentum tensor must have the form Tmn = -rL gmn and must be formally equiva-

lent to L, with rL = L

8 pG
.  It is this equivalence that leads to the association between the cosmological constant and the vacuum

energy.

Quantum field theory requires that the underlying reality is composed of a set of quantum fields whose fixed frequency modes
each behave like simple harmonic oscillators whose ground state energy is E0 =

—w

2
.  In a situation reminiscent of the ultraviolet

catastrophe, the integral of the energy over all of these modes diverges.  In a similar (but much more ad hoc) solution, QFT
resolves this paradox by limiting the contribution of modes with a wavelength smaller than some Planck scale cutoff.  Such a
calculation  leads  to  a  vacuum  energy  density  of  rL @ 10112 erg ÿcm-3.   Measurements  of  Type  Ia  supernovae  and  CMB
anisotropies leads to a value of rL @ 10-8 erg ÿcm-3, resulting in the infamous discrepancy of a factor of 10120  between theory
and experiment.  It remains a mystery why the measured rL  is so wildly different from the QFT prediction and why it has an
exceedingly small, but non-zero, value.
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ü 4.3.2 Why are WL and Wmat of Roughly the Same Size?

If  we lump dark  matter  with  ordinary  baryonic  matter,  the  matter  and  dark  energy  density  parameters  are,  Wmat @ 0.3  and
WL @ 0.7.  Since rmat µ∝ a-3HtL  and rL µ∝ a0HtL,  this near equality of density parameters exists for a very small portion of the
history of the universe.  It appears that the transition from a matter-dominated to a cosmological constant-dominated universe,
with its inherent accelerated expansion, is a relatively recent phenomenon.  Why we happen to live during this particular period
in the history of the universe also seems to demand an explanation.  There is no consensus on an answer.

ü 4.4 Some Possible Solutions

Over the last decade and a half, almost everyone in the field of cosmology has come to accept the model of a universe expanding
at an accelerating rate with Wmat @ 0.3 and WL @ 0.7.  There are a few holdouts who continue to support a model of unaccelerated
expansion with Wmat @ 1, but these theories, all involving various forms of invalidation of high-redshift observational data, seem
increasingly contrived and untenable.  Assuming that the accelerated expansion is real, there are several possible ways out of the
conundrum.

ü 4.4.1 Failure of GR

If we accept that we live in an accelerating, isotropic and homogeneous universe, GR in its current form is unambiguously clear
that some source of negative pressure (“dark energy” for lack of a better term) is required.  A dark energy-free acceleration can
arise and the observed universe can be postdicted by requiring a modification of GR at cosmic scales.

Some string theorists have proposed ideas of this sort that require modifications of the Friedmann equation.  I don’t understand
these ideas very well, but they seem to require gravity to be four-dimensional below a certain (very large) length scale and higher-
dimensional above it.

Others have proposed four-dimensional modifications to GR at all scales.  In an elegant approach similar to Feynman’s path
integral formulation of QM, the Einstein field equations can be derived by minimizing an action given by the spacetime integral
of the Ricci curvature scalar, R,

S = Ÿ d4 x gmn R.

Theorists proposing a modification to GR that does not require the additional dimensions of string theory, simply add a 1 êR-
dependent term to the integrand,

S = ‡ d4 x gmn JR -
m4

R
N, where m is a tunable parameter.

These theories admit accelerating solutions, but make other predictions that appear to conflict with observations.

Unfortunately, all of these approaches to modifying GR lead to some fine-tuning mysteries of their own and, to my untrained
eye, seem to add complexity (and probably inconsistencies with observation) without really solving the underlying problems
inherent in the accelerating expansion.

ü 4.4.2 Varying L

The Friedmann equation with L requires that a
ÿ 2
µ∝ a2 r + constant.  So, for acceleration to occur, the dark energy density must

fall off more slowly than a-2.  Neither matter (rmat µ∝ a-3) nor radiation (rrad µ∝ a-4) does the job.  A constant L (rL = constant)
will work, but so will a slowly decreasing L.  It offers a potential solution to the problem of a small but non-zero cosmological
constant: L has been decreasing for a long time, falling asymptotically toward zero, and we happen to live at the time when it has
its current tiny value.  It is possible that the problem of the close values of Wmat and WL might also be resolved in this way.

