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We continue with our series of papers concerning a self-field approach to quantum electrodynam-

ics that is not second quantized. We use the theory here to show that a detector with a uniform ac-

celeration a will respond to its own self-field as if immersed in a thermal photon bath at temperature

T, =Ra /2nkc. This is the celebrated Unruh effect, and it is closely related to the emission of Hawk-

ing radiation from the event horizon of a black hole. Our approach is novel in that the radiation

field is classical and not quantized; the vacuum field being identically zero with no zero-point ener-

gy. From our point of view, all radiative effects are accounted for when the self-field of the detector,
and not the hypothetical zero-point field of the vacuum, acts back on the detector in a quantum-

electrodynamic analog of the classical phenomenon of radiation reaction. When the detector is ac-

celerating, its transformed self-field induces a different back reaction than when it is moving iner-

tially. This process gives rise to the appearance of a photon bath, but the photons are not real in the

sense that the space surrounding the accelerating detector is truly empty of radiation, a fact that is

verified by the null response of an inertially moving detector in the same vicinity. The thermal pho-

tons are in this sense fictitious, and they have no independent existence outside the detector.

I. INTRODUCTION

In the wake of the discovery by Hawking of the ap-
parent thermal emission from the event horizon of a
black hole, ' there came a related calculation by Unruh
that indicated that a uniformly accelerating particle
detector would perceive a thermal bath of photons. If an
idealized point detector is accelerating at a rate a, then
the photon spectral distribution is Planckian at a temper-
ature T, =fia i2mck, where k is the Boltzmann constant.
This thermal radiation is not picked up by an inertially
moving detector, and the vacuum expectation of the nor-
mal ordered stress energy tensor T„, is identically zero in
both the inertial and accelerated or unprimed and primed
frames, respectively; ( ~0: „T,:~0)= (0~:T„',:IO) =0. In
what sense then can one say that these thermal photons
are physically real if they do not alter the above expecta-
tion values? Davies argues that these results are indica-
tive of a breakdown of the traditional quantum field
theoretical notion of a particle when space-time is
curved. The present authors contend that the problem is
not with the concept of particle but rather with the quan-
tum field treatment of the vacuum field. Boyer has given
an account of the Unruh effect in the framework of sto-
chastic electrodynamics, which lends credence to the
viewpoint that the acceleration somehow turns the virtu-
al quanta of the Minkowski vacuum into real quanta. In
stochastic electrodynamics the zero-point field is taken to
be a very real thing, responsible for many quantum-
electrodynamical phenomena. The idea is that a classical
vacuum with a spectrum proportional to —,'Ace per normal
mode is permissible on the grounds of Lorentz invari-
ance. If one chooses the proportionality constant ap-
propriately, one recovers a classical vacuum field that is
nearly identical to that predicted by the second quantiza-
tion procedure in field theory. Boyer then shows that un-
der acceleration, the zero-point term is deformed into a

zero-point plus Planckian spectrum at the Unruh temper-
ature T, =fia /2n. kc. The transformation is

1 1
Aco~fico —+

where we will from now on set A=c =a =1.
But are these thermal photons really real? Indeed, one

may ask if even the virtual Minkowski photons with the
spectrum of ,'fico have —any real existence apart from the
detector that appears to register them, say, as the ap-
parent "trigger" for spontaneous emission. In stochastic
electrodynamics the choice of a nonzero proportionality
constant for the spectrum proportional to —,'Au is permis-

sible, but not required. The other obvious choice is to set
the spectrum of the vacuum identically equal to zero as is
done in classical electrodynamics. Where then would ra-
diative effects such as spontaneous emission and the
Lamb shift originate if not driven by the vacuum fluctua-
tions, as is usually assumed in quantum electrodynamics
(QED)? In classical electrodynamics there are two per-
fectly respectable phenomena which should correspond
to the classical limit of spontaneous emission and the
Lamb shift in atoms; they are line breadth and level shift
in the energy, for instance, of a harmonically bound
charge. These radiative corrections to the otherwise un-
perturbed motion of the charge arise not from any in-
teraction with a zero-point field —the classical vacuum
field is identically zero —but rather from the radiation re-
action on the charge from its own self-field. The scale of
the electromagnetic field fluctuations is set by the con-
stant Ac, so in the classical limit of A~O, one would ex-
pect spontaneous emission and the Lamb shift to vanish
and to have no classical analog since the causative agent,
the zero-point field, has vanished. This is clearly not the
case in that we are actually left with the classical line
breadth and level shift of an oscillating charge. Barut
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and his co-workers have shown that it is possible to for-
mulate QED in terms of self-fields, so that such phenome-
na as spontaneous emission and the Lamb shift are
viewed as natural generalizations of their classical coun-
terparts in radiation reaction theory. This is the ap-
proach that we shall use in the present work.

In QED it is usual to renormalize the free elec-
tromagentic field through the normal ordering of the
operators in order that the zero-point energy of —,'Ace per
normal mode vanishes. This is done primarily because
the keeping of the —,'duo in the Hamiltonian would lead to
an infinite energy density of empty space since (0~ T„~O)
would diverge. The rationalization usually given for this
procedure is that only energy differences have physical
meaning, and hence a transfinite translation of the energy
scale cannot have physical consequences. But the energy
density T„does indeed have an absolute meaning when
coupled to the gravitational field, in the sense that it
determines the curvature of the metric via the Einstein
field equations. It is not possible to change the curvature
or to flatten out space-time simply by adjusting the ener-

gy scale. If we accept the electromagnetic zero-point en-

ergy as real, then by implication we must accept the
infinite energy density of empty space. This implies an
infinite curvature for the universe and infinite value for
the cosmological constant —unless we are saved in some
unforeseen fashion by a fortuitous cancellation of all the
vacuum fields in some unified field theory. The cosmo-
logical constant A is the most accurately determined
physical quantity in all of physics; the observations by
Sandage of distant galaxies puts ~A~ =0 with an upper
limit of ~A~ (10 cm '. It certainly is not infinite.

It is common to say that the vacuum fluctuations are
the physical cause of spontaneous emission, the Lamb
shift, the nonzero value of g —2, the Casimir effect, long-
range Casimir-Polder van der %'aals forces, apparatus
dependent contributions to these radiative effects, and
now the thermal response of an accelerating detector.
This view is perhaps that of the majority. It is not as well
appreciated that all of these effects may be equally well
explained at least to order a, in terms of the fields which
originate in the charged particles themselves. '

Jaynes has given a nice example of why the zero-point
fluctuation interpretation of radiative effects in QED
makes many of us uneasy. Suppose we believe that the
electromagnetic zero-point energy is physically real, right
up to the Compton cutoff frequency co=m, which is used
in nonrelativistic calculations of the Lamb shift to get the
correct Bethe logarithm. If one computes the turbulent
energy flow associated with the zero-point field at this
cutoff, one gets a Poynting vector of about 6X10
MWcm . (The total luminosity of the sun is about
2X 10 MW. } One feels that physically real radiation of
this intensity would have slightly more of an effect than
to shift the 2s level of hydrogen by 4 pV.

Much work has been done in the past few years to
show that there is a deep and fundamental connection be-
tween the vacuum fluctuation and the self-field ap-
proaches to QED. ' The duality between these two
methods of doing QED does not necessarily prove, how-
ever, that the zero-point field is real. It is possible that

self-field effects are the same as if vacuum fluctuations
were the causative agent. Jaynes has shown that the en-

ergy density of the radiation reaction field over the spec-
tral interval of the natural linewidth is exactly the same
as that of the vacuum field. In the present paper we will
support this idea that the vacuum field approach is a
mathematical subterfuge which gives the correct answer
some of the time.

Davies has emphasized that the meaning of the con-
cept of a particle and the codependent concept of the vac-
uum depends crucially on the state of motion and history
of the particle detector. This is a fact which is often
overlooked in Minkowski space, but which cannot be ig-
nored in curved space-time where the decomposition of
the field into positive and negative frequency normal
modes is not unique for all observers. In general,
different detectors will disagree on what constitutes the
vacuum. If one detector registers no particles, a different
detector on a different world line, in general, will register
particles. This is because a Bogoliubov transformation
between the two Fock spaces used to define the vacuum
for each detector will not give identical vacuums for the
two spaces. Davies concludes that because of this the
concept of a particle, say a photon in the electromagnetic
case, is not well defined. The present authors would like
to use the same evidence to support a different con-
clusion: It is the standard notion of the vacuum in quan-
tum field theory that is not well defined, a fact which
seems obvious when one begins to consider quantum
fields in curved space.