The simplest of these possibilities is a scalar inflaton field dropping slowly in a weak potential field.  (If the potential were
stronger, L would presumably have already reached its minimum.)  This can be thought of as a “quintessence fluid” with an
equation of state given by, pQ = w rQ c2, where w is a constant.  The w = -1 case is the familiar cosmological constant, with
expansion occurring for w < -1 ê3.  This approach is known as quintessence.  In QFT, when weak (low mass) scalar fields are
subject to renormalization, it drives their masses up, so fields as weak as those required for quintessence are unnatural in QFT
and so quintessence introduces other fine-tuning problems.

There are other theories that posit an oscillating rL  superimposed on an exponential decay.  This could help with the unlikely-
hood of finding ourselves so near the transition to dark energy-dominance.  Such transitions happens fairly frequently - once per
cycle.

All these theories have issues, either with fine-tuning of parameters or constraints due to neucleosynthesis.  Additionally, none of
them offer a good motivation for a varying L.

14   Notes on Modern Cosmology.nb



The Friedmann equation with L requires that a
ÿ 2
µ∝ a2 r + constant.  So, for acceleration to occur, the dark energy density must

fall off more slowly than a-2.  Neither matter (rmat µ∝ a-3) nor radiation (rrad µ∝ a-4) does the job.  A constant L (rL = constant)
will work, but so will a slowly decreasing L.  It offers a potential solution to the problem of a small but non-zero cosmological
constant: L has been decreasing for a long time, falling asymptotically toward zero, and we happen to live at the time when it has
its current tiny value.  It is possible that the problem of the close values of Wmat and WL might also be resolved in this way.

The simplest of these possibilities is a scalar inflaton field dropping slowly in a weak potential field.  (If the potential were
stronger, L would presumably have already reached its minimum.)  This can be thought of as a “quintessence fluid” with an
equation of state given by, pQ = w rQ c2, where w is a constant.  The w = -1 case is the familiar cosmological constant, with
expansion occurring for w < -1 ê3.  This approach is known as quintessence.  In QFT, when weak (low mass) scalar fields are
subject to renormalization, it drives their masses up, so fields as weak as those required for quintessence are unnatural in QFT
and so quintessence introduces other fine-tuning problems.

There are other theories that posit an oscillating rL  superimposed on an exponential decay.  This could help with the unlikely-
hood of finding ourselves so near the transition to dark energy-dominance.  Such transitions happens fairly frequently - once per
cycle.

All these theories have issues, either with fine-tuning of parameters or constraints due to neucleosynthesis.  Additionally, none of
them offer a good motivation for a varying L.

ü 4.4.3 Supersymmetry

Supersymmetry  offers  some  intriguing  hints  about  the  size  of  the  vacuum energy.   For  every  bosonic  degree  of  freedom
(contributing a positive vacuum energy) there must be a partner fermionic degree of freedom (contributing a negative vacuum
energy).  If the degrees of freedom match, vacuum energy would be zero.  However it is clear that the world in which we live is
not in a supersymmetric state - there is no bosonic selectron with the same mass as the electron, for example.  So, supersymme-
try, if it exists, must be a broken symmetry.  The good news is that supersymmetry renders the vacuum energy finite and calcula-
ble (at least with some assumptions about the symmetry-breaking energy).  The bad news is that such calculations give a result
that is far outside observational limits.  Subtleties in string theory and supergravity allow for tuning the result, but, once again are
entirely ad hoc.

ü 4.4.4 Anthropocentricity

The simplest answer to the mysteries of L is, of course, that we find ourselves in the only sort of environment, and at the only
time in its evolution, that can accommodate human life.  The vacuum energy, then, has a value that is an arbitrary feature of the
region in which we find ourselves.  Such regions must be at least as large as the observable universe and there must be some
mechanism by which L  can vary between them.  String theorists propose a string theory “landscape” in which fundamental
“constants” such as L can take on different values in different universes or parts of this universe.  Inflation offers a possible
mechanism for this, by which different parts of the multiverse undergo rapid inflation with different resulting properties.

5 The Evolution of the Universe

ü 5.1 The Age of the Universe

In a flat universe with a positive cosmological constant and W0 < 1, its calculated age is greater than our initial, naive estimate of
the Hubble time, H0

-1 = 9.77 h-1µ109yrs.  The expression for this, more accurate age is,

t0 = H0
-1B

2
3

1

1-W0
ln 1+ 1-W0

W0

F = H0
-1B

2
3

1

1-W0
sinh-1 1-W0

W0
F.

With measured values for W0 and h, this calculation gives an age of 13.7 ± 0.1 × 109 years.

There are several sources of observational data that support such an estimate:
Uranium isotopic ratios in the galactic disk,
the cooling rate of white dwarf stars, and
the chemical evolution of stars in globular clusters.

All give ages in rough agreement with the calculation.
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ü 5.2 The Composition of the Universe, W = W0 +WL

The total matter-energy of the universe includes ordinary (baryonic) matter, most of which is dark; non-baryonic matter, all of
which is dark; and dark energy.  Thus, almost all of the mass-energy density of the universe is hidden from us.  We know it
exists, though, from several lines of investigation that do not involve measuring its emission or absorption of EM radiation.

ü 5.2.1 The Mass Density Component of the Universe, W0 (31.7%)

The mass density of the universe, W0, is composed of baryonic matter - the stuff with which we are familiar, stars, gas clouds and
other atomic and sub-atomic matter -  and non-baryonic matter -  matter that carries no electric charge and does not interact
electromagnetically.  Three lines of evidence suggest that the majority of universal mass is non-baryonic:

1) Big bang neucleosynthesis, which accounts for the relative abundances of elements in the early universe, predicts that
baryonic matter  cannot account for more than about 5% of the mass-energy density of the universe.   This is  because non-
baryonic matter does not contribute to the formation of elements in the early universe.

2) Studies of gravitational microlensing have shown that only a small fraction of the dark matter in our galaxy (and
presumably in other galaxies as well) can be in large dark objects like burned out stars.

3) The geometry of the universe has been measured with great accuracy by examining the structure size in the microwave
background radiation and has been found to be flat to an accuracy of less than 1%.  This, in turn places stringent requirements
on the total mass density of the universe resulting in W0 @ 31.7 %.

Galaxy rotation curves that compare a star’s rotational velocity to its radial distance show typical velocities of stars at large radii
to be as much as three times what they should be if all galactic matter were luminous.  This implies that the galaxy consists of
considerably more dark mass than that which is luminous.  In fact, the amount of this dark matter necessary to account for
rotation curves considerably exceeds that allowed by nucleosynthesis, so most of it must be non-baryonic.

„ 5.2.1.1 Baryonic Matter, WB @ 4.9 %

The theory of nucleosynthesis places limits on the amount of baryonic matter that the universe can contain.  In fact, to match the
observed  element  abundances,  the  amount  of  baryonic  matter  must  exhibit  a  mass  density  parameter  in  the  range
3.1 %§WB § 5.0 %.   This  baryonic  matter  is  further  divided  between  that  which  glows  in  the  electromagnetic  spectrum
(luminous matter), WBL, and that which does not (baryonic dark matter) WBD.

5.2.1.1.1 Luminous Matter, WBL < 1 %

All luminous matter is baryonic.  Estimates of the amount of luminous matter in the universe begin with that contained in stars.
Estimates of the stellar density parameter are in the range 0.5% <Wstars  < 1%.  Since this is less than the range required for
baryonic matter by the theory of nucleosynthesis, there must be considerable baryonic matter not in stars.  Additionally, there
exists interstellar gas, some of which glows in the X-ray spectrum, but this luminous gas does not represent enough matter to
cause WBL to exceed about 1%.

5.2.1.1.2 Baryonic Dark Matter, WBD @ 4 %

We saw above that some intergalactic gas shines in X-rays due to the gravitational effect of galaxy clusters.  Since only a small
fraction of galaxies are in clusters, it seems a reasonable assumption that there exists a large body of cool gas between galaxies
that is dark and which contributes to the baryonic dark matter total.  We also expect that some baryonic matter resides in very
low mass stars(white or brown dwarfs) or large planets that do not emit light or radiate so faintly that we cannot detect them.
One category of these are the MAssive Compact Halo Objects (MACHOs).

„ 5.2.1.2 Non-baryonic Dark Matter, WNB @ 26.8 %

Baryonic matter cannot provide sufficient mass to create the necessary gravitational attraction to explain galaxy rotation curves,
so dark matter must be more than simply dark baryonic matter.  The only currently known particle whose properties are suffi-
ciently uncertain that  it  could contribute to dark matter  is  the neutrino.   However,  studies of large-scale structure and high
redshift galaxies lead to the conclusion that neutrinos can contribute only a small fraction (probably < 2%) of the necessary non-
baryonic mass.

Theories of non-baryonic matter are classified by the free-streaming length of the particle(s) involved.  Free-streaming length
refers to the distance the particles could have moved in the early universe before being slowed by inflation and it sets a minimum
scale for structure formation.  There are three current hypotheses for non-baryonic dark matter: cold dark matter (CDM), warm
dark matter (WDM) and hot dark matter (HDM).  Some combination of these is also possible.
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5.2.1.2.1 HDM

Hot dark matter particles are light particles that remain relativistic until shortly before recombination.  The best candidate for an
HDM particle is the neutrino, but as we have seen, it falls far short of accounting for the bulk of the mass necessary for non-
baryonic dark matter.