The stochastic electrodynamics theory of Boyer also
develops pathological problems in curved space-time.
Boyer chooses a classical zero-point spectrum propor-
tional to —,'fm per normal mode because this is the only
nonzero spectrum permitted on the grounds of Lorentz
invariance. This means that in Minkowski space the sto-
chastic electrodynamic vacuum is permitted since it is an
invariant of the Poincare group. The Poincare group is
not a symmetry group of a general curved space-time,
however, and apparently the most compelling reason for
choosing a stochastic zero-point spectrum proportional
to —,'A'co, rather than to zero, completely disappears. The
only choice of such a proportionality constant consistent
with the demands of a space-time of arbitrary curvature
is one that is zero. By Boyer's own reasoning we must
conclude the only allowable classical vacuum field in
curve space-time is the same as that used in classical
electrodynamics —namely, the vacuum field must be
chosen to be identically equal to zero in all its moments
of the Wightman correlation function.

In discussing quantum fields in curved space-time the
concept of a detector plays a central role: It is impossible
to discuss properties of the quantum vacuum field in the
absence of a detector to observe those properties. One
cannot speak of the absence or presence of a vacuum
without a detector to register deviations or nondeviations
from that vacuum state. The concept of a vacuum in the
absence of a detector is meaningless in both a philosophi-
cal and operational sense. But by the definition of a
detector, it must couple to the vacuum field whose pres-
ence or absence we are trying to measure, and hence in-
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troduce its own self-field into the measurement process.
In the present paper we shall show that the self-field of

a uniformly accelerating point detector responds to the
acceleration in such a way as to drive the detector, via a
quantum generalization of radiation reaction, into a su-

perposition of states which when thermodynamically ana-
lyzed yields the Planck spectrum given in Eq. (l). But
now the interpretation is different. The —,'fur corresponds
to the spectral distribution of the detector's own field
over the natural linewidth. For an inertially moving
detector this is the only term which occurs, and it is re-
sponsible for the usual free-space atomic spontaneous
emission as weH as for the Lamb shift. Transforming to
the Rindler coordinates of a uniformly accelerating
detector we obtain the full result of Eq. (l}. The interpre-
tation now is not that the detector is immersed in a bath
of thermal photons, but rather that the self-field of the
detector is responding to the work being done on it by the
accelerating agent in such a fashion so as to make it ap-
pear as if the detector were immersed in such a bath.
There are no physical photons present, a fact which
would be confirmed by a neighboring inertially moving
detector. The particle concept is hence rescued, but only
with the sacrifice of the notion of a dynamic vacuum
state in the absence of a detector. Since one cannot dis-
cuss the vacuum without the detector, it would seem
compelling to want to set the vacuum field identically
equal to zero for all observers and then to attribute
differences between detectors totally to the response of
the self-field of the detector to its own worldline.

Notice that by the Einstein equivalence principle, a
uniformly accelerating detector is equivalent to a detec-
tor at rest in a gravitational field. From the point of view
of general relativity the thermal radiation seen by the
detector seems to originate from a neighboring event hor-
izon; in our calculation it would be the event horizon of
Rindler coordinates. But this event horizon is related to
that of a black hole by a conformal transformation.
Hence Unruh and Hawking radiations are similar, and
froin the self-field point of view they are both equally in-
terpreted in the sense that the thermal radiation effects
are confined to within the detector, which is responding
to the gravitational field directly.

II. SELF-FIELD APPROACH TO QED

In classical electrodynamics one usually computes the
zeroth-order motion of the charges first and then adds on
the self-field or radiation reaction effects as a perturba-
tion to the original motion. (Although, in special cir-
cumstances, one may find exact solutions to the nonlinear
Lorentz-Dirac equation of motion. } The philosophy in
the self-field approach to QED is precisely the same.
Conceptually we may separate the electromagnetic four-
potential A„surrounding a point charge into and exter-
nal field A „,which is prescribed as part of the initial con-
ditions, and a self-field term A „, which originates from
the charge. The total field is then A„:=A'„+ A'„. (The
notation a:=b indicates that a is being defined as being
equal to b with the colon on the same side as the quantity
to be defined. ) With this separation, we shall assume that

F„„:=A[„„)
)+A

—.F„+F„„,
where [,] indicates commutation with respect to the in-

dices. Far from the source of the external field we have
Maxwell's equations as

(FP") =(FP ) =ej" (4)

where j„ is the usual Dirac current 4'y„%. The action
density w (x) can be written now as

w =V(i y"d& m)4+ e A—
&j

"+,'F&„F""—

=:wp+ w) +w2

where wp is the free particle density, w, the particle-field
coupling, and w2 the free electromagnetic (EM) field ac-
tion density. It is evident that wp and w& taken together
are equivalent to the canonical coupling iB„~i8„eA„—
At this point the external and self-electromagnetic field
have not yet been separated. We proceed now with an
analysis of w2,

wz = ,'(F„'g,""+F„—'g,"'+F'„gl'"+F„'gl'") .

The two middle terms can be converted into surface in-
tegrals under fdx, which vanish if A„ is sufficiently lo-

calized. The first term of this expression is the invariant

~ F~gP"= —& (E2 —g2)

which is an additive constant that does not effect the
equations of motion, and so we may drop it from the ac-
tion. We are left with the last term, which can be
transformed as

—'F' &" =—'A' F"
4 pv s 4 [v p) s

=—'( A 'g "") ——'A ' (F"')
4 f s, jM] 4 [v s,p]

e= ——A'j",

where we have used the inhomogeneous Maxwell equa-
tions (2). Equality here is with respect to integration by
parts and the vanishing of possible surface integrals un-
der the application of fdx. (Surface terms are, however,

the coupling of the Dirac spinor field 4 to A„' alone
determines the bulk, zeroth-order motion of the electron,
while the coupling to A„ is responsible for all radiative
corrections. As in previous work we find it convenient to
proceed from the standpoint of an action formalism, '

with the action given by

W= Jdx w[x;+;A], (2)

where W is the total action and w(x) is the correspond-
ing action density. Variation of Eq. (2) with respect to ql

yields the Dirac equation of motion, while variation with
respect to A„gives Maxwell's equations. The elec-
tromagnetic field tensor F„„is defined as usual as
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needed in the discussion of processes in which radiation
goes to infinity such as in bremsstrahlung, the Compton
effect, etc.) With these results the total density of expres-
sion (5) becomes

This single nonlinear addition to the usual action con-
tains information about all radiative effects, e.g., spon-
taneous emission, the Lamb shift, and the electron g —2
value. ' The interpretation here is, once again, that
these radiative corrections arise as an effect of the back
reaction of the self-field on the motion of the electron in a
manner analogous to the classical phenomenon of radia-
tion reaction.

To insure the boundary conditions that provide the
correct combination of retarded and advanced potentials,
we choose for the Green's function D„„(x—y) the causal
Feynmann propagator D„„(x—y}:= —ri„+„,(x —y),
where g„„is the Minkowski metric tensor with signature
(+ ———} and D„,(x —y) has the equivalent forms

D(x —y)= in5((x ——y) )
/ 1

4m (x —y)
(12a)

l 1

4n(x y). +ie—
1

—ik(x —y)
dk

(2m)" k +ie

(12b)

(12c)

in the Feynman gauge.
Now in order to further analyze W, in Eq. (11}we per-

form a Fourier expansion of the 4' in terms of quasi-
bound-state energies E„, which are to be determined,
since we anticipate using a bound electron as our Unruh
detector. The expansion is

4(x)= $f 4'„(x)e (13)

where the sum runs over positive and possibly negative
energy levels. To a first iteration we assume that the %'„
with associated eigenvalues E„exactly minimize the ac-
tion Wp+ W, . We are then using these zeroth-order
wave functions to evaluate the W, radiative correction

w =%(iy"c} —m )4+e A p"+—A p"
2

wp+ wi +ws

Together wo+w; are responsible for the zeroth-order
motion of the electron in the external field, while w, in-
duces radiative corrections to that motion.

One may formally solve Eq. (4) for A„' in terms of the
current j„through the use of an electromagentic Green's
function D„„via

A„'(x)=e f dy D„,(x —y)j "(y) . (10)

If we define W, :=f dxw, (x} as the contribution to the
total action W from the self-field correction, then inspec-
tion of expressions (9) and (10) yields immediately that

2

W, = f f dx dyj "(x)D„,(x y)j "(y)—. (11)

X 5(cv„~ +~~ ), (14)

where co„:=E„E—Th.e 5 function can be satisfied by
either of the two choices

n =m, p=q (15a)

n=q, m=p . (15b)

The condition (15a) leads to a vacuum polarization term,
and we shall not consider it here. The condition (15b)
leads to spontaneous emission and the Lamb shift, here
interpreted as quantum analogs of the classical radiation
reaction effects of line broadening and level shift. We
will consider in the present work how these phenomena
are effected by boosting the detector into an accelerating
frame.