5.2.1.2.2 WDM

Warm dark matter particles have a free-streaming length similar to the size of a proto-galaxy and a mass on the order or 1keV.
They became non-relativistic when the universe was about 1 year old - during the epoch of radiation-domination.  Supersymmet-
ric gravitinos and photinos have been suggested as candidate particles, but these have not been seen in experiments to date.  Also
postulated is the sterile neutrino,  an unobserved massive particle that does not even interact by the weak force, as ordinary
neutrinos do.

5.2.1.2.3 CDM

Cold dark matter particles are those that are massive enough to have become non-relativistic very early, and so diffused a very
short distance.  Candidates for CDM particles include Weakly Interacting Massive Particles (WIMPs) such as massive supersym-
metric particles, or small black holes (also included in the MACHO category).  It appears that MACHOs of any sort cannot
account for the necessary non-baryonic mass density.

The leading candidates for the bulk of non-baryonic dark matter are the, as yet undiscovered, supersymmetric WIMPs.

ü 5.2.2 The Dark Energy Component of the Universe, WL (68.3%)

By far, the bulk of the mass-energy in the current universe is dark energy.  There is much speculation about the nature of dark
energy, but little is known for certain at this point.  The two most commonly proposed forms are fixed quantities such as the
cosmological constant, or scalar fields such as quintessence or modulii that vary over time and space.  These can be distinguished
by measurements  of  the  evolution  of  the  expansion  rate  of  the  universe  but  sufficiently  precise  measurements  are  not  yet
available.

ü 5.3 The Standard Model of Cosmology

Combining the FLRW metric of GR with cold dark matter and the cosmological constant, L, results in what is known as the
Lambda-CDM model of the universe.  This is also often referred to as the Standard Model of Cosmology.  LCDM is often
extended by including inflation.

Notes on Modern Cosmology.nb   17



6 Observational Cosmology
The goals of observational cosmology are to assess which of the theoretical models best fit the universe.  In the following, we
will assume that the Robertson-Walker metric applies.

ü 6.1 Light Propagation and the Observable Universe

Redshift is the most fundamental result of observational cosmology.  For light, the spatial part of the RW metric is equal and of
opposite sign of the time part, so  ds = 0 - light is motionless in spacetime.  For a radial light ray (d q = d j = 0), then the RW
metric allows us to show that, for any spatial geometry,

aHt0L
aHteL

= 1 + z.

Astronomers frequently use redshift as a measure of time or distance, so the phrase “the universe at redshift z” means the uni-
verse at the time when it was 1 ê H1 + zL of its present size, and “an object at redshift z” means one at a distance such that in the
time it has taken its light to reach us, it has redshifted by a factor H1 + zL.

If we assume a flat, matter-dominated universe with no cosmological constant, we can use the metric to calculate the finite size
of the observable universe, r0 = 3 c t0.  The assumption of no L is, of course, unrealistic, but, even worse, this result assumes a
linear evolution of aHtL.  A better definition is to equate the observable universe with that region from which we receive EM
radiation, thus excluding spacetime events prior to the formation of the CMB, when the universe became transparent.  It should
also be noted that, because the universe is expanding as light travels, the distance light has traveled is greater than c times the age
of the universe.

ü 6.2 Luminosity Distance

Distant objects in a static universe are dimmer than nearby ones by the inverse square law for EM radiation.  It is this dimming
that we use when we calculate their luminosity distance.

If an object has a luminosity of L units of energy emitted per steradian per second, its total power output is 4 p L.  The radiation
flux density, S, is defined as the amount of energy received by us per unit area per second, and the luminosity distance, is given
by

dlum = L
S

.

This is not the actual distance to the object, though.  It’s too big because in an expanding universe,
1) the energy of the individual photons decreases proportional to 1 ê H1 + zL, and
2) there are less of them by a factor of 1 ê H1 + zL.

These  two  effects  give  a  luminosity  distance  of  dlum = a0 r0H1 + zL,  while  in  a  flat  static  universe  their  distance  would  be
dphys = a0 r0.  Of course, for nearby objects z ` 1, so dlum @ dphys, but for distant objects  dlum > dphys.  Non-flat geometries either
enhance Hk < 0) this trend or oppose Hk > 0) it.  Presence of L complicates the situation still further.

Luminosity distance, while very useful, has are several limitations.