III. RESPONSE OF AN INKRTIALLY MOVING
DETECTOR TO ITS SELF-FIELD

To illustrate the self-Qeld method of approach we will
now confirm that a pointlike detector on an inertial
worldline experiences at zero temperature only the effects
of the usual spontaneous emission and Lamb shift in free
space, which occur via the interaction of the detector
with its own field. (This is, of course, clear form the
Lorentz invariance of the theory, but it is instructive as
an illustrative example of how to apply the self-field ap-
proach to this kind of problem. )

The trajectory for an inertial detector can be written as

X =Xp+ Vt =Xp+ V$T

y=yp+vu =yp+vyv,
(16)

where v and v are the proper times which correspond to
the x„and the y„ time components t =y~ and u =yv,
respectively. The velocity v is constant, with v:=P(1
and y:=(1—P )

' as usual. The coordinates xo and yo
are those of the electron in a detector based system. For
a pointlike detector we may take xp —

yp =0 or
exp[k (xo—yo)] = 1 in the dipole approximation.

Inserting the expressions (16) into the Green's function
of (12b), we first notice that

(x y} +ie=(g+—ie} (17)

where we have defined g:=r v, and we have —absorbed a
positive function of g into the e. The self-field action of
Eq. (11)can now be written as

term in an iterative fashion. Inserting expression (12c)
for the Green's function into the expression (11) for W, ;
expanding each of the ql as per Eq. (13);and carrying out
the dxo, dyp, and dkp integrations yields

2

W, = — (2n. )~ g fffdx'dy'dk'[%„(x)y„iP (x)]
n, m, p, q

X [%1,(y)y~g, (y)]
ik (x —y)

X e

co'„—/k/'+ ie
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2 (n )ty„/m ) (m fy )n )Iv"'""'=— x f fdrdv "
z

Sn ()+i e)

@fat
I 6)

(18)

in the dipole approximation,

(x y—) +i a=4 sinh ~+i e
2

G„= g (n (y„[m &(m [y&[n &(-,'co„) .
2K

(19)

where we have adopted the Dirac bra ket notation, and
used the relation (15b) after expanding the 4 as per the
prescription of Eq. (13). The action W is formally
infinite, but it can be related to the transition probability
G„ for the nth energy level via '

W=2m5(co„~ )G„,
and the identification J fdr dv~ Id g gives us the finite

transition probability per unit time for this nth state as

= —4 sin 2 1

2
(21)

1 2 i
D(x —y) = — csc e-

16m.
(22)

Making use of the Laurent expansion for cosecant,
namely,

Once again we have absorbed a positive valued function
of g into the e. If we now insert expression (21) into Eq.
(12b) for the Green's function we get

In our units a=8 /4n, and the contour integral was car-
ried out on an infinite semicircle in the lower g plane. A
single pole of order 2 located at g= i@ c—ontributes

csc (z) =
„(z—np)

we can expand the Green's function of (22) as

(23)

' nm&

22&i res
(g+ie)

= —2n.( —,'a)„),

IV. RESPONSE OF A UNIFORMLY
ACCELERATING DETECTOR

TO ITS SELF-FIELD

In the self-field approach to QED spontaneous emis-
sion occurs as a back reaction of the field on the detector.
In curved space-time, such as in the Rindler coordinates
of a uniformly accelerating observer, one would expect
the self-field to become modified by the curvature and by
a non-Minkowskian event horizon. Any change in the
configuration of the self-field would be transmitted
through the radiation reaction effects and would surface
as a modification of the spontaneous emission rate, as
well as of other radiative effects. We now compute this,
the Unruh effect, from the self-field point of view.

Let us suppose that our detector is accelerating uni-
formly with acceleration a:=1. The worldline is hyper-
bolic and can be written in Rindler coordinates as

xo =:t=sinh(~), yo =.tt =sinh(v),

x3 cosh(r), y3 =cosh(v)

xi =x2=0, yi =&2=0,

(20)

with ~ and v the proper times as before. Hence we have,

where we note that if n is the ground state then co„&0.
A detailed analysis of (19) shows that this corresponds to
the usual spontaneous-emission transition rate and Lamb
shift in free space. Notice how the factor of —,'Ace„

enters here, not as a consequence of any electromagnetic
zero-point energy, but rather through the Fourier spec-
trum of the detector's self-field. Once again it looks as if
there is a vacuum field which is stimulating the spontane-
ous emission or Lamb shift; in reality it is the detector's
own field that is responsible.

D(x —y)= 1 1

4n z= „(g+2mip+ie)
(24)

(n
/ y„/ m &(m /

ylf n &

n, m

lN

X y I jd~dv
(g+2mip+i e)

(25)

with g:=r vas befo—re. Converting, as in the inertially
moving case, to the transition probability per unit time
per energy level n, and carrying out the integral on the
same contour as before, we get

6„= g (n ~y„~m ) (m ~y" ~n )

nm +1 nm
(26)

where we have summed a convergent geometric series

2&p QP

e
p=1 nm

which arises as the sum of the residues contributed from
the infinitude of poles enclosed by the contour and locat-
ed at g= 2nip for p—= 1,2, 3, . . . . (Recall that if n is the
ground state, then co„&0.) This is our primary result,
reinserting the constants into the expression in

parentheses on the last line of (26) yields for the contents
of these parentheses

1 &~nm

e
(27)

If we use this expression for the Green's function in th"
self-field action of (11)we eventually arrive at

pr accelerating
$
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which we see is the Planck blackbody spectral distribu-
tion, complete with the so-called zero-point term. How-
ever, as we saw in Sec. III, the —,'Rcu„does not corre-

spond to a vacuum spectrum but rather to the self-field

spectrum of an inertially moving detector. When we
boost into an accelerating frame we get back the inertial
term plus the Planckian term at a temperature of

Aa

2mkc

So then it appears as if the accelerating detector is ex-
posed to a thermal bath of photons at temperature T, ;
just as it appears as if it is also being exposed to a zero-
point field embodied in the —,'fuu. Neither set of photons
are physically real. Since any nearby inertially moving
detector would detect no photons, the accelerating detec-
tor cannot be detecting real photons either. By the
equivalence principle we can conclude the same thing
about a detector placed in a uniform gravitational field of
strength a. The field does not create a bath of photons,
rather the detector is responding directly to the local cur-
vature of space-time. The energy required to excite the
detector into a thermal superposition of states is tapped
directly from the metric without the intermediary of any
electromagnetic radiation.

If our results generalize to the case of black holes, then
we would conclude that although a black hole has the ca-
pability of directly exciting detectors in its neighborhood,
it does not necessarily do so by emitting a flood of
thermal radiation. If this is indeed the case, then black
holes do not radiate in the ordinary sense of that word,
i.e. they do not lose mass or energy via this mechanism
unless a detector is actually present.

V. CONCLUSION

We have shown that the Unruh effect can be calculated
within the context of a source-field theory; we conclude
that the thermal response of the detector arises not
through an interaction with real photons in the surround-
ing space, but from the spectrum of its self-field which
has become altered by the change to a noninertial frame.
This indicates that the detector is becoming excited
directly by changes in the metric tensor. If all such
responses of the detector can be attributed to
modifications of the self-field, as opposed to modifications
in a vacuum field, it would seem unlikely then that black
holes are emitting real, physical radiation.

Davies has argued that, in particular, the concept of
the photon is not well defined in curved space-time quan-
tum electrodynamics, since in a curved space-time
different detectors respond differently to the vacuum field

and "detect" different photon spectra. ' It is our conten-
tion that it is the vacuum field in QED that is not well
defined; if it were identically zero to begin with it would
not cause trouble in any space-time, curved or otherwise.
Davies has persistently pointed out that any discussion of
the vacuum field must always concern itself with the
worldline of the detector which registers departures from
that vacuum. Herein lies the key. Since in curved
space-time the concept of vacuum and detector cannot be
either conceptually or operationally separated, this is a
clue that they are really two sides of the same coin. The
fact that the source field and the vacuum field are closely
related is well documented but in the framework of
standard QED it appears as if both are always required
for the internal consistency of the theory. The fact that
the vacuum field is required in standard QED is a direct
consequence of the second quantization procedure. In
the present approach there is no quantization of the EM
field, and yet we obtain correct results at least to order a,
for radiative effects thought to require second quantiza-
tion for their explanation. ' So the question is as follows:
Can we always get the correct results without recourse to
some sort of vacuum fluctuation? If we can set the zero-
point field identically equal to zero for all moments in the
Wightman, two-point correlation function, then the con-
cept of photon might be rescued. There are no photons
in the Minkowski vacuum or any other vacuum to be
counted by any detector —regardless of its state of
motion or history.

The self-field approach to quantum electrodynamics as
presented in this work has been used successfully to first
order in a to account for nonrelativistic and relativistic
formulas for spontaneous emission, the Lamb shift, and

g —2, all in free space. ' This approach has also been
used to compute various apparatus dependent contribu-
tions to these effects; again to lowest order. By enlarging
the notion of boundary to include the effects of a non-
Minkowskian event horizon we have, in the present
work, accounted for the Unruh effect. Work is in pro-
gress to show that the Unruh effect is essentially a classi-
cal phenomenon, and to analyze the response of an atom
to Planck blackbody radiation in a more general setting
from the point of view of self-fields. (Since spontaneous
emission and the Lamb shift have the classical limits of
line broadening and level shift, the Unruh effect should
also have such a classical analog. ) The extension of the
self-field approach to higher orders of the fine-structure
constant has until now been hampered by delicate and
complicate calculations of the wave functions needed in
the general nth order iteration of the self-field contribu-
tion to the total action. Some progress is now being
made in this direction.
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We use a self-field approach to quantum electrodynamics (QED) to show how one may obtain

spontaneous emission and the Lamb shift in a two-level atom without second quantization of the ra-

diation field. In addition, we compare the self-field formalism to that of the neoclassical theory of
electrodynamics advanced by Crisp and Jaynes [Phys. Rev. 179, 1253 (1969)]. We show that the

neoclassical model can be obtained from the self-field approach used here, but that the two are not

equivalent. In particular, the self-field approach appears to give a more complete description of ra-

diative processes. Finally, we show that the neoclassical theory s prediction of a nonexponential

"chirruped" decay is most likely a mathematical artifact of the improper application of the superpo-
sition principle in a nonlinear model where such a principle does not hold. A correct treatment

with self-field QED yields the usual exponential decay dynamics.

I. INTRODUCTION

In classical electrodynamics one realizes that the
Lorentz equation of motion for a charge in an elec-
tromagnetic (EM) field is incomplete, inasmuch as it does
not include radiation reaction. Considerations such as
this have led to the Abraham-Dirac-Lorentz (ADL) equa-
tion of motion which, in covariant form, can be written
as'

mi =F'"'i + (i +if )','
3

where z =z„ is the coordinate of the charge q =e, the
dots denote differentiation with respect to the propertime
r, and a=e /4m. . (We use throughout this paper the
convention c =irt= l. ) A covariant external force F=F„
is allowed for also. In order to arrive at this equation (1),
it is necessary that the entire problem be treated covari-
antly from the outset, with nonrelativistic approxima-
tions possible after the formula given above has been
specified.

A very interesting derivation of Eq. (1) was given by
Wheeler and Feynman using their action at a distance
formulation of classical electrodynamics. The idea goes
back to a paper by Tetrode, , which shows that all of
classical electrodynamics —Maxwell's equations and the
ADL equation of motion —can be derived from a single
unified action principle, if one demands that an accelerat-
ing charge produces a field which is symmetric in the re-
tarded and advanced solutions to Maxwell's equations.
In such a theory, the contributions of radiation reaction
to the Lorentz equation of motion arise very naturally. It
is well known that Wheeler and Feynman never produced
a quantum version of this theory, although Sussman has
presented a second quantized version. The self-field ap-
proach to quantum electrodynamics (QED), as proposed
by Barut and his co-workers, falls in between these two

extremes. We replace the classical particle trajectory z„
with either the scalar Schrodinger wave function lb, the
Pauli two component spinor i)1, or finally the Dirac four-
component spinor %. With the Dirac spinor version the
theory is fully covariant and may now be studied as a
candidate for a complete theory of QED. At no point do
we second quantize either the matter or the radiation
field. Sussman, who does second quantize the fields in his
quantum version of the Wheeler-Feynman approach, ar-
rives at a correct explanation of spontaneous emission
with the right Einstein A coefficient. This, we shall see,
is also possible even at the atomic level where the particle
is treated nonrelativistically as being described by a
Schrodinger wave function, and nothing is second quan-
tized. This result is understandable if we think of spon-
taneous emission as the quantum analog of the classical
radiation reaction line broadening of an oscillating
charge. Since the Wheeler-Feynman action accounts for
radiation reaction naturally, spontaneous emission is a
logical consequence of this approach, even if the EM field
is not quantized. Notice that in our method there can be
no EM vacuum field Auctuations since the field is not
quantized. This precludes the notion of zero-point Auc-
tuations as the physical cause of spontaneous emission in
our picture. If a semiclassical theory is defined as a
theory which is not second quantized, then self-field QED
has been quite a successful semiclassical theory (at least
to order a) in accounting for quite an array of phenome-
na thought to require at least the second quantization of
the radiation field for their explanation. Both relativistic
and nonrelativistic accounts of spontaneous emission, the
Lamb shift, and g —2 have been given. Nonrelativistic
calculations of cavity-induced changes to these effects
have been carried out also, as well as a calculation of the
Unruh eff'ect (whereby an accelerating detector senses a
bath of thermal radiation). In the present paper we
show how the theory can be used to treat the decay dy-
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namics of a two-level atom, and that the self-field theory
in some sense contains —but is not equivalent to—the
neoclassical theory of Crisp and Jaynes.

The paper is organized as follows. First, we present a
review of self-field QED, emphasizing the point that the
theory is a quantum generalization of the action at a dis-

tance approach to classical electrodynamics of Fokker,
Schwarzshild, Tetrode, Wheeler, and Feynman.
(Equivalently, it is a quantum theory of radiation reac-
tion. ) Second, we reduce the theory to that of a two-level

atom and obtain the correct exponential spontaneous-
emission decay law, as well as the Lamb shift contribu-
tion to the energy levels. Third, we indicate how in seIf-
field QED we can arrive at the same erroneous decay law

as that of the neoclassical theory if we assume that the
superposition principle holds —which it does not in our
nonlinear theory, Fourth, we review the neoclassical ap-
proach of Jaynes and show that it can lead to the same
incorrect, chirruped exponential decay law. The con-
clusion is then that the same illegal use of superposition
in the neoclassical theory —which is similarly nonlinear
in the wave function i'—leads to the wrong decay law.
We will detail how the correct exponential decay can be
recovered by avoiding recourse to the superposition prin-
ciple in the neoclassical theory. We shall finally also indi-
cate why we believe that the self-field approach to QED
offers a more complete description of radiative correc-
tions than does the neoclassical theory.

II. ACTION AT A DISTANCE
ELECTRODYNAMICS

The action at a distance formulation of classical elec-
trodynarnics, as presented by Wheeler and Feynman,
presupposes an action principle used by Fokker,
Schwarzschild and Tetrode. ' Consider a number of
charges e, of mass m,. interacting by means of an action
integral 8', defined as

W=g fdrm;z;

+ g pe;e f fdvdvi, (r) i./(v)D(z; —z/), (2)

where v and U are proper times, z;=z,~ is the four-
position of the ith particle, and integration is over all
space-time. (We are using standard four-vector notation:
z:—z„, z —=z„z"=z z, etc.) The D (x —y ) is an elec-
tromagnetic Green's function. In order for the variation-
al problem to have a solution, the Green's function D(x )

must be symmetric under particle interchange i~j and
also in past and future. These requirements lead to the
two equations

D —t
(D advanced +D retarded

)2 7

D(z; —z/)=D(z —z;) .

(3a)

(3b)

We note that the usual Feynman propagator of QED
satisfies both of these conditions. When we extend the
theory to the quantum domain, the choice of a symmetric
Feynman boundary condition of the form of (3a) will be
required in order for the variational problem to have a

solution. Hence the choice of such a propagator will not
be ad hoc, but will arise as a natural requirement of the
theory. ' With certain further assumptions concerning
boundary conditions, it is well known that the variation
of the action (2) with respect to z„yields, for the Euler-
Lagrange equations of motion, the ADL equation (I).
Hence we have a classical action principle which yields
radiation reaction. If one considers the classical motion
of a harmonically bound charge with radiation reaction
included, one finds that there arises a level shift and a line
broadening to the energy of the oscillator. ' We shall see
that these classical phenomena have as their natural
quantum analog the Lamb shift and spontaneous emis-
sion. From the self-field point of view, all quantum elec-
trodynamic, radiation reaction effects are viewed as the
quantum extensions of such classical effects. The prob-
lem now is to pose an action principle such as Eq. (2) in a
quantum-mechanical setting. To see how to proceed, let
us relate the action principle of (2) to one which resem-
bles that of the usual classical field theory. The elec-
tromagnetic four-potential A„"(x) of the ith particle at
the point x =x„ is given by

A„(x)=efdrD(x —z(r))i„(r), (4)

where the subscript i has now been suppressed. Such a
potential gives rise to a field tensor F„„,which is sym-
metric in retarded and advanced fields; so long as the
Green's function satisfies expression (3a).' The field ten-
sor also obeys Maxwell's equations, provided we take the
current density of the i th particle as

j„(x)=efdpi„5(x —z(r)) . (5)

If we insert expression (4) into expression (2) for the ac-
tion 8, we obtain

W= g fdr m, i;+ g g f dr e, z, (r) A/(z, (r)),

which, by inspection of the current j of Eq. (5), we see is
the usual classical field theoretical action with a j A type
interaction term. This procedure now give us a clue as to
how to go about constructing quantum versions of the ac-
tion principle embodied in expression (2).