The luminosity, L, we have used above is the integral of the power output of the radiator over all frequencies, called its bolomet-
ric luminosity.  The luminosity of any radiator, though, is a (usually complicated) function of frequency.  Due to redshift, the
detector (sensitive to only a narrow band of wavelengths) is seeing light that was emitted in a different part of the spectrum of a
distant object from that emitted by a closer object.  That part of the spectrum may have a greater or smaller energy density than is
radiated in the spectral band where it appears.  This can be corrected for if we know the emission spectrum of the object, but as a
practical  matter  this  introduces  uncertainty  to  distance  measurements  based  on  luminosity.   Different  cosmological  models
predict different relationships between luminosity distance and redshift.

In astronomical observations, the measured quantity is flux density and its translation into luminosity distance requires knowl-
edge of the absolute luminosity of the object.  We have only limited knowledge of this for distant (younger) objects.  We can
circumvent this problem by observing a class of objects at different distances thought to have the same absolute luminosity, even
if we don’t know what that luminosity is.  This has been done using Type Ia supernovae, whose light curve is related in a known
way to their relative luminosity.  It was these measurements that lead to the recognition of an accelerating expansion and the
need for a cosmological constant.
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dphys = a0 r0.  Of course, for nearby objects z ` 1, so dlum @ dphys, but for distant objects  dlum > dphys.  Non-flat geometries either
enhance Hk < 0) this trend or oppose Hk > 0) it.  Presence of L complicates the situation still further.

Luminosity distance, while very useful, has are several limitations.

The luminosity, L, we have used above is the integral of the power output of the radiator over all frequencies, called its bolomet-
ric luminosity.  The luminosity of any radiator, though, is a (usually complicated) function of frequency.  Due to redshift, the
detector (sensitive to only a narrow band of wavelengths) is seeing light that was emitted in a different part of the spectrum of a
distant object from that emitted by a closer object.  That part of the spectrum may have a greater or smaller energy density than is
radiated in the spectral band where it appears.  This can be corrected for if we know the emission spectrum of the object, but as a
practical  matter  this  introduces  uncertainty  to  distance  measurements  based  on  luminosity.   Different  cosmological  models
predict different relationships between luminosity distance and redshift.

In astronomical observations, the measured quantity is flux density and its translation into luminosity distance requires knowl-
edge of the absolute luminosity of the object.  We have only limited knowledge of this for distant (younger) objects.  We can
circumvent this problem by observing a class of objects at different distances thought to have the same absolute luminosity, even
if we don’t know what that luminosity is.  This has been done using Type Ia supernovae, whose light curve is related in a known
way to their relative luminosity.  It was these measurements that lead to the recognition of an accelerating expansion and the
need for a cosmological constant.

ü 6.3 Angular Diameter Distance

As with luminosity distance, calculation of angular diameter distance assumes a flat, static universe.  The angular measure of
the extent of a distant object perpendicular to the line of sight is,

ddiam ª l
sin q

@ l
q
.

We again use the RW metric, this time with r = r0, d r = d j = d t = 0, and t = te, l = d, and s = r0 aHteL d q, with the scale factor
accounting for any universal expansion during the travel time of the light.  Thus,

d q = l H1+zL
a0 r0

 and, ddiam = a0 r 0
H1+zL

= dlum
H1+ zL2

.

As with luminosity distance, the angular diameter distance of nearby objects closely matches their physical distance.  However,
the angular diameter distance behaves quite differently from the luminosity distance for distant objects.  More distant objects, as
expected,  are  fainter  Hdlum  increases)  but,  past  z = 5 ê4  for  a  flat,  matter-dominated  universe,  their  angular  size  increases
Hddiamdecreases).  Because the inverse square effect dims the light of distant galaxies and their angular diameter increases, their
dimming light is spread over a larger area, so brightness decreases strongly with redshift.

Both angular diameter distance and luminosity distance are larger in universes with L > 0 and smaller in those with L < 0.

ü 6.4 Source Counts

If we use the cosmological principle to assume that sources (usually galaxies of a chosen type) are uniformly distributed, with a
number density nHtL µ∝ a-3, and we use the volume element from the RW metric, we find that the total number of sources per
steradian out to a distance r0, known as the source count, is,

NHr0L = nHt0L a03 Ÿ0
r0 r2

1-k r2
„ r.

In practical applications, there will be a minimum detectable flux, and we use the luminosity distance to determine the distance to
objects producing grater than that flux, giving r0.  Calculation shows that almost all sources in such a count will be at distances
close to r0.  In principle, source counts should give information that can be used to distinguish between cosmological models, but
in practice it is difficult to separate the effects of the underlying cosmology from that of the evolution of the sources.
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