(i) Write down the usual action for either the
Schrodinger, Pauli, Or Dirae equation, with the j A in-
teraction.

(ii) Separate the EM potential according to
+ A„"', ~h~r~ A„'"' is some field arising from

charges assumed to be at infinity and A „"' is the self-field
of the charges in a localized interaction region.

(iii) Eliminate A „"' entirely from the total action by use
of the Feynman Green's function D(x ) via the prescrip-
tion

A„' (x) =e f dx D„(x—y )j (y ),

which is a generalization of Eq. (4).
Here the j„are quantum electron density currents ap-

propriate to the wave functions g, t}t, or tIt. When these
steps are carried out, one is left with an action principle
in which the self-Geld potential A„"' has been entirely el-
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iminated. The external field A„'"' still remains; however,
it too could be eliminated if we took our interaction re-

gion to be the entire universe. In this case we would have
a pure, quantum, action at a distance theory; in particu-
lar, it would be a generalization of the Wheeler-Feynman
approach contained in Eq. (2). We would hope that the
quantum versions of the theory now account for radia-
tion reaction automatically, just as the classical version
does so. We shall see, furthermore, that the classical ra-
diation effects of line broadening and level shift have, as
their expression in the quantum versions of the theory,
spontaneous emission and the Lamb shift. This might be
expected from correspondence principle grounds. We
now formalize these motivational comments and remarks
into a presentation of the self-field theory of quantum
electrodynamics.

III. SELF-FIELD QUANTUM
KI,KCTRODYNAMICS

Maxwell's equations and the quantum-mechanical
(QM) equations of motion —including radiative or radia-
tion reaction effects—arise from a single action principle,
if we use a Feynman Green's function to relate the elec-
tromagnetic potential to the current that produces it, via
Eq. (7). It is postulated that there are no EM fields in-
dependent of the sources that produce them, and hence
no possibility of vacuum field fluctuations. It is assumed
that the field surrounding a charge can be split as
A„=A„'"'+A„"', where the external field has as its
source charges at infinity, while the self-field is the field
produced by a localized charge in some interaction re-
gion. With this ansatz the nonhomogeneous Maxwell
equation

w=w +eA'"'j"+—A"' j"e
2

=w +—A"' j"e
2

w ext +w self (12}

5W
5

5W y+Fss~
5 A selt Is 5 A sejf J self, P

V V, P

(13)

which is the inhomogeneous Maxwell equation, provided
we have identified

58' = —ej"
gA self

P

(14)

This development has thus far been independent of the
choice of the action density wo. We now summarize the
action densities and their corresponding currents for the
most important cases.

(i) Classical action density and current:

w; =mi —eA„i",2

j"=fd r ez "5(x—z(r) ) .

(ii) Schro'dinger action density and current:

(15a)

(15b)

1 . aw;=f (V+ie A} (V ie A)+—eAO i-
2m at

The interpretation is that w'"' is responsible for the usual
electronic motion in an external field, while w"' contains
radiation reaction effects or radiative corrections such as
the Lamb shift and spontaneous emission, corresponding
to level shifts and line broadening in the classical theory.
With the definition (10), we find that the variation of W
with respect to A „' yields, for the Euler Lagrange equa-
tions of motion,

F"'„=ej

has the general solution

A„(x)=A„'"'+ef dy D„,(x —y)j "(y),

(8)

(9)

1 ej"=g' 1, . V ——A
2m' m

(iii) Pauli action density and current:

1
w =sI}' [(V+ie A) sr]

2m

(16a)

(16b)

where D„,(x —
y ) must be symmetric in retarded and ad-

vanced Green's functions. Its precise form will depend
on the gauge, and also the overall boundary conditions on
the EM field. The total action 8'may be written as the
four-dimensional integral of an action density w,

8'= dx w x;,A„ (10)

X [a.(V ie A)]+—eA i-
a~

1 1 ej"=P' 1, V+ (VXo —o XV)——A'
2mi 2m m

(17a)

The action density w wi11 have the general form

w(x ) = wo(x )+e A „j"+,'F„,F"", —

where the specific form of wo(x }, the matter action, will
depend on the extent to which a charge is treated non-
classically. If one uses integration by parts, the homo-
geneous Maxwell's equation, and the assumption that
A „"' is su%ciently localized, one obtains

(17b)

(iv) Dirac action density and current:

w; =4'[y"(is)„—e A „)—m ]sP,

j~=%y~% .

(18a)

(18b)

Variation of W with respect to z„, g, p, or sp yields,
respectively, the ADL, Schrodinger, Pauli, or Dirac
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equations of motion. It must be emphasized that the A„
which appear in the equations above are not just the
external field A „'"' alone, but rather the sum of
A„'"'+A„', as given in Eq. (9). So, unlike the usual
semiclassical theory, the action densities listed above con-
tain nonlinear and nonlocal terms of the general form

2

dz dy jP z D z —y j+y (19}

which are responsible for radiative corrections. [Note
the similarity between this expression and the Wheeler-
Feynman double integral of Eq. (2} for the classical ac-
tion, in the self-interaction case where i =j.] In particu-
lar, we should notice that because the equations of
motion are nonlinear the superposition principle does not
hold. It is not possible to expand the exact solutions of
the exact nonlinear equation as a superposition of solu-
tions to the approximate, linear equation which does not
contain W'"'. In addition, the terms of the form (19),
which now appear in the action integral 8', are not per-
turbations which can be turned on or off at will. They
are an integral part of the entire action and their in-
clusion is always required in order to have a complete
equation of motion which includes radiation reaction, in
analogy to the classical ADL equation (1). For example,
if A„'"' =( —Z, /r, 0), the static Coulomb potential, then
the usual hydrogenic wave functions t(t„i with eigenval-
ues E„are not -ven in principle —solutions to the com-
plete Schrodinger action, which contains now the non-
linear term W"' given in Eq. (19). The conclusion is that
the hydrogen atom has no precisely defined sharp energy
levels, other than the ground state. The excited states
cannot be stable, according to the self-field picture, due to
radiation reaction. Hence they are never precise levels-
but they always have a nonzero linewidth which mani-
fests itself as spontaneous emission. Mathematically, the

form a complete set of states, and in the usual per-

turbation theory the solution to the perturbed eigenvalue
problem can be expanded as a linear superposition of this
complete set. Such an approach would not be correct
here, since the principle of linear superposition does not
hold for our equations of motion —they contain nonlinear
current interaction terms of the form (19). One must be
wary of blindly applying the machinery of QM to a prob-
lem without regard for the hypotheses upon which such
an application is based. (We should point out that even
in the standard approach to QED the radiative correc-
tions are not really perturbations either. If one adheres
to the notion that radiative effects have their origin in the
vacuum field fluctuations, then such corrections form a
necessary part of the problem, since the vacuum Auctua-
tions can not be turned off—even in principle. Hence in
standard QED the hydrogen atom cannot have exact
eigenstates. All of the states, except for the ground state,
will have a spread to them which cannot, under any cir-
cumstances, be eliminated. )

IV. SELF-FIELD QKD FOR A TWO-LEVEL
ATOM

We shall now derive the spontaneous-emission rate and
Lamb shift for a two-level atom, and attribute them to be
physical consequences of the covariant inclusion of the
electron's self-field. The interpretation is that spontane-
ous emission and the Lamb shift are triggered by the
electron's radiation reaction field —in complete analogy
to the classical account of the line broadening and level
shift of the energy of a harmonically bound charge.

It is sulcient for a two-level atom to consider a
Schrodinger action principle. The total Schrodinger ac-
tion can be obtained by inserting the expressions (16) into
the action density (12) and then by integrating over all of
space-time as per the definition given by Eq. (10). The re-
sult is

2 2
pr —f dx qe(x ) p2 i + Aext. p+ Aself pl+ ( A.

ext)2+ Aext. Aself
2m Bt m 2m 2m 2%i

+eA'"'+ —A"' + V A'"'+ V A ' g(x)
2 2m 4m

(20)

where dx—:d x. If we were to take A"' =0 in this ex-
P

pression, we would recover precisely what is usually
called semiclassical electrodynamics. However, we can
not set the self-field to zero and maintain a complete
theory of electronic motion which includes radiative
effects. This was first pointed out by Schrodinger. '

Even formally A„"' can never be zero, for it is always
given by Eq. (9), which makes it proportional to the
current. The only way A„"' can be zero at all points in
space-time is if the electron four-current is zero at all
points in space-time —in which case we have no electron.

Variation of (20) with respect to g" will yield the usual

Schrodinger equation, augmented by new, nonlinear
terms which contain A„"'. Using a few techniques from
S-matrix theory, we can work directly with the total ac-
tion (20) and extract radiative corrections to the usual
Coulomb energies. Notice that A„"' depends on j„,via

Eq. (9), but that j„also depends on A„"' via equation
(16b). Hence we have a "feedback loop" in the equations,
with each cycle of the loop contributing corrections of
successively higher orders in the fine-structure constant
a. (In this work we keep only corrections to first order in
a. ) To this order the A'"' A"' term of Eq. (20) is negli-
gible. For weak external fields ( A'"') is also negligible.
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In fact, since we are interested in hydrogenic atoms, we

may set A'"'=0 and 3 0"' = —Ze /r. Finally, a choice of
the Coulomb or radiation gauge will eliminate both
V A'"' and V. A"'. With these observations the action
8'can be written

8'= f dx Q*(HO+H, +H2)f

1
—ik(x —y)

D;, (x —y)= f dk (5;, +k, k, ),(2~) k +ie
1

—ik(x —y)
Doo(x —y)= f dk

(27T} A, +t6
D;0(x —y ) =Do, (x —y ) =0,

(23a)

(23b)

(23c)

where

= W0+ W) + W2,

H, = A"'.V
2m

1H = — V' +ed'"' —i—,

(21)

(22a)

(22b)

where A,
—= lkl, k =—k "k„,and the +i e in the denomina-

tor insures that the correct symmetry between retarded
and advanced solutions to Maxwell's equations is ob-
tained. With this choice of Green s function the equation
(9) for the self-field can be written as

—ik(x —y)A""=—,f f dydk
(2m ) k +i@

H= —'W ".
2 2 0 (22c) X[j(y)—k(k j(y))] (24a)

It turns out that H0 is responsible for the usual Coulom-
bic motion, H

&
gives rise to spontaneous emission and the

Lamb shift, and finally, H2 corresponds to a mass renor-
malization analogous to that which appears in the classi-
cal theory of radiation reaction. '

As we mentioned above, we are using the Coulomb
gauge V A=O. In this gauge the components of the
Green's function D„„(x—y ) become

—ik(x —y)
A',"'(x)= ', f f dydk'

2 p(y),
(2m ) +l E'

(24b)

where p and j are the time and space coxnponents of the
current j„as given in Eq. (16b). In our notation above

we use dy—:d y, dk—:d k, and k—:k/lk l.
If we now insert Eq. (16b) into the above expressions

(24) and put these into the total action given in (21), we
obtain

r

~0 =f dx g*(x ) — V' +e A 0"' i —g(—x ), (25a)

—ik(x —y)f f f dx dy dk [p'(x)V„&(x)] [1('(y)[V —k(k V )]g(y)I
—ik(x —y)

, f f f dx dy dk, p(x )p(y ),
(2m ) A, +i@

(25b)

(25c)

where a=e /4w.
The 1t which appears in these equations (25) is assumed

to be the function which minimizes the total action
W= W0+ W&+ W2. Equivalently, they are solutions to
the augmented, integro-differential Schrodinger equation
one obtains from the Euler Lagrange equations of motion
when W is varied with respect to 1(t". The point is that
the g(x) are as of yet unknown functions of the space-
time coordinate x=x„=(t,x). Now, without the self-
field contributions of W, and W2, the action integral W0
alone is minimized by the usual Coulombic wave func-
tions, which we shall denote tg (where n—:nlm contains
all three hydrogenic quantum numbers). Physically, we
should expect that there are true solutions f„ithwener-
gies E„ that minimize the complete nonlinear action W
and that these functions are in some sense close to the
Coulombic functions f„, with eigenenergies E„, which
minimize the linear action W0 alone.

It is usual in perturbation theory to assume that since
the Coulombic wave functions 1(j„ form a complete set,

any solution g to the perturbed equation of motion can
be expanded as a linear superposition given by

1((x,t)= g C„(t}lt'„(x) . (26)

Q(x, t)= g C„(t)e

where the C„(t) are presupposed to vary only slowly in
time when compared to the exponential factors. The E„
are the eigenenergies of the P„. Conservation of charge
requires the normalization condition

fd'xi&(x, t)l'= g lc„(t)l'=1. (28}

As a further ansatz, one can assume that the rapid oscil-
lations proportional to exp(iE„t) can be separated from
the more slowly changing time behavior. Hence in atom-
ic physics —especially in the two-level atom model —one
writes expression (26) in the form
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This entire mathematical apparatus requires that the per-
turbation to the Schrodinger equation be linear, and thus
that the principle of linear superposition holds. In self-

field QED the nonlinear expression (19) is not a perturba-
tion, but rather a required part of the equation of motion
for a complete theory —it cannot be turned off. If one did

try to treat this as a perturbation, using Eqs. (26) or (27),
one could not trust the result because (19) is nonlinear in

g and hence the superposition principle needed for ex-

pansions (26) or (27) does not hold. We shall see later in
this paper that the erroneous consequence of making
such an attack on the problem is the chirruped exponen-
tial decay predicted by neoclassical theory. Clearly a
different approach is needed here.

In the eigenfunction expansion (26) we physically are
making the ansatz that the spatial behavior is described
by the known functions i)'j„(x), and then we use this
knowledge to obtain information about the time behavior
of the unknown C„(t ). We propose now to reverse this
procedure by making instead the Fourier expansion

4a p
5(~nm+~pq )

dA, A,

nmpq COpq A, + l E

x(nIVIm)(pIVIq),

where we have used the dipole approximation (DA), i.e.,
exp[i(x y—)]=1. The kets In ) are still exact solutions
which we assume minimize the total action 8'. The 5
function is satisfied by either of the two conditions

n=m, p=q
n=q, m =p

(32a)

(32b)

but one can show that condition (32a) causes W, to van-

ish identically from parity considerations. This is be-
cause matrix elements of the form ( n I%In ) vanish for
even azimuthal quantum numbers, and terms with oppo-
site azimuthal quantum numbers will cancel in the sum-
mation in Eq. (31). Hence only the choice of (32b) gives
any contribution to the total action. This then leaves us
with the expression

g(x, t ) = g P„(x)e (29)
co'„ Ix„

Wi= g fdAA,
n, m nm

(33)

in which we assume that the time behavior is known, and
of the form exp( iE„t). I—t is now information about the
unknown wave functions g„and the corresponding ener-

gies E„ that we are looking for. Physically we would ex-
pect that the 1(„and the energies E„are approximately
equal to the Coulombic wave functions g„with energies
E„. The g„ in addition would have a complex phase fac-
tor exp(iP„), which would make the Fourier expansion
(29) convergent. However, in a two-level atom, we can to
first order of iteration replace 1(„with p„, since
n F I 1,2I, and then solve for E„,assuming that it has the

En =En +~En '

Let us now insert the Fourier expansion (29) for the ac-
tion integral W= Wo+ W, + Wz found in Eq. (25). For
8'o we find

~nm —1
COnm A,

(34)

where the equality sign is understood to hold under the
double summation g„~. The —1 in Eq. (34) corre-
sponds to an energy shift proportional to V', and hence
to a change in the electron mass. This term may be elim-
inated by renormalizing the electron mass, leaving only
the first term on the right-hand side of Eq. (34). The im-

plied contour integration embodied in the +is in the
denominator of (33) may be carried out by the usual
prescription of writing the integrand as a principal part P
plus a residue, as per

'I

where we have used the relation (n IVIm ) —=7„
= —m,~„m„x„.Using the symmetry in the dummy in-

dices n and m, we may write a partial fraction expansion

Wo= f f d x dt g 1t„'(x)HO/ (x)e
n, m

= g f dr(n IH, Im &e'""

n, m

=2m g ( n IHOIm )5(ei„),
n, m

(30)

1 =P
~nm

which gives

—in 5(co„—A, ),

Ix„ I' f"

(35)

where cu„=En —E
If the g„were Coulombic wave functions, this expres-

sion would be zero. The P„minimize Wo alone. Howev-
er, now the entire action 8', of which 8'o is only one
term, must be minimized as a whole. For our two-level
atom discussion n, m C I 1,2 I, but the general treatment
holds for an atom with a complete set of levels. '

We now discuss the piece of the action S', , which con-
tains the Lamb shift and spontaneous emission. Inserting
the expansion (29) into W, of (25b) we obtain, after carry-
ing out the xo =t and yo=—u time integrations,

i g a)'„ Ix„
n, m

(36)

Wf, =2rr5(Ef —E;)e, (37)

where the 5 function of (35) contributes only if m (n.
We now extract the contribution to level n alone, and
convert to units of energy, via an 5-matrix prescription. "
For a bound-state problem, the total action 8' is related
to the total invariant energy 8 of the system via



2290 A. O. BARUT AND JONATHAN P. DOWLING 41

and so the contribution from (36) to the total energy of
level n is given by

pr( n)

g(n)
2~

—IEpt —IEPr
g(x, t ) =C, (t )f&(x)e ' + Cz(t )gz(x)e

lc, (t)l'+ lc,(t)l'=1.

(41a)

(41b)

2(x ~
l

lP
dA,

m ~nm

Following the usual development of the two-level atom
model, we assume a Hamiltonian of the form

lx„
n, m

m (n

5E„—i A—„. (38)

H =Ho+H',

where

(42)

The real part of the energy shift Re[ 6I"') is the nonrela-
tivistic result for the Lamb shift, first obtained by
Bethe. ' For a two-level atom the sum runs over m =1,2.
If we define co„=co2]=coo as usual, we have and

H Q„=E„(n=1,2) (43)

A] =0,
2A

A z = A too I xq t I

3

(39a)

(39b)

p= & ply& = lc, I'+ Ic, I'=I,

with

(44)

This shows us that the ground state P~ is stable, but that
the excited state Pz decays with a time characterized by
r= 1/A, where A is the usual Einstein coefficient of
spontaneous emission. If we could prepare the two-level
system in level two at time t =0, Eq. (29) would become

—i(EP+5E )t —At
P(x, t ) = blitz(x)e (40)

V. SELF-FIELD QED
ASSUMING SUPERPOSITION

Let us now see what would have happened had we used
the usual, but inadmissable, expansion (27), together with
the conservation of electronic charge condition (28), all
instead of the Fourier expansion (29). [Recall that an ex-
pansion such as (27) in terms of a superposition of known
eigenstates is not valid because the solutions of the com-
plete nonlinear Schrodinger equation are not known-
and because there is no superposition principle for a non-
linear equation. ] For a two-level atom the expansion (27)
and condition (28) become

where a factor of 2 should now be included in the
definition (39b) of A to account for the two polarization
degrees of freedom of the photon. Equation (40) contains
the usual exponential decay dynamics for a two-level
atom, as found in standard QED. We now see that, self-
field QED, if treated correctly, does not predict any non-
standard dynamics, such as the chirruped decay profile
predicted by the neoclassical theory of Jaynes.

It can be shown that the corrections to the total action
coming from H2 give rise to a static shift which is the
same for all levels and hence unobservable, and also a
small level shift contribution which, in the relativistic
version of the theory, corresponds to the vacuum polar-
ization term of Wichmann and Kroll. This effect is negli-
gible in our two-level model, when compared to the dom-
inant contribution arising from the real part of Eq. (38),
and we will not consider it further in this paper.

H.'. —= &nlH'l~ & . (45)

I CtJpf

iC] =C]H']] +C2H ]2e '—:M]]+M]2, (46a)

I Cg)pl

iC2 =C]H2]e +C2H22 =—M2] +H22 . (46b)

So far we have done nothing but summarize the theory of
a dynamic two-level atom with a perturbation. In free
space, however, the only possible candidate for a pertur-
bation is the radiation reaction response of the atom to
the electronic self-field. At a simple level it can be
showed that the results of self-field QED arise as a self-
induced Stark and Zeeman effect which arises when the
electron cloud responds to its own electric field and mag-
netic fields. The Stark level shifts then are those of the
usual Lamb shift.

We now take H' =H]+H2 as our perturbation, where
H

&
and Hz are given in Eq. (22). (The self-field contribu-

tion from H' are not perturbations, we recall, and already
at this stage we should not expect this procedure to yield
correct results. ) From parity considerations it is easy to
show that'

H' =H'" =0ll 22

H",,' =H"'*,
21

H' '=H' '=0
12 21

(47a)

(47b)

(47c)

To calculate the nonzero matrix elements, we begin with
H& in Eq. (22). Into this expression we insert the EM
vector potential A"' from (24a) with the current j taken
from (16b). This yields the result

We define as before coo=E2 E] ~ The equations of
motion become, in all generality for two levels, '
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$2 ) d)]

HI]: e I I I dA dudee
e e V&e'[C](u)C, (u)Ve~e ' +C , ("u)Ce(u)V~ee ' ]

3m td] )](. + ] 6
(48)

toolxz] I I(o) I Cz I Ci3' (49a)

where u is a dummy time integration variable. (We have
used the dipole approximation. } Since the C;(t} are as-
sumed to vary only slowly with time, we may replace
C;(u )=C;(t) in the integrand, allowing us to carry out
the u integration. In the rotating-wave approximation we
neglect the terms of expression (48), which contain the
exponential exp[i(co+too)] and then the matrix elements
Mt" of Eq. (46), arising from the perturbation H], be-
come

aA 2a
lCz = Cz cool xz] I

3m

X —ln +i@too'IC]l Cz .
COp

(53b)

Now take Eq. (53a} and multiply it by C;; then take the
complex conjugate of (53a) and multiply through by Ci.
Add the resultant equations together, and make use of
the charge conservation condition (44). The final equa-
tions that remain after these operations are

Mzl o]olxz] I I (o]o) I C] I Cz
3m'

where we have defined

(49b)

—Ic, I'=2A(1 —Ic, I')Ic, I',

—Ic, I'= ——Ic, I',
dt 2 dt

(54a)

(54b)

A,
2

I(t]]o)=—J dA,
C(]o )(, +le

(50)
where A is the usual Einstein A coefficient for spontane-
ous emission, defined as

which is identical to the integral which appears in 8'&.
Hence we expect I(too) to contribute a level shift and a
line broadening as before. Similarly, as in Eq. (34), in
I(too) we can renormalize away a linearly divergent mass
term as Bethe does, ' leaving a logarithmically divergent
contribution to the Lamb shift, and a complex residue
which mediates the decay of the atom, i.e.,

A =— ci)ol xz] I

2a
(55}

Notice how the terms containing the cutoff A have
dropped out. These terms correspond to level shifts, and
do not affect the dynamics of the spontaneous decay of
level two into level one. If we define X—= IC, I

and
Y =—

I Cz I, Eqs. (54) may be integrated to give

I(too) o]oln
CO0

l 7TCOp, (51)
X(t)= 1

Ee "'+ 1
(56a)

22 (52)

where A is the same photon cutoff parameter used in (51).
This divergent energy shift is level independent, and
hence unobservable. (It is the same for all levels, and
hence can be subtracted off by rescaling the energy axis.
This divergence is an artifact of the dipole approxima-
tion. ) Combining the results of (49) and (52), we have for
the time evolution equations (46)

aA 2aic, = c, — o]'Ix1 1 3 0 21

X —ln
A

COp
ivrtoo fczl c]—, (53a)

where the cutoff A is usually taken as A =m.
We now calculate the matrix elements M 1

', which
come from the perturbation H2. Using the definition of
Hz from Eq. (22c), the charge density j =—p from (16b),
and the charge conservation condition (44); we obtain in
the dipole approximation

Y(t)= 1

Le+ "'+1 (56b)

which are the chirruped hyperbolic decay profiles pre-
dicted by the neoclassical theory of Jaynes. (The K and L
are constants of integration, with K = 1/L. )

Now, how is it possible that we have lost the purely ex-
ponential decay profile of Eq. (40}? The physical input to
the theory has not changed —only the mathematical
analysis leading to the final result given above in Eq. (56).
Although the decay constant ~= 1/A is correct, the func-
tional form is not. It is our contention that the chirruped
decay arises not from incorrect physics, but rather from
the incorrect use of the superposition principle, as it ap-
pears in the form of Eq. (4la). The perturbation 0' is
nonlinear in g and hence the total wave function that
solves the perturbed, nonlinear, equation of motion is not
necessarily expandable as a linear combination of g] and
gz. Such a procedure can yield at most an approximately
correct solution. And indeed we see that the solutions
(56) decay with the correct time constant A, and exhibit
the correct exponential decay asymptotically as t~ oc.
The decay, however, is not correct for short times.
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VI. REVIEW OF NEOCLASSICAL
ELECTRODYNAMICS

(57a)

H =Ho+H', (57b)

The neoclassical theory of Crisp and Jaynes is essen-
tially equivalent to an idea of Schrodinger' and Fermi
to include some quantum analog of classical radiation re-
action effects in the Schrodinger equation to account for
spontaneous emission. In this sense the neoclassical
theory is in the same spirit as self-field QED. Fermi s de-
velopment is essentially the same as that of Crisp and
Jaynes, and so we present primarily his methodology
here. We will restrict ourselves to a two-level atom dis-
cussion, to maintain consistency with the previous pre-
sentation.

Consider a solution P(x, t ) to Schrodinger's equation

V'(x, t)= g (x x„)to„e " C„"C
n, m

(61)

where co„=E„Ea—nd x„=(n ~x~m ), as before. If
we insert Eq. (61) into (57), along with expansion (41),
and then operate on the result expression with

fd xgk(x) and sum both sides, we arrive at the follow-

ing time evolution equation:

sical theory, one next assumes that the full solution of the
perturbed equation (57a} can be expanded as a linear su-
perposition of the eigenstates of the unperturbed equation.
As we saw previously in the context of self-field QED,
such an assumption is not correct due to the nonlinearity
inherent in the perturbed Schrodinger equation (57a).
This, we believe, is the erroneous step in neoclassical
theory which gives the unphysical chirruped decay
profile. To see that this is indeed so, we assume a linear
superposition such as in Eq. (41). With this expansion,
the potential V' becomes

Ho =—— 7 + Vo(x),
2m

H' = V'(x, t ),

(57c)

(57d) I, n, m

where V' is supposed to correspond to a radiation reac-
tion potential of some sort. We suppose that the electron
charge density is given as usual by ef'l1, and conserva-
tion of charge requires that f d xp= 1. The electric di-

pole moment can be written as

2

Ck X Ck ~ CI ~ ~kl ~ xkl ~

I=1
(63)

where n, m, l, k E I 1,2j. Conservation of energy requires
co„+cokI=0, which can be satisfied by k =m and l =m.
Hence expression (62) reduces to

p= J d xxp(x}, (58) or

which is equal to the classical expression. The solutions
lI'l„(x, t ) to the unperturbed equation H =Ho can be writ-
ten

C, =+ WC, [C, /',

C, = —~C, [C, J',
(64a)

(64b)

—IE'f
g„(x,t)=P„(x)e " (n =1,2) (59)

where the g„(x) are solutions to the stationary equation

HO/„=E„Q„, and are normalized as usual as
(n ~m ) =5„.

In order to get the neoclassical theory of spontaneous
emission we make the following ansatz for the form of the
potential V'(x, t ):

2 eV'(x, t)=—
3 2' xP, (60}

which is taken directly from classical electrodynamics. '

Expression (60) does not arise naturally in the theory of
neoclassical EM, but is inserted in a rather ad hoc fashion
in order to make the neoclassical theory. Notice that
with the inclusion of (60) in the Hamiltonian, the resul-
tant Schrodinger equation is nonlinear and nonlocal since
V' depends on the three-dimensional space integral of
xP'g. The situation is very similar to what was obtained
in the self-field theory in Eq. (21), except that the neo-
classical Schrodinger equation is not as complete. In ad-
dition to being a rather arbitrary prescription, as it stands
it can account only for spontaneous emission and not the
Lamb shift, vacuum polarization, g —2, etc.

To continue with the analysis in the context of neoclas-

V'(x, t)= g (x x„)a)„e
3 .. (65)

Notice the absence of the C, (t ) here, as compared to Eq.
(61). Ideally, the matrix elements x„are taken with
respect to the exact solutions P„ to the entire nonlinear

where we have defined A as before in Eq. (55). Multiply-
ing (64a) through by C', , and the complex conjugate of
(64a) by C& and adding these results give precisely the
same nonlinear equation found in (54a). A similar calcu-
lation using C2 gives (54b). Hence the ~C;~ obey the
same time evolution equations (56) as before, exhibiting
the chirruped hyperbolic profile, which is the trademark
of the neoclassical account of the dynamics of spontane-
ous emission. This decay is not physical, but rather a re-
sult of the invalid application of the superposition princi-
ple that is assumed in expansion (41).

We now recalculate the spontaneous-emission decay
rate in a different fashion, still within the context of neoc-
lassical theory, and show that the theory does admit a
correct exponential decay, so long as the expansion (41) is
not used. Let us begin with the perturbed, time depen-
dent Schrodinger equation (57). Instead of using the ex-
pansion (41), now we use the Fourier expansion (29).
With this decomposition of the wave function, the per-
turbing radiation reaction potential V' of (57) becomes
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equation (57). However, we may as before substitute the
approximate Coulombic solutions g„so as to iterate the
first-order energy correction to E„. Suppose we have
prepared a state g„ that is an exact solution which mini-
mizes the entire exact nonlinear action 8'. Let us assume
that this state can be written g„=g„+5/ with energy
E„=E„+5$. Then the Schrodinger equation

nHg„=i =E„g„

can be written as

i~'In &
= 5E„—ln &e (67)

—IEof
where we have used the separation A(I„(x, t ) =g„(x)e
We have neglected 5$„, and here ~n &:—P„(x). Inserting
expansion (65) for V', operating from the left with (k ~,

and performing an additional sum on both sides with
respect to a dummy summation index, we arrive at

2l CK i(~„+saki )t
5Ek — g Cd„(xkI 'x„)e

I, n, m

Now we may integrate both sides over all time t, and then
divide by 2~ to extract an energy shift of the kth level, as
per the method of (37), to be

5Ek g ~nm(Xkl Xnm )5(nm +~kl )
2l cz

l, n, m

(69)

The 5 function expresses a conservation of energy condi-
tion, which can be satisfied by the choice k = IrI and I =n
[See Eqs. (32).] This finally yields an imaginary energy
shift given

5Ek X Ik ~xlk ~

2lG

I

which can be rewritten as

(70)

21 cx
5E~ — coo~x2I( = I A (71a)

5E2= —
coII~x2I~ =+i A,

3

which, when inserted back into Eq. (66), gives

(71b)

f, (x, t)=g, (x)e
—iE t —At0

$2(x, t ) =gz(x)e

(72a)

(72b)

Hence the excited level shows the correct. exponential de-

(Ho+ H' )( g„+5$„)= ( E„+5E„)(g„+5$„), (66)

which reduces to

cay, but the ground state exhibits a clearly nonphysical
exponential growth. Intuitively, this is because, at the
somewhat primitive level of neoclassical theory, the radi-
ation reaction perturbation V' is just as likely to perturb
the ground state as it is the excited state. It is tempting
to compare (72b) with the so-called runaway solutions of
classical radiation reaction theory. This problem of the
decay of the ground state did not arise in the complete
self-field treatment given earlier. In the self-field expres-
sion (36) spontaneous emission emerges as the residue of
a contour integral. For the ground state there is no pole
enclosed by the contour, and hence the residue is zero,
and the ground state is stable.

VII. CONCLUSION

In this paper we discussed the self-field approach to
QED, emphasizing the theory's origin in the action at a
distance theory of classical electrodynamics of Wheeler
and Feynman. We showed how the theory could be used
to give a nonrelativistic account of spontaneous emission
and the Lamb shift in a two-level atom, with the usual ex-
ponential decay profile found in the standard approach.

We then showed how misuse of the superposition prin-
ciple could lead to an incorrect prediction of a chirruped
decay profile, as predicted in the neoclassical theory of
Crisp and Jaynes. Reviewing the neoclassical theory, we
showed that the chirruped decay could be eliminated by
avoiding the use of the superposition principle, and that
an excited two-level atom decays in the proper exponen-
tial fashion. The neoclassical theory appears to predict a
runaway solution for a gound-state electron. We believe
that this is due to the rather ad hoc fashion in which the
neoclassical theory accounts for the radiation reaction
field.

The self-Geld approach apparently contains elements of
the neoclassical theory, but is more comprehensive in
scope. The covariant elimination of the self-field A „"' of
the electron through use of an EM Green's function takes
into consideration the electron's radiation reaction field
in a compelling and natural manner. In addition, self-
field QED can make predictions about the Lamb shift,
vacuum polarization, g —2, etc.—all of which seem to be
beyond the scope of the original neoclassical theory. The
theory of the general covariant self-field QED is given
elsewhere. '
